JPH0337966A - Transferring method to no-load operation for fuel cell - Google Patents

Transferring method to no-load operation for fuel cell

Info

Publication number
JPH0337966A
JPH0337966A JP1171814A JP17181489A JPH0337966A JP H0337966 A JPH0337966 A JP H0337966A JP 1171814 A JP1171814 A JP 1171814A JP 17181489 A JP17181489 A JP 17181489A JP H0337966 A JPH0337966 A JP H0337966A
Authority
JP
Japan
Prior art keywords
gas
anode
load
cathode
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1171814A
Other languages
Japanese (ja)
Inventor
Akira Omori
明 大森
Hiroyuki Kisamori
木佐森 演行
Masaki Arai
正喜 荒井
Shuichi Takahashi
修一 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP1171814A priority Critical patent/JPH0337966A/en
Publication of JPH0337966A publication Critical patent/JPH0337966A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/043Processes for controlling fuel cells or fuel cell systems applied during specific periods
    • H01M8/04303Processes for controlling fuel cells or fuel cell systems applied during specific periods applied during shut-down
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04228Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells during shut-down
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/14Fuel cells with fused electrolytes
    • H01M2008/147Fuel cells with molten carbonates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0048Molten electrolytes used at high temperature
    • H01M2300/0051Carbonates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04014Heat exchange using gaseous fluids; Heat exchange by combustion of reactants
    • H01M8/04022Heating by combustion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04097Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with recycling of the reactants
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To transfer to no-load operation without worrying about breaking of a combustor by controlling the flow rate of anode gas and that of cathode gas according to increase in load current. CONSTITUTION:Anode gases 7-11 and cathode gases 16-19 are supplied to a fuel cell. A part or the whole of anode exhaust gas is recycled to an anode 2 and the remainder is burned in a combustor 12 to convert it into cathode gas, then it is supplied to a cathode 3. A specified amount of load current is supplied to a load unit 4 from the fuel cell. When the fuel cell is transferred from load operation to no-load operation, load current in the load unit 4 is gradually decreased to zero so that the output temperature of the combustor 12 does not exceed a specified value, and the flow rate of anode gas and that of cathode gas are controlled according to decrease in load current. Increase in anode gas concentration in the combustor is prevented and the fuel cell is transferred to no-load operation without applying unreasonable load to the combustor.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、溶融炭酸塩型燃料電池の無負荷運転移行方法
に係り、特にガスリサイクル系を有する燃f:4電池を
負荷運転から無負荷運転に移行する無負荷運転移行方法
に関するものである。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a method for transitioning a molten carbonate fuel cell to no-load operation, and in particular to a method for transitioning a fuel f:4 battery having a gas recycling system from load operation to no-load operation. The present invention relates to a method of transitioning from no-load operation to operation.

[従来の技術] 燃料電池は、水の電気分解の逆の反応であり、水素と酸
素とを化学的に反応させて電気と水とを同時に取出すも
ので、電解質板を燃料極(アノード)と空気極(カソー
ド)の画電極で両面から挟んだセルを多層に積層させて
いる。
[Prior art] A fuel cell is a reaction that is the reverse of water electrolysis, in which hydrogen and oxygen are chemically reacted to produce electricity and water at the same time, and an electrolyte plate is used as a fuel electrode (anode). The cells are stacked in multiple layers, sandwiched from both sides by the picture electrodes of the air electrode (cathode).

溶融炭酸塩型の燃料電池においては、水素。In molten carbonate fuel cells, hydrogen.

−酸化炭素等を含むアノードガスをアノードガス供給系
を介して燃料電池のアノードに供給すると共に、酸素、
二酸化炭素等を含むカソードガスをカソードガス供給系
を介してカソードに供給することで、電解質板を介して
水素と酸素が反応して発電が行われる。このとき、アノ
ード及びカソードからのアノード排ガス及びカソ−ド排
ガスは単に捨てられていたが、この種の燃料電池のガス
消費率が約6〜8割程度と低いために、これを有効利用
すべくガスリサイクル系が創案された。このガスリサイ
クル系は、アノード排ガスの一部あるいは全部をアノー
ドにリサイクルすると共に残りをカソードガス供給系に
接続された触媒燃焼器等の燃焼器で燃焼(酸化)してカ
ソードガスとした後カソードに供給し、かつカソード排
ガスを上記触媒燃焼器を介してカソードにリサイクルす
るものである。
- Anode gas containing carbon oxide, etc. is supplied to the anode of the fuel cell via the anode gas supply system, and oxygen,
By supplying a cathode gas containing carbon dioxide or the like to the cathode via a cathode gas supply system, hydrogen and oxygen react via an electrolyte plate to generate electricity. At this time, the anode exhaust gas and cathode exhaust gas from the anode and cathode were simply thrown away, but since the gas consumption rate of this type of fuel cell is low at about 60 to 80%, it is necessary to use them effectively. A gas recycling system was invented. This gas recycling system recycles some or all of the anode exhaust gas to the anode, and burns (oxidizes) the remainder in a combustor such as a catalytic combustor connected to the cathode gas supply system to produce cathode gas, which is then sent to the cathode. and the cathode exhaust gas is recycled to the cathode via the catalytic combustor.

[発明が解決しようとする課題] ところで、従来の負荷運転から無負荷運転へ移行する燃
料電池の無負荷運転移行方法は、燃料電池に接続されて
いる負荷装置で負荷遮断して燃料電池の発電(反応〉を
とめるが、ガスリサイクル系を有する燃料電池の場合、
アノードからのアノード排ガスが燃焼器に入るために、
従来の移行方法では、燃焼器内のアノードガス濃度が高
くなるので、燃焼器の燃焼が異常燃焼になり、燃焼器の
出口温度が上昇する(最悪の場合燃焼器内で爆発が起こ
る)、このため、燃焼器に無理な負荷ががかり、燃焼器
は破損してしまう虞がある。
[Problems to be Solved by the Invention] By the way, the conventional method for transitioning from load operation to no-load operation of a fuel cell is to cut off the load with a load device connected to the fuel cell and stop the fuel cell from generating power. (Reaction> is stopped, but in the case of a fuel cell with a gas recycling system,
Because the anode exhaust gas from the anode enters the combustor,
In the conventional transition method, the anode gas concentration in the combustor increases, which causes abnormal combustion in the combustor and increases the combustor outlet temperature (in the worst case, an explosion occurs in the combustor). Therefore, an excessive load is applied to the combustor, and there is a risk that the combustor may be damaged.

そこで、本発明は、上記課題を解決すべくなされたもの
で、ガスリサイクルを有する燃料電池を負荷運転から無
負荷運転へ移行するとき、燃焼器の破損を心配すること
なく移行できる燃料電池の無負荷運転移行方法を提供す
ることを目的とする。
Therefore, the present invention has been made to solve the above problems, and when a fuel cell with gas recycling is transferred from load operation to no-load operation, the present invention has been made to solve the above problem. The purpose is to provide a load operation transition method.

[課題を解決するための手段] 本発明は、上記目的を達成するために、負荷装置に給電
すべく接続された燃料電池と、その燃料電池ヘアノード
ガス及びカソードガスをそれぞれ供給する供給系と、ア
ノード排ガスの一部あるいは全部をアノードにリサイク
ルすると共に残りをカソードガス供給系に接続された燃
焼器に供給してそこで燃焼させてカソードガスとするア
ノードガスリサイクル系とを備え、上記燃料電池を負荷
運転から無負荷運転に移行するに際し、上記負荷装置の
負荷電流を上記燃焼器の出口温度が所定値を越えないよ
うに徐々に零まで下げると共に、その負荷電流の減少に
応じて上記アノードガスとカソードガスの供給系からの
ガスの流量をそれぞれ制御したものである。
[Means for Solving the Problems] In order to achieve the above object, the present invention provides a fuel cell connected to supply power to a load device, and a supply system that supplies hair node gas and cathode gas of the fuel cell, respectively. , an anode gas recycling system that recycles part or all of the anode exhaust gas to the anode and supplies the remainder to a combustor connected to a cathode gas supply system where it is combusted as cathode gas, When transitioning from load operation to no-load operation, the load current of the load device is gradually lowered to zero so that the outlet temperature of the combustor does not exceed a predetermined value, and the anode gas is reduced in accordance with the decrease in the load current. The gas flow rates from the and cathode gas supply systems are controlled respectively.

[作用] 燃料電池ヘアノードガス及びカソードガスをそれぞれ供
給し、アノード排ガスの一部あるいは全部をアノードに
リサイクルすると共に残りを燃焼器で燃焼させてカソー
ドガスとした後カソードに供給することで、燃料電池よ
り負荷装置に所定の負荷電流が流れる。このとき、燃料
電池を負荷運転から無負荷運転に移行させるのに、負荷
装置の負荷電流を燃焼器の出口温度が所定値を越えない
ように徐々に零まで下げると共に、その負荷電流の減少
に応じてアノードガスとカソードガスの流量を制御する
ことにより、燃焼器内のアノードガス濃度が高くなるの
を防止しているので、燃焼器に無理な負荷がかかること
なく、燃料電池を無負荷運転に移行できる。
[Operation] By supplying the fuel cell hair node gas and cathode gas respectively, recycling part or all of the anode exhaust gas to the anode, and burning the remainder in a combustor to make cathode gas, the fuel is supplied to the cathode. A predetermined load current flows from the battery to the load device. At this time, in order to shift the fuel cell from load operation to no-load operation, the load current of the load device is gradually lowered to zero so that the combustor outlet temperature does not exceed a predetermined value, and the load current is By controlling the flow rates of anode gas and cathode gas accordingly, the concentration of anode gas in the combustor is prevented from increasing, allowing the fuel cell to operate without load without placing an unreasonable load on the combustor. You can move to

[実施例] 本発明の好適一実施例を添付図面に基づいて説明する。[Example] A preferred embodiment of the present invention will be described based on the accompanying drawings.

先ず、本発明の方法を実施するために採用する溶融炭酸
塩型燃料電池の発電システムを説明する。
First, a power generation system using a molten carbonate fuel cell employed to carry out the method of the present invention will be described.

第1図において、1は燃料電池であり、この燃料電池は
従来例と同じ構造であるので説明を省格し本実例ではア
ノード2とカソード3とで示す。
In FIG. 1, reference numeral 1 denotes a fuel cell. Since this fuel cell has the same structure as the conventional example, the explanation will be omitted, and in this example, it is shown as an anode 2 and a cathode 3.

燃料電池1のアノード2には負荷装置4が接続され、こ
の負荷装置4は燃料電池1が発電すると所定の負荷電流
が流れ、この負荷電流値が制0!l盤5に入力されるよ
うに構成されている。
A load device 4 is connected to the anode 2 of the fuel cell 1, and when the fuel cell 1 generates power, a predetermined load current flows through the load device 4, and this load current value becomes zero! It is configured to be input to the L board 5.

アノード2にはアノードガス供給系6が接続され、この
アノードガス供給系6は、水素(H2)。
An anode gas supply system 6 is connected to the anode 2, and this anode gas supply system 6 contains hydrogen (H2).

−酸化炭素(Co)、窒素(N2)、二酸化炭素(CO
2)、蒸気(H2O)を供給する供給系7゜8.9,1
0.11からなり、これら供給系78.9,10.11
からの水素、−酸化炭素、窒素、二酸化炭素、蒸気がア
ノードガス供給系6内で混合されてアノードガスとして
アノード2に供給されるようになっている。
-Carbon oxide (Co), nitrogen (N2), carbon dioxide (CO
2), Supply system that supplies steam (H2O) 7゜8.9,1
0.11, these supply systems 78.9, 10.11
Hydrogen, carbon oxide, nitrogen, carbon dioxide, and steam are mixed in an anode gas supply system 6 and supplied to the anode 2 as anode gas.

カソード3には、触媒燃焼器等の燃焼器12を有するカ
ソードガス供給系13が接続されていると共に、カソー
ド排ガス調節弁14を有するカソード排ガス排出系15
が接続されている。カソードガス供給系13は、二酸化
炭素(CO2)、酸素(02)、空気、蒸気(H20)
を供給する供給系16.17,18.19からなり、こ
れら供給系16.17.18.19からの二酸化炭素。
A cathode gas supply system 13 having a combustor 12 such as a catalytic combustor is connected to the cathode 3, and a cathode exhaust gas exhaust system 15 having a cathode exhaust gas control valve 14 is connected to the cathode 3.
is connected. The cathode gas supply system 13 includes carbon dioxide (CO2), oxygen (02), air, and steam (H20).
and carbon dioxide from these feed systems 16.17.18.19.

酸素、空気、蒸気がカソードガス供給系13内で混合さ
れてカソードガスとしてカソード3に供給されるように
なっている。また、カソードガス供給系13には、燃焼
器12の出口温度を計測する温度計20が設けられ、こ
の温度計20の計測値が制御盤5に入力されるようにな
でいる。
Oxygen, air, and steam are mixed in the cathode gas supply system 13 and supplied to the cathode 3 as cathode gas. Further, the cathode gas supply system 13 is provided with a thermometer 20 for measuring the outlet temperature of the combustor 12, and the measured value of the thermometer 20 is inputted to the control panel 5.

また、上記水素、−酸化炭素、窒素、二酸化炭素、蒸気
をアノードガス供給系6に供給するそれぞれの供給系7
,8.9,10.11及び二酸化炭素、酸素、空気、蒸
気をカソードガス供給系13に供給するそれぞれの供給
系16.17゜18.19には、それぞれ流量を計測す
るための流量計FAI、FA2.FA3.FA4.FA
5゜PCI、Fe2.Fe2.Fe2と供給ガス流量を
M御するための調節弁VAI、VA2.VA3゜VA4
.VA5.VCI、VO2,VO2゜VO2が介設され
、各流量計FAI、FA2゜FA3.FA4.FA5.
FCl、Fe2゜Fe2.Fe2の計測値が制御盤5に
入力されると共に、各調節弁VAI、VA2.VA3゜
VA4.VA5.VCI、VO2,VO2゜VO2はそ
れぞれ制御盤5の利用率制御により作動されて、各供給
系7,8,9,10.11゜16.17.18.19の
それぞれのガス供給量が制御されるようになっている。
In addition, each supply system 7 supplies the above-mentioned hydrogen, carbon oxide, nitrogen, carbon dioxide, and steam to the anode gas supply system 6.
, 8.9, 10.11 and the respective supply systems 16.17° and 18.19 that supply carbon dioxide, oxygen, air, and steam to the cathode gas supply system 13 are equipped with flowmeters FAI for measuring the flow rates. , FA2. FA3. FA4. F.A.
5゜PCI, Fe2. Fe2. Control valves VAI, VA2. for controlling Fe2 and supply gas flow rates M. VA3゜VA4
.. VA5. VCI, VO2, VO2° VO2 are interposed, and each flow meter FAI, FA2° FA3. FA4. FA5.
FCl, Fe2°Fe2. The measured value of Fe2 is input to the control panel 5, and each control valve VAI, VA2 . VA3゜VA4. VA5. VCI, VO2, VO2゜VO2 are each operated by the utilization rate control of the control panel 5, and the gas supply amount of each supply system 7, 8, 9, 10.11゜16.17.18.19 is controlled. It has become so.

さらに、燃料電池1には、ガスを有効利用するためのガ
スリサイクル系21が備えられている。
Furthermore, the fuel cell 1 is equipped with a gas recycling system 21 for effectively utilizing gas.

このガスリサイクル系21は、アノードガスリサイクル
系22とカソードガスリサイクル系23とからなってい
る。アノードガスリサイクル系22は、アノード排ガス
調節弁24、アノード排ガスリサイクルブロワ25及び
リサイクル調節弁26を順に介して上記アノードガス供
給系6に接続される第1アノードガスリサイクル系27
と、アノード排ガスリサイクルブロワ25とリサイクル
調節弁26との間の第1アノードリサイクル系27から
分岐されカソード供給調節弁28を介して上記カソード
供給系13の燃焼器12に接続される第2アノードリサ
イクル系29とからなっている。
This gas recycle system 21 consists of an anode gas recycle system 22 and a cathode gas recycle system 23. The anode gas recycle system 22 includes a first anode gas recycle system 27 connected to the anode gas supply system 6 via an anode exhaust gas control valve 24, an anode exhaust gas recycle blower 25, and a recycle control valve 26 in this order.
and a second anode recycle branched from the first anode recycle system 27 between the anode exhaust gas recycle blower 25 and the recycle control valve 26 and connected to the combustor 12 of the cathode supply system 13 via the cathode supply control valve 28. It consists of system 29.

一方、カソードガスリサイクル系23は、上記カソード
排ガス排出系15から分岐されカソード排ガスリサイク
ルブロワ30及びリサイクル調節弁31を順に介して上
記燃焼器12に接続されている。なお、上記調節弁は制
御盤により作動されるようになている。
On the other hand, the cathode gas recycle system 23 is branched from the cathode exhaust gas discharge system 15 and connected to the combustor 12 via a cathode exhaust gas recycle blower 30 and a recycle control valve 31 in this order. Note that the above-mentioned control valve is operated by a control panel.

次に上記溶融炭酸塩型燃料電池の発電システムに基づき
本発明の燃料電池の無負荷運転移行方法を説明する。
Next, a method for transitioning to no-load operation of a fuel cell according to the present invention will be explained based on the power generation system using the molten carbonate fuel cell.

水素、−酸化炭素、窒素、二酸化炭素、蒸気がそれぞれ
の供給系7,8.9,10.11を介してアノードガス
供給系6に供給されて混合し、アノードガスとしてアノ
ード2に供給される。アノード2からのアノード排ガス
は、アノードガスリサイクル系22を介してその一部あ
るいは全部がアノード2にリサイクルされると共に残り
が触媒燃焼器12に供給されそこで燃焼(酸化)されて
カソードガスになる。
Hydrogen, carbon oxide, nitrogen, carbon dioxide, and steam are supplied to the anode gas supply system 6 via respective supply systems 7, 8.9, 10.11, mixed, and supplied to the anode 2 as anode gas. . Part or all of the anode exhaust gas from the anode 2 is recycled to the anode 2 via the anode gas recycling system 22, and the remainder is supplied to the catalytic combustor 12 where it is combusted (oxidized) to become cathode gas.

また、二酸化炭素、酸素、空気、蒸気がそれぞれの供給
系16.17,18.19を介してカソードガス供給系
13に供給されて混合し、カソードガスとして触媒燃焼
器12を介してカソード3に供給される。カソード3か
らのカソード排ガスの一部は、カソードガスリサイクル
系23を介して触媒、燃焼器12に供給され、そしてカ
ソード3にリサイクルされて、水素と酸素が反応して発
電が行われ、負荷装置4に所定の負荷電流が流れる。
In addition, carbon dioxide, oxygen, air, and steam are supplied to the cathode gas supply system 13 via respective supply systems 16, 17, 18, 19, mixed, and supplied as cathode gas to the cathode 3 via the catalytic combustor 12. Supplied. A part of the cathode exhaust gas from the cathode 3 is supplied to the catalyst and combustor 12 via the cathode gas recycling system 23, and then recycled to the cathode 3, where hydrogen and oxygen react to generate electricity, and the load device A predetermined load current flows through 4.

発電中、発電を停止する場合や燃料電池1のプロセス値
に異常が生じた場合等、燃料電池1を保護するために電
池1の負荷を遮断しなければならないとき、負荷運転か
ら無負荷運転に移行させるには、第2図に示すように、
負荷を徐々に零まで下げると共に、第3図及び第4図に
示すように、その負荷の減少に応じてアノードガス及び
カソードガスの流量を制御させる。この負荷の減少及び
アノードガスとカソードガスの流量の制御を制御盤5に
記憶させ、制御盤5に入力される電流値が換算式により
供給ガス流量に換算されるようにする。
During power generation, when the load on the battery 1 must be cut off to protect the fuel cell 1, such as when power generation is stopped or when an abnormality occurs in the process value of the fuel cell 1, the load operation changes from load operation to no-load operation. To migrate, as shown in Figure 2,
The load is gradually lowered to zero, and the flow rates of the anode gas and cathode gas are controlled in accordance with the decrease in load, as shown in FIGS. 3 and 4. This reduction in load and control of the flow rates of the anode gas and cathode gas are stored in the control panel 5, so that the current value input to the control panel 5 is converted into the supply gas flow rate using a conversion formula.

その無負荷運転移行操作は、第5図に示すように、先ず
、ガス供給系7,8,9,10.11゜16.17,1
8.19の各調整弁VAI。
As shown in FIG. 5, the no-load operation transition operation is performed by firstly
8.19 each regulating valve VAI.

VA2.VA3.VA4.VA5.VCI。VA2. VA3. VA4. VA5. VCI.

VO2,VO2,VO2を利用率制mに切換エル。Switch VO2, VO2, VO2 to utilization rate m.

次に、負荷装置4の負荷設定電流値■を徐々に段階的に
小に設定させ、この設定値を制御盤5に入力させる。
Next, the load setting current value (2) of the load device 4 is gradually set to a smaller value in steps, and this set value is input into the control panel 5.

制御盤5に入力された電流値は、制御盤5に予め組み込
まれた各換算式(下記に示す)により各供給ガス流量に
換算される。
The current value input to the control panel 5 is converted into each supply gas flow rate by each conversion formula (shown below) built into the control panel 5 in advance.

アノードガス: 設定H2流量=’IXC÷設定燃料利用率/100×設
定H2組成 ÷設定(N2十CO)組成 設定CO流量=IXC÷設定燃料利用率/100×設定
Co組成 ÷設定(N2 +CO)組成 設定N2流量=に+ xC÷設定燃料利用率/100×
設定N2組成 ÷設定(Hz +co)組成 設定C02流量=IxC÷設定燃料利用率/100×設
定CO2組成 ÷設定(N2+CO)組成 設定N20流量=IXC÷設定燃料利用率/100×設
定H20 ÷設定(N2 +CO)組成 カソードガス: 設定CO2流量=l/2 1XC ÷設定酸素利用率/
100×設定CO2組成 ÷設定( 0 2+空気x 21/100)組成設定0
2流量=1/2 1XC ÷設定酸素利用率/100×
設定02組成 ÷設定(0□十空気x21/100)組成設定空気流量
= [1/2 K2xC ÷設定酸素利用率/100 +1/2設定(N2+CO)量 x(1−燃料利用率)コ ×設定空気組成 ÷設定(02+空気x 21/100)組成設定N20
流量=1/2 1 C ニー設定酸素利用率/100X
設定H20組成 ÷設定(0□十空気x21/100) Jfl成但し、
に設定電流値 に、:N2パージに必要なガス量から換算した設定値 
I≦に1 に2:空気パージに必要なガス量から換算した設定値 
I≦に2 C : 22.4xセル数÷53604なお、上記換算
式は、水素xIIoJl/sの供給量から発生する電流
I=2XFxx (c/s )をX(loj /s)か
らX(Nrrr/h)に換算し、ファラデ一定数をF=
9.6485309 x10’  ( c/rgoj 
)として整理し、X=22.4xT÷53603から得
られる。
Anode gas: Setting H2 flow rate = 'IXC ÷ Setting fuel utilization rate / 100 x Setting H2 composition ÷ Setting (N20 CO) Composition setting CO flow rate = IXC ÷ Setting fuel utilization rate / 100 x Setting Co composition ÷ Setting (N2 + CO) Composition setting N2 flow rate = + x C ÷ setting fuel utilization rate / 100 x
Setting N2 composition ÷ Setting (Hz + co) Composition setting C02 flow rate = IxC ÷ Setting fuel utilization rate / 100 × Setting CO2 Composition ÷ Setting (N2 + CO) Composition setting N20 flow rate = IXC ÷ Setting fuel utilization rate / 100 × Setting H20 ÷ Setting ( N2 + CO) composition cathode gas: Set CO2 flow rate = l/2 1XC ÷ Set oxygen utilization rate/
100 x setting CO2 composition ÷ setting (0 2 + air x 21/100) composition setting 0
2 flow rate = 1/2 1XC ÷ set oxygen utilization rate/100×
Setting 02 composition ÷ setting (0 □ 10 air x 21/100) composition setting air flow rate = [1/2 K2 x C ÷ setting oxygen utilization rate / 100 + 1/2 setting (N2 + CO) amount x (1 - fuel utilization rate) co x setting Air composition ÷ setting (02 + air x 21/100) composition setting N20
Flow rate = 1/2 1 C knee setting oxygen utilization rate/100X
Setting H20 composition ÷ setting (0 □ 10 air x 21/100) Jfl formation However,
To the current value set to: Set value converted from the amount of gas required for N2 purge
I≦1 to 2: Setting value converted from the amount of gas required for air purge
I≦2 C: 22.4x number of cells ÷ 53604 The above conversion formula converts the current I=2XFxx (c/s) generated from the supply amount of hydrogen x IIo Jl/s from /h), and the Faraday constant is F=
9.6485309 x10' (c/rgoj
) and obtained from X=22.4xT÷53603.

負荷設定電流値が各換算式より各供給ガス流量に換算さ
れると、これにより制御盤5が各調節弁VAI,VA2
,VA3,VA4,VA5。
When the load setting current value is converted to each supply gas flow rate using each conversion formula, the control panel 5 converts each control valve VAI, VA2.
, VA3, VA4, VA5.

VCI,VO2,VO2,VO2を作動させて、アノー
ドガス及びカソードガスの燃料電池1への供給量を組成
比に従い減少させる.但し、アノードガスの窒素及びカ
ソードガスの空気は、パージ流量だけ流す,すなわち、
設定電流値■がI≦に+を満たした時点で窒素供給系9
の調節弁VA3がホールドされ、アノード2にN2パー
ジ流量だけのN2が流れると共に、設定電流値■が■≦
に2を満たした時点で空気供給系18の調節弁VO2が
ホールドされ、カソード3に空気パージ流量だけの空気
が流れる.これら一連の操作は全て調整盤5内の計算機
により自動的に行われる。
VCI, VO2, VO2, and VO2 are operated to reduce the amount of anode gas and cathode gas supplied to the fuel cell 1 according to the composition ratio. However, the anode gas nitrogen and the cathode gas air are flowed at the purge flow rate, that is,
When the set current value ■ satisfies I≦+, the nitrogen supply system 9
The control valve VA3 is held, N2 flows to the anode 2 as much as the N2 purge flow, and the set current value ■ becomes ■≦
2 is satisfied, the control valve VO2 of the air supply system 18 is held, and air flows to the cathode 3 at the air purge flow rate. All of these series of operations are automatically performed by the computer in the adjustment panel 5.

そして、温度計20の計測により触媒燃焼器12の出口
温度が設定温度以下の場合、上記負荷設定電流値を任意
に下げ、上述の操作を繰返し、設定電流値を零にして無
負荷運転に移行させる。
If the outlet temperature of the catalytic combustor 12 is below the set temperature as measured by the thermometer 20, the load set current value is arbitrarily lowered and the above operation is repeated to reduce the set current value to zero and shift to no-load operation. let

このように、負荷設定電流値の減少に応じてアノードガ
ス及びカソードガスの流量を制御することにより、アノ
ードガス中の水素、−酸化炭素の燃料ガスの必要量が負
荷電流値に比例するために、燃料ガスのアノード2での
利用率がほとんど変化することはない、このため、アノ
ード2からのアノード排ガスが第2アノードリサイクル
系29を介して触媒燃焼器12に入り、この触媒燃焼器
12でのカソードガスに対する燃料ガス濃度は、負荷運
転の状態とほとんど同じ割合であるので、触媒燃焼器1
2での異常燃焼がほとんど起らず、触媒燃焼器12に無
理な負荷がかかることはなくなる。また、アノードガス
及びカソードガス流量を制御することにより、アノード
ガス流量の減少と共にカソードガス流量も減少すること
になるので、アノード2とカソード3間の差圧が大きく
なることはほとんどない、このため、差圧により燃料電
池1を損傷させる心配はなくなる。さらに、徐々に負荷
電流値を零まで下げることにより、負荷電流値を瞬時に
零にしたときの各調節弁VAI。
In this way, by controlling the flow rates of the anode gas and cathode gas according to the decrease in the load setting current value, the required amount of hydrogen and carbon oxide fuel gas in the anode gas is proportional to the load current value. , the utilization rate of the fuel gas at the anode 2 hardly changes. Therefore, the anode exhaust gas from the anode 2 enters the catalytic combustor 12 via the second anode recycling system 29, and the catalytic combustor 12 Since the fuel gas concentration with respect to the cathode gas in catalytic combustor 1 is almost the same ratio as in the load operation state,
Abnormal combustion at step 2 hardly occurs, and no unreasonable load is placed on the catalytic combustor 12. In addition, by controlling the anode gas and cathode gas flow rates, the cathode gas flow rate will also decrease as the anode gas flow rate decreases, so the differential pressure between the anode 2 and cathode 3 will hardly increase. , there is no need to worry about damaging the fuel cell 1 due to the pressure difference. Furthermore, each control valve VAI when the load current value is instantaneously reduced to zero by gradually lowering the load current value to zero.

VA2.VA3.VA4.VA5.VCI。VA2. VA3. VA4. VA5. VCI.

VO2,VO2,VO2の応答遅れによる各ガス供給量
のばらつきを防止している。
This prevents variations in the amount of each gas supplied due to a delay in the response of VO2, VO2, and VO2.

したがって、ガスリサイクル系21を有する燃料電池1
を負荷運転から無負荷運転に移行させるとき、負荷装置
4の負荷電流を、燃焼器12の出口温度が所定値を越え
ないように徐々に零まで下げると共に、その負荷電流の
減少に応じてアノードガス及びカソードガスの供給量を
制御することにより、燃焼器12内のアノードガス濃度
が高くなることが回避され、燃焼器2の破損を心配する
ことなく、かつアノード2とカソード3間の差圧が大き
くなることなく、無負荷運転に移行できる。
Therefore, the fuel cell 1 with the gas recycling system 21
When transitioning from load operation to no-load operation, the load current of the load device 4 is gradually lowered to zero so that the outlet temperature of the combustor 12 does not exceed a predetermined value, and the anode By controlling the supply amount of gas and cathode gas, it is possible to avoid an increase in the anode gas concentration in the combustor 12, without worrying about damage to the combustor 2, and to reduce the differential pressure between the anode 2 and cathode 3. It is possible to shift to no-load operation without increasing the amount.

なお、負荷運転から無負荷運転に移行するのに、自動操
作でも手動操作でもよい。手動操作の場合、アノードガ
ス及びカソードガス流量は同時に制御しているために、
各調節弁の応答範囲を越えないように負荷電流値を下げ
れば、燃焼器出口温度が設定温度を越えることはほとん
どなくなるので、負荷設定IC流値の減少範囲を過大に
とることができる。
Note that automatic operation or manual operation may be used to shift from load operation to no-load operation. In the case of manual operation, the anode gas and cathode gas flow rates are controlled at the same time.
If the load current value is lowered so as not to exceed the response range of each control valve, the combustor outlet temperature will almost never exceed the set temperature, so the range of decrease in the load set IC flow value can be set to an excessive value.

また、上記触媒燃焼器12の出口温度が設定温度を越え
た場合、インターロックがかかり、負荷装置4をホール
ドすると共に、一定時間後各調整弁VA1.VA2.V
A3.VA4.VA5゜VCl 、VO2,VO2,V
O2の開度をホールドし、燃料電池1の安全を確保させ
る。
Further, when the outlet temperature of the catalytic combustor 12 exceeds the set temperature, an interlock is applied to hold the load device 4 and, after a certain period of time, to each regulating valve VA1. VA2. V
A3. VA4. VA5゜VCl, VO2, VO2, V
The opening degree of O2 is held to ensure the safety of the fuel cell 1.

インターロック後、触媒燃焼器12が稼動していない場
合、負荷装置4にて負荷遮断する。このとき、供給ガス
流量は現状組成流量でホールドし、ホールド以降はオペ
レータの判断により運転再開又はパージ状態に移行させ
る。一方、触媒燃焼器12が稼動している場合、負荷装
置4にて負荷遮断すると同時に、各調整弁VA1.VA
2゜VA3.VA4.VA5.VCI 、VO2゜VO
2,VO2を利用率制御に切換え、供給ガス流量の制御
を行う、すなわち、負荷設定電流値を零にして、パージ
状態に移行させる。
If the catalytic combustor 12 is not operating after the interlock, the load device 4 cuts off the load. At this time, the supply gas flow rate is held at the current composition flow rate, and after the hold, the operation is restarted or the system is shifted to a purge state according to the operator's judgment. On the other hand, when the catalytic combustor 12 is operating, the load is cut off by the load device 4, and at the same time each regulating valve VA1. V.A.
2゜VA3. VA4. VA5. VCI, VO2゜VO
2. Switch VO2 to utilization rate control and control the supply gas flow rate, that is, set the load setting current value to zero and shift to the purge state.

なお、本実施例は無負荷運転に移行するとき、アノード
ガスの供給量を組成比に従い減少させる場合について説
明したが、水素、−酸化炭素の燃料ガスの減少分を他の
窒素、二酸化炭素、蒸気で補い、アノードガスの総流量
を一定に保持するようにして、無負荷運転に移行させて
もよい。
In addition, in this embodiment, when transitioning to no-load operation, the case where the supply amount of anode gas is reduced according to the composition ratio has been described. The operation may be shifted to no-load operation by supplementing with steam and keeping the total flow rate of the anode gas constant.

この場合、電池の負荷減少率を緩やかに設定すれば、そ
れに追従するガス供給流量の変化率も緩やかになるので
、アノードとカソード間の差圧が大きくなることなく、
無負荷運転に移行できる。
In this case, if the battery load reduction rate is set slowly, the rate of change in the gas supply flow rate that follows it will also be gradual, so the differential pressure between the anode and cathode will not increase.
Can shift to no-load operation.

[発明の効果] 以上要するに本発明によれば、ガスリサイクル系を有す
る燃n電池を負荷運転から無負荷運転へ移行するのに、
負荷装置の負荷電流を徐々に零まで下げると共に、7ノ
ードガスとカソードガスの流量を制御するようにしたの
で、燃焼器の破損を心配することなく移行できるという
優れた効果を発揮する。
[Effects of the Invention] In summary, according to the present invention, in order to shift a fuel cell having a gas recycling system from load operation to no-load operation,
Since the load current of the load device is gradually lowered to zero and the flow rates of the 7-node gas and cathode gas are controlled, an excellent effect is achieved in that the transition can be made without worrying about damage to the combustor.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の燃料電池の無負荷運転移行方法の一実
施例を説明するための楕戒図、第2図は本発明の方法に
よる負荷装置での負荷を示す図、第3図は本発明の方法
によるアノードガス流量を示す図、第4図は本発明の方
法によるカソードガス流量を示す図、第5図は本発明の
無負荷運転移行方法を示すフローチャートである。 図中、1は燃料電池、4は負荷装置、6はアノードガス
供給系、12は燃焼器、13はカソードガス供給系、2
2はアノードガスリサイクル系である。
FIG. 1 is an elliptical diagram for explaining one embodiment of the method for transitioning to no-load operation of a fuel cell according to the present invention, FIG. 2 is a diagram showing the load on a load device according to the method according to the present invention, and FIG. FIG. 4 is a diagram showing the anode gas flow rate according to the method of the present invention, FIG. 4 is a diagram showing the cathode gas flow rate according to the method of the present invention, and FIG. 5 is a flowchart showing the no-load operation transition method of the present invention. In the figure, 1 is a fuel cell, 4 is a load device, 6 is an anode gas supply system, 12 is a combustor, 13 is a cathode gas supply system, 2
2 is an anode gas recycling system.

Claims (1)

【特許請求の範囲】[Claims] 1、負荷装置に給電すべく接続された燃料電池と、その
燃料電池へアノードガス及びカソードガスをそれぞれ供
給する供給系と、アノード排ガスの一部あるいは全部を
アノードにリサイクルすると共に残りをカソードガス供
給系に接続された燃焼器に供給してそこで燃焼させてカ
ソードガスとするアノードガスリサイクル系とを備え、
上記燃料電池を負荷運転から無負荷運転に移行するに際
し、上記負荷装置の負荷電流を上記燃焼器の出口温度が
所定値を越えないように徐々に零まで下げると共に、そ
の負荷電流の減少に応じて上記アノードガスとカソード
ガスの供給系からのガスの流量をそれぞれ制御すること
を特徴とする燃料電池の無負荷運転移行方法。
1. A fuel cell connected to supply power to a load device, a supply system that supplies anode gas and cathode gas to the fuel cell, and a supply system that recycles some or all of the anode exhaust gas to the anode and supplies the remainder as cathode gas. and an anode gas recycling system that supplies the gas to a combustor connected to the system and burns it there to produce cathode gas.
When shifting the fuel cell from load operation to no-load operation, the load current of the load device is gradually lowered to zero so that the outlet temperature of the combustor does not exceed a predetermined value, and as the load current decreases, A method for transitioning to no-load operation of a fuel cell, characterized in that the flow rates of gases from the anode gas and cathode gas supply systems are controlled respectively.
JP1171814A 1989-07-05 1989-07-05 Transferring method to no-load operation for fuel cell Pending JPH0337966A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1171814A JPH0337966A (en) 1989-07-05 1989-07-05 Transferring method to no-load operation for fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1171814A JPH0337966A (en) 1989-07-05 1989-07-05 Transferring method to no-load operation for fuel cell

Publications (1)

Publication Number Publication Date
JPH0337966A true JPH0337966A (en) 1991-02-19

Family

ID=15930227

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1171814A Pending JPH0337966A (en) 1989-07-05 1989-07-05 Transferring method to no-load operation for fuel cell

Country Status (1)

Country Link
JP (1) JPH0337966A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006063471A3 (en) * 2004-12-17 2008-03-27 Astris En Inc Alkaline fuel cell system
JP2008094466A (en) * 2006-10-14 2008-04-24 Yochien Kyushoku:Kk Packaging method of food product and food package
JP2009176454A (en) * 2008-01-22 2009-08-06 Yokogawa Electric Corp Gas supply system and gas supply method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006063471A3 (en) * 2004-12-17 2008-03-27 Astris En Inc Alkaline fuel cell system
JP2008094466A (en) * 2006-10-14 2008-04-24 Yochien Kyushoku:Kk Packaging method of food product and food package
JP2009176454A (en) * 2008-01-22 2009-08-06 Yokogawa Electric Corp Gas supply system and gas supply method

Similar Documents

Publication Publication Date Title
JPH0320973A (en) Fuel cell power plant and operating method thereof
JPH0668891A (en) Fuel cell generator and control thereof
JP7050461B2 (en) Fuel cell system and how to stop it
JP2924673B2 (en) Operation control method for fuel cell power generation system
JPH0337966A (en) Transferring method to no-load operation for fuel cell
JPS60177565A (en) Operation method of fuel cell power generating system
JPH07192742A (en) Catalyst layer temperature control system of fuel reformer for fuel cell
JPS58166671A (en) Pressure control method of fuel cell power generating system
JP2931372B2 (en) Operating method of fuel cell power generation system
JPH03266367A (en) Fuel system control unit of fuel cell system
JPS61233979A (en) Controller of fuel cell power generating plant
JPS62119869A (en) Control system for fuel cell power generation plant
JPS63254675A (en) Fuel cell power generating system
JPH11135139A (en) Combined power generating system of fuel cell and gas turbine
JPS62283564A (en) Generating system for fuel cell
JPH0461755A (en) Operation control system of fuel cell power generating device
JPS58133771A (en) Control system of fuel cell power generating plant
JPS61263063A (en) Fuel cell power generation system
JPS63254677A (en) Fuel cell power generating system
JPS61110969A (en) Operation control of fuel cell
JPS63292575A (en) Fuel cell power generating system
JPS62222571A (en) Fuel cell power generating plant
JPS6276263A (en) Fuel cell power generating system
JPS61227375A (en) Fuel cell power generation system
JPH10284092A (en) Operating method for plural fuel cells when load is shut down