JPH0676621B2 - Manufacturing method of semi-processed non-oriented electrical steel sheet with excellent magnetic properties and weldability - Google Patents

Manufacturing method of semi-processed non-oriented electrical steel sheet with excellent magnetic properties and weldability

Info

Publication number
JPH0676621B2
JPH0676621B2 JP1124440A JP12444089A JPH0676621B2 JP H0676621 B2 JPH0676621 B2 JP H0676621B2 JP 1124440 A JP1124440 A JP 1124440A JP 12444089 A JP12444089 A JP 12444089A JP H0676621 B2 JPH0676621 B2 JP H0676621B2
Authority
JP
Japan
Prior art keywords
steel sheet
annealing
less
magnetic
weldability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1124440A
Other languages
Japanese (ja)
Other versions
JPH02305920A (en
Inventor
守雄 塩崎
洋介 黒崎
正軌 原田
正勝 住本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP1124440A priority Critical patent/JPH0676621B2/en
Publication of JPH02305920A publication Critical patent/JPH02305920A/en
Publication of JPH0676621B2 publication Critical patent/JPH0676621B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、主として小型静止器に使用されるセミプロセ
ス無方向性電磁鋼板の製造方法に関するものである。
Description: TECHNICAL FIELD The present invention relates to a method for manufacturing a semi-process non-oriented electrical steel sheet mainly used for small static devices.

〔従来の技術〕[Conventional technology]

音響機器用や安定器などの小型静止器には、主として無
方向性電磁鋼板が使用される。そして、小型静止器の一
例のEIコアでは、第1図に示すように、板取りは圧延方
向(以下L方向と記す)の割合が磁路の75%となるた
め、L方向の磁気特性の優れた無方向性電磁鋼板が求め
られる。
Non-oriented electrical steel sheets are mainly used for small static devices for audio equipment and ballasts. In the EI core, which is an example of a small static device, as shown in FIG. 1, the plate cutting has a ratio of 75% of the magnetic path in the rolling direction (hereinafter referred to as the L direction). An excellent non-oriented electrical steel sheet is required.

L方向の磁気特性の優れた鋼板の製造方法としては、下
記のものが提案されている。
The following methods have been proposed as a method for producing a steel sheet having excellent magnetic properties in the L direction.

特公昭56−43294号公報では、〔Si〕0.1〜1.0%、〔T.A
l〕0.007%以下を含み、熱延板を中間焼鈍を挟む2回冷
延を行う製造方法の2回目の冷延の冷延率を2〜15%と
し、圧延後の鋼板の粗度が15μ−in. R.M.S.以下となる
ような圧延ロールで行うことを特徴とする方法。
In Japanese Examined Patent Publication No. 56-43294, [Si] 0.1 to 1.0%, [TA]
l] 0.007% or less, and the cold rolling rate of the second cold rolling of the manufacturing method in which the hot rolled sheet is cold rolled twice with intermediate annealing sandwiched is set to 2 to 15%, and the roughness of the steel sheet after rolling is 15μ. -In. RMS A method characterized in that it is carried out with a rolling roll having a temperature of not more than RMS.

特開昭61−119618号公報では、〔Si〕1.0%以下、〔A
l〕0.4%以下その他を含有するスラブを熱延後、熱延板
焼鈍なしに中間焼鈍を挟む2回冷延を行う製造方法にお
いて、中間焼鈍を675℃〜750℃で15秒〜2分の連続焼鈍
で行い、2回目の冷延を圧下率3〜7%で行うことを特
徴とする方法。
In JP-A-61-119618, [Si] 1.0% or less, [A]
l] In a manufacturing method in which a slab containing 0.4% or less of other materials is hot-rolled, and then cold-rolled twice with intermediate annealing sandwiched between hot-rolled sheet annealing, the intermediate annealing is performed at 675 ° C to 750 ° C for 15 seconds to 2 minutes. A method characterized by performing continuous annealing and performing a second cold rolling at a rolling reduction of 3 to 7%.

一方、小型静止器の鉄心は、鋼板を所定の形状に打抜
き、積層した後、クランプされるが、この方法の一つと
して溶接がある。例えばEIコアでは、E型とI型に打抜
いた後、各々積層し、750℃×2時間程度の焼鈍を施
す。次に、銅線を巻いたボビンをE型の積層に挿入した
後I型をE型に溶接し鉄心とする。E型とI型との溶接
は、通常TIG溶接で行うが、この時、強度はさほど必要
とはしないが、ビードの形成のしやすが問題となる。即
ち、トーチの位置精度が悪くてもE型,I型が溶接される
ようにビードが広くなる鋼板が好ましい。ところで、溶
接条件たとえば溶接電流を上げ、溶接速度を落とし、ビ
ード幅を広げることも可能であるが、電極の消耗の増
加,生産性の低下,入熱の増大,熱歪み等により静止器
の特性が劣化するなどの問題が生じ、上記従来技術では
磁性焼鈍後の溶接性は満足できるものではなかった。
On the other hand, the iron core of a small static device is punched out from a steel sheet into a predetermined shape, laminated and then clamped. One of the methods is welding. For example, in the case of EI core, after punching into E type and I type, they are laminated and annealed at 750 ° C. for about 2 hours. Next, a bobbin wound with a copper wire is inserted into an E-type stack, and then the I-type is welded to the E-type to form an iron core. The E-type and I-type welding is usually performed by TIG welding. At this time, the strength is not so required, but the ease of forming beads is a problem. That is, it is preferable to use a steel plate having a wide bead so that the E type and the I type can be welded even if the position accuracy of the torch is poor. By the way, it is possible to increase the welding conditions such as increasing the welding current, lowering the welding speed, and widening the bead width, but the characteristics of the static device are increased due to increased electrode wear, decreased productivity, increased heat input, thermal strain, etc. However, in the above-mentioned conventional technique, the weldability after magnetic annealing was not satisfactory.

従来、有機物含有被膜を有する無方向性電磁鋼板の積層
鉄心の溶接性改善については、特公昭49−6744号公報、
特公昭49−19078号公報において提案されているが、こ
れらはいずれも磁性焼鈍前のことであり、皮膜中の有機
物が除去された磁性焼鈍後の溶接性、即ちビード幅増大
に対する改善は従来提案されていない。
Conventionally, regarding the weldability improvement of the laminated core of the non-oriented electrical steel sheet having an organic-containing coating, Japanese Patent Publication No. Sho 49-6744,
Although proposed in JP-B-49-19078, these are all prior to magnetic annealing, and improvement in weldability after magnetic annealing in which the organic substances in the film are removed, that is, improvement in bead width, has been conventionally proposed. It has not been.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

本発明は、磁気特性と溶接性の両者を満足することがで
きなかった前記従来技術の欠点を解決しうる、L方向の
磁気特性に優れ、溶接性の優れた小型静止器用セミプロ
セス無方向性電磁鋼板の製造方法を提供することを目的
とする。
INDUSTRIAL APPLICABILITY The present invention is a semi-process non-directional non-directional semi-process for a small static device having excellent magnetic properties in the L direction and excellent weldability, which can solve the drawbacks of the above-described prior art in which both magnetic properties and weldability could not be satisfied. It is an object to provide a method for manufacturing an electromagnetic steel sheet.

〔課題を解決するための手段〕[Means for Solving the Problems]

本発明の要旨とするところは下記のとおりである。 The gist of the present invention is as follows.

(1)〔C〕0.015%以下、〔Si〕0.1〜1.5%、〔Mn〕
0.1〜1.5%、〔P〕0.15%以下、〔S〕0.008%以下、
〔sol.Al〕0.01〜1.0%、〔T.N〕0.0050%以下、〔T.
O〕0.02%以下を含み、〔sol.Al〕/〔Si〕≧0.02、 〔Al2O3〕/(〔SiO2〕+〔MnO〕+〔Al2O3〕)×100≧
40%を満足し、残部鉄及び不可避的不純物よりなるスラ
ブを熱間圧延後、中間焼鈍を挟む2回の冷間圧延を施す
際に、中間焼鈍後の平均結晶粒径を10〜15μmとし、2
回目の冷間圧延を圧下率3〜10%、2回目の冷間圧延後
の鋼板の表面粗度を15μ−in. R.M.S.以下とすることを
特徴とする磁気特性と溶接性の優れたセミプロセス無方
向性電磁鋼板の製造方法。
(1) [C] 0.015% or less, [Si] 0.1 to 1.5%, [Mn]
0.1 to 1.5%, [P] 0.15% or less, [S] 0.008% or less,
(Sol.Al) 0.01-1.0%, (TN) 0.0050% or less, (T.
O] including 0.02% or less, [sol.Al] / [Si] ≧ 0.02, [Al 2 O 3 ] / ([SiO 2 ] + [MnO] + [Al 2 O 3 ]) × 100 ≧
When a slab satisfying 40% and having the balance of iron and unavoidable impurities is hot-rolled and then subjected to two cold-rollings with an intermediate annealing, the average crystal grain size after the intermediate annealing is 10 to 15 μm, Two
Semi-process with excellent magnetic properties and weldability, characterized in that the reduction ratio of the cold rolling of the second time is 3 to 10% and the surface roughness of the steel sheet after the second cold rolling is 15 μ-in. RMS or less. Manufacturing method of non-oriented electrical steel sheet.

(2)熱延板を700〜1000℃で熱延板焼鈍することを特
徴とする前項1記載の磁気特性と溶接性の優れたセミプ
ロセス無方向性電磁鋼板の製造方法。
(2) The method for producing a semi-processed non-oriented electrical steel sheet having excellent magnetic properties and weldability according to the above item 1, wherein the hot rolled sheet is annealed at 700 to 1000 ° C.

本発明者は、L方向の磁気特性に優れ、かつ、溶接性の
優れた小型静止器用のセミプロセス無方向性電磁鋼板の
製造方法を開発すべく鋭意取り組んだ。以下に新たに得
られた知見を述べる。
The present inventors have made diligent efforts to develop a method for manufacturing a semi-process non-oriented electrical steel sheet for a small static device, which has excellent magnetic properties in the L direction and excellent weldability. The newly obtained findings are described below.

先ず、溶接性について、本発明者は、磁性焼鈍後のTIG
溶接時のビード幅を広くすべく研究を重ねた。この結
果、〔sol.Al〕/〔Si〕,〔Al2O3〕/(〔SiO2〕+〔M
nO〕+〔Al2O3〕)×100,〔sol.Al〕を特定の範囲に限
定することにより、ビード幅を広くできることを新たに
発見した。第2図は、本発明者が行った実験結果であ
る。〔C〕0.003%、〔Si〕0.9〜1.1%、〔Mn〕0.2%、
〔P〕0.07%、〔S〕0.0022〜0.0039%、〔T.N〕0.001
9〜0.0035%、〔T.O〕0.007〜0.012%、〔sol.Al〕0.00
1〜1.3%含有する溶鋼を脱酸方法を変更して溶製し、酸
化物系介在物の組成と〔sol.Al〕/〔Si〕の比率を変更
し、スラブとした。続いて熱延し、板厚0.50mmに冷延
し、連続焼鈍し、絶縁被膜を塗布し、750℃×2時間の
焼鈍を行った。そしてTIG溶接は、溶接電流100A,溶接速
度65cm/min,アーク長2mm,アルゴン流量5l/min,締め付け
圧力25kgf/cm2,電極:トリウム2%入りタングステン
1.6mmφの溶接条件で行った。このときの〔Al2O3〕/
(〔SiO2〕+〔MnO〕+〔Al2O3〕)×100と〔sol.Al〕
/〔Si〕とビード幅の関係を第2図に示す。これより、
〔Al2O3〕/(〔SiO2〕+〔MnO〕+〔Al2O3〕)×100≧
40%かつ〔sol.Al〕/〔Si〕≧0.02の場合にビード幅が
安定して3mm以上に広くなることが判明した。
First, regarding the weldability, the present inventor has found that TIG after magnetic annealing
Research was repeated to widen the bead width during welding. As a result, [sol.Al] / [Si], [Al 2 O 3] / ([SiO 2] + [M
It was newly discovered that the bead width can be widened by limiting nO] + [Al 2 O 3 ]) × 100, [sol.Al] to a specific range. FIG. 2 shows the result of an experiment conducted by the present inventor. [C] 0.003%, [Si] 0.9 to 1.1%, [Mn] 0.2%,
[P] 0.07%, [S] 0.0022 to 0.0039%, [TN] 0.001
9 to 0.0035%, [TO] 0.007 to 0.012%, [sol.Al] 0.00
Molten steel containing 1 to 1.3% was melted by changing the deoxidizing method, and the composition of oxide inclusions and the [sol.Al] / [Si] ratio were changed to form a slab. Subsequently, it was hot rolled, cold rolled to a sheet thickness of 0.50 mm, continuously annealed, coated with an insulating coating, and annealed at 750 ° C. for 2 hours. And TIG welding, welding current 100A, welding speed 65cm / min, arc length 2mm, argon flow rate 5l / min, tightening pressure 25kgf / cm 2 , electrode: 2% thorium tungsten.
The welding was performed under the welding condition of 1.6 mmφ. [Al 2 O 3 ] / at this time
([SiO 2 ] + [MnO] + [Al 2 O 3 ]) × 100 and [sol.Al]
The relationship between / [Si] and the bead width is shown in FIG. Than this,
[Al 2 O 3 ] / ([SiO 2 ] + [MnO] + [Al 2 O 3 ]) × 100 ≧
It was found that when 40% and [sol.Al] / [Si] ≧ 0.02, the bead width stably increased to 3 mm or more.

第3図の実験は、〔C〕0.002%、〔Si〕0.10〜0.32
%、〔Mn〕0.2%、〔P〕0.07%、〔S〕0.0033〜0.004
7%、〔N〕0.0025〜0.0032%、〔T.O〕0.011〜0.014
%、〔sol.Al〕0.001〜0.05%を含有する溶鋼を溶製し
た。酸化物系介在物の組成は、〔Al2O3〕/(〔SiO2
+〔MnO〕+〔Al2O3〕)×100を47〜59%とし、〔sol.A
l〕/〔Si〕の値を変えスラブとした。これを熱延し、
板厚0.50mmに冷延し、連続焼鈍し、絶縁皮膜を塗布し、
製品とした。その後の試料調整、磁性焼鈍、溶接条件は
第2図の実験と同一である。これより、 〔sol.Al〕の絶対量としては0.01%以上必要なことが明
らかとなった。
In the experiment of FIG. 3, [C] 0.002%, [Si] 0.10 to 0.32
%, [Mn] 0.2%, [P] 0.07%, [S] 0.0033 to 0.004
7%, [N] 0.0025 to 0.0032%, [TO] 0.011 to 0.014
%, [Sol.Al] 0.001 to 0.05% was melted. The composition of oxide inclusions is [Al 2 O 3 ] / ([SiO 2 ]
+ [MnO] + [Al 2 O 3 ]) x 100 to 47-59%, and [sol.A
The value of l] / [Si] was changed to make a slab. Hot roll this,
Cold rolled to a thickness of 0.50 mm, continuously annealed, coated with an insulating film,
Made as a product. The subsequent sample preparation, magnetic annealing, and welding conditions are the same as in the experiment of FIG. From this, it became clear that the absolute amount of [sol.Al] should be 0.01% or more.

以上のように、鋼中の成分と酸化物系介在物の組成が磁
性焼鈍後のビード幅を左右することを新たに見出した
(この知見に基づく発明は特願昭63−333830号として特
許出願済)。
As described above, it was newly found that the components in the steel and the composition of the oxide-based inclusions influence the bead width after magnetic annealing (the invention based on this finding was filed as Japanese Patent Application No. 63-333830). Already).

上記実験は、一回冷延法による実験であるが、本発明者
は、中間焼鈍を挟む2回冷延法の実験や、これに加え熱
延板焼鈍を実施した場合の実験も行ったが、工程の差は
磁性焼鈍後のビード幅に影響を及ぼさないことを確認し
た。
Although the above-mentioned experiment is an experiment by a single cold rolling method, the present inventor also conducted an experiment of a double cold rolling method with intermediate annealing, and an experiment when hot-rolled sheet annealing was performed in addition to this. It was confirmed that the difference in the process did not affect the bead width after magnetic annealing.

ところで、前記特公昭56−43294号公報では、〔Si〕0.1
〜1.0%,〔T.Al〕0.007%以下を含む熱延板を中間焼鈍
を挟み2回冷延を行うにあたり、2回目の冷延の冷延率
を2〜15%とし、圧延後の鋼板の粗度が15μ〜in. R.M.
S.以下となるような圧延ロールを用いて行うことを特徴
とするL方向の磁束密度の高い無方向性電磁鋼板の製造
方法が提案されている。しかし、この方法では〔T.Al〕
が0.007%以下に限定されており、明細書中では、アル
ミニウムが、様々の析出物,介在物の形態で存在し、そ
れらが焼鈍による結晶粒成長の際に透磁率を下げる様な
好ましくない結晶方位を発達せしめたものと想像し、
〔T.Al〕を0.007%を越えて含有する場合には、L方向
の磁束密度を高くできないと述べている。一方、前述の
ようにビード幅を広くするためには、〔sol.Al〕を0.01
%以上含有し、かつ、酸化物系介在物をAl2O3の比率の
多い組成にすることが必須である。そこで、本発明者
は、〔sol.Al〕を0.01%以上含有し、酸化物系介在物を
Al2O3の比率の多い組成にし磁性焼鈍後のビード幅が広
く、かつ、L方向の磁束密度の高い無方向性電磁鋼板の
製造方法の発明に鋭意取り組んだ。
By the way, in Japanese Patent Publication No. 56-43294, [Si] 0.1
~ 1.0%, [T.Al] 0.007% or less hot rolled sheet with intermediate annealing sandwiched between two cold rolling, the cold rolling rate of the second cold rolling is set to 2 to 15%, and the steel sheet after rolling Roughness of 15μ ~ in. RM
S. A method for manufacturing a non-oriented electrical steel sheet having a high magnetic flux density in the L direction, which is characterized in that it is performed using a rolling roll having the following properties, has been proposed. However, with this method [T.Al]
Is limited to 0.007% or less, and in the specification, aluminum is present in the form of various precipitates and inclusions, which are unfavorable crystals that lower the magnetic permeability during crystal grain growth by annealing. Imagine that the azimuth has developed,
It is stated that when the content of [T.Al] exceeds 0.007%, the magnetic flux density in the L direction cannot be increased. On the other hand, in order to widen the bead width as described above, [sol.Al] is 0.01
% Or more, and it is essential that the oxide inclusions have a composition with a large proportion of Al 2 O 3 . Therefore, the inventor of the present invention contains 0.01% or more of [sol.
The inventors have earnestly worked on the invention of a method for producing a non-oriented electrical steel sheet having a composition with a large proportion of Al 2 O 3 and having a wide bead width after magnetic annealing and a high magnetic flux density in the L direction.

第4図の実験は、〔C〕0.003%、〔Si〕0.34%、〔M
n〕0.2%、〔P〕0.07%、〔S〕0.0032%、〔T.N〕0.0
021%、〔T.O〕0.007%、〔sol.Al〕0.26%を含有し、
〔Al2O3〕/(〔SiO2〕+〔MnO〕+〔Al2O3〕)×100が
51%であるスラブを熱延し、中間焼鈍を挟む2回冷延法
の工程において、0.51〜0.57mmの中間厚みとし、種々の
中間焼鈍温度で焼鈍し、次いで、0〜15%の冷延率で2
回目の冷延を行い、鋼板の粗度は、13〜14μ−in. R.M.
S.とし、最終製品板厚を0.50mmとした。そして、750℃
×2時間の磁性焼鈍を行い、磁気特性を評価した。この
時の中間焼鈍後の平均結晶粒径、2回目の冷延率とL方
向の磁束密度の関係を第4図に示す。第4図の実験例よ
り、中間結晶粒径が10〜15μm、2回目の冷延率3〜10
%の場合にL方向の磁束密度が高くなることが分かる。
即ち、中間結晶粒径と2回目の冷延率を狭い範囲に限定
することにより、〔sol.Al〕を0.01%以上含有してもL
方向の磁束密度を高くすることに成功し、例えば、Si+
Alが0.60%の鋼板でL方向の磁束密度B50で1.82T以上を
得ることができたのである。
In the experiment of FIG. 4, [C] 0.003%, [Si] 0.34%, [M]
n] 0.2%, [P] 0.07%, [S] 0.0032%, [TN] 0.0
Contains 021%, [TO] 0.007%, [sol.Al] 0.26%,
[Al 2 O 3 ] / ([SiO 2 ] + [MnO] + [Al 2 O 3 ]) × 100
51% slab is hot-rolled, intermediate annealing is sandwiched in the double cold-rolling process, with an intermediate thickness of 0.51 to 0.57 mm, annealed at various intermediate annealing temperatures, and then 0 to 15% cold rolled. 2 at a rate
After the cold rolling for the third time, the roughness of the steel plate is 13-14 μ-in.RM.
The final product plate thickness was 0.50 mm. And 750 ℃
The magnetic properties were evaluated by performing magnetic annealing for × 2 hours. FIG. 4 shows the relationship between the average grain size after the intermediate annealing, the second cold rolling rate and the magnetic flux density in the L direction at this time. From the experimental example of FIG. 4, the intermediate crystal grain size is 10 to 15 μm, and the second cold rolling rate is 3 to 10
It can be seen that the magnetic flux density in the L direction becomes high when%.
That is, by limiting the intermediate crystal grain size and the second cold rolling rate to a narrow range, even if 0.01% or more of [sol.Al] is contained, L
Succeeded in increasing the magnetic flux density in the direction, for example Si +
It was possible to obtain a magnetic flux density B 50 in the L direction of 1.82 T or more with a steel sheet containing 0.60% Al.

なお、中間焼鈍の温度、時間と平均結晶粒径の関係は、
一つの素材については厳密に存在するが、成分素材など
が変わった時にこの関係は、ずれてくる。例えば、Siの
含有量により再結晶開始温度や粒成長速度が変わる。こ
の関係について実験した例を第5図に示す。〔Si〕0.1
%,1.0%,1.8%の3種類で、鉄以外のその他の元素は0.
005%以下の成分素材の熱延板を82%の圧下率で冷間圧
延し、中間焼鈍の均熱時間は30秒に固定し、均熱温度を
変え、平均結晶粒径との関係を調査した。これより、Si
含有量により同じ均熱時間でも、得られる平均結晶粒径
が異なることが分かる。このため、本発明では、治金的
に意味のある平均結晶粒径で中間焼鈍の条件を規定す
る。
The relationship between the temperature and time of intermediate annealing and the average crystal grain size is
Strictly about one material, but this relationship shifts when the constituent materials change. For example, the recrystallization start temperature and the grain growth rate change depending on the Si content. An example of an experiment conducted on this relationship is shown in FIG. (Si) 0.1
%, 1.0%, 1.8%, with 0 other elements other than iron.
Hot-rolled sheet of 005% or less component material is cold-rolled at a reduction rate of 82%, the soaking time of intermediate annealing is fixed at 30 seconds, the soaking temperature is changed, and the relationship with the average grain size is investigated. did. From this, Si
It can be seen that the average grain size obtained varies depending on the content even if the soaking time is the same. Therefore, in the present invention, the condition of the intermediate annealing is defined by the average crystal grain size which has a metallurgical meaning.

第6図の実験は、第4図の実験に使用した熱延板を種々
の温度で熱延板焼鈍した。そして、0.52〜0.56mmの中間
厚みとし中間焼鈍を行い中間焼鈍後の平均結晶粒径を12
μmとした。そして、3〜10%の圧下率の2回目の冷間
圧延を行い、鋼板の粗度は、13〜14μ−in. R.M.S.と
し、最終製品板厚を0.50mmとした。そして、750℃×2
時間の磁性焼鈍を行い、磁気特性を評価した。第6図の
実験例より700℃以上で熱延板焼鈍すると、磁束密度が
約100G高くなることが分かる。
In the experiment of FIG. 6, the hot rolled sheet used in the experiment of FIG. 4 was annealed at various temperatures. Then, with an intermediate thickness of 0.52 to 0.56 mm, intermediate annealing was performed, and the average grain size after intermediate annealing was 12
μm. Then, the second cold rolling with a reduction rate of 3 to 10% was performed, the roughness of the steel sheet was 13 to 14 μ-in. RMS, and the final product sheet thickness was 0.50 mm. And 750 ℃ × 2
Magnetic annealing was performed for a period of time to evaluate the magnetic properties. From the experimental example of FIG. 6, it can be seen that the magnetic flux density increases by about 100 G when the hot rolled sheet is annealed at 700 ° C. or higher.

(従来公知技術との関連) 前記特公昭56−43294号公報では、 〔Si〕0.1〜1.0%,〔T.Al〕0.007%以下を含む熱延板
を中間焼鈍を挟み2回冷延を行う製造方法の2回目の冷
延の冷延率を2〜15%とし、圧延後の鋼板の粗度が15μ
−in. R.M.S.以下となるような圧延ロールで行うことを
特徴とする方法が提案されている。
(Relationship with Conventionally Known Technology) In Japanese Patent Publication No. 56-43294, hot-rolled sheets containing [Si] 0.1 to 1.0% and [T.Al] 0.007% or less are cold-rolled twice with intermediate annealing sandwiched therebetween. The cold rolling rate of the second cold rolling of the manufacturing method is set to 2 to 15%, and the roughness of the steel sheet after rolling is 15μ.
A method has been proposed, which is characterized in that rolling is performed with a rolling roll having a temperature of −in. RMS or less.

しかし、この技術では〔T.Al〕の上限が0.007%である
ため、磁性焼鈍後の溶接時のビード幅が狭くなってしま
う。
However, since the upper limit of [T.Al] is 0.007% in this technique, the bead width during welding after magnetic annealing becomes narrow.

これに対し本発明は、〔sol.Al〕を0.01%以上含有し、
〔sol.Al〕/〔Si〕,〔Al2O3〕/(〔SiO2〕+〔MnO〕
+〔Al2O3〕)×100を狭い範囲に制御することにより優
れた溶接性を発現させ、そして、中間焼鈍後の平均結晶
粒径、2回目の冷間圧延の低下率を狭い範囲に限定し、 〔sol.Al〕を0.01%以上含有しても優れた磁気性を得る
ことに成功したものであり、磁性焼鈍後の磁気特性と溶
接性の両者を満足する技術である。従って、本発明は、
前記特公昭56−43294号公報記載の技術とは全く異なる
技術であると解される。
On the other hand, the present invention contains [sol.Al] 0.01% or more,
[Sol.Al] / [Si], [Al 2 O 3] / ([SiO 2] + [MnO]
By controlling + [Al 2 O 3 ]) × 100 within a narrow range, excellent weldability is achieved, and the average grain size after intermediate annealing and the reduction rate of the second cold rolling are controlled within a narrow range. For example, even if the content of [sol.Al] is 0.01% or more, it has succeeded in obtaining excellent magnetic properties, and is a technique that satisfies both the magnetic properties and weldability after magnetic annealing. Therefore, the present invention provides
It is understood that the technique is completely different from the technique described in Japanese Patent Publication No. 56-43294.

特開昭61−119618号公報では、〔Si〕1.0%以下、〔A
l〕0.4%以下その他を含有するスラブを熱延後、熱延板
焼鈍なしに中間焼鈍を挟む2回冷延を行う製造方法にお
いて、中間焼鈍を675〜750℃で15秒〜2分の連続焼鈍で
行い、2回目の冷延を圧下率3〜7%で行うことを特徴
とする方法が提案されている。しかし、この技術では、
磁性焼鈍後の溶接性についての記載がなく、鋼中の成
分、酸化物系介在物の範囲を限定するという思想がな
く、また、本発明では2回目の冷間圧延後の鋼板の粗度
を15μ−in. R.M.S.以下とすることがL方向の磁束密度
を高めるために必須であるが、これについての思想も記
載がなく本発明とは全く異なる技術であると解される。
In JP-A-61-119618, [Si] 1.0% or less, [A]
l] In a manufacturing method in which a slab containing 0.4% or less of others is hot-rolled, and then cold-rolled twice with intermediate annealing sandwiched between hot-rolled sheet annealing, the intermediate annealing is continuously performed at 675 to 750 ° C for 15 seconds to 2 minutes. A method has been proposed in which annealing is performed and the second cold rolling is performed at a rolling reduction of 3 to 7%. But with this technology,
There is no description of weldability after magnetic annealing, there is no idea of limiting the range of components and oxide-based inclusions in the steel, and in the present invention, the roughness of the steel sheet after the second cold rolling is determined. It is indispensable to set it to 15 μ-in. RMS or less in order to increase the magnetic flux density in the L direction, but it is understood that there is no description about it and it is a technology completely different from the present invention.

〔構成要件の限定理由〕[Reason for limiting the requirements]

〔C〕:Cは0.015%を越えると磁気特性に有害となるば
かりかCの析出による磁気時効が著しくなり、磁気特性
が劣化するので0.015%以下、好ましくは、0.010%以下
とする。
[C]: When C exceeds 0.015%, not only is it harmful to the magnetic properties, but also the magnetic aging due to the precipitation of C becomes remarkable and the magnetic properties deteriorate, so 0.015% or less, preferably 0.010% or less.

〔Si〕:Siは鉄損を減少させる元素である。0.1%未満で
は、鉄損が悪すぎ、1.5%を上限としたのは、これを越
えると磁束密度の低下を招くからである。
[Si]: Si is an element that reduces iron loss. If it is less than 0.1%, the iron loss is too bad, and the upper limit is 1.5% because if it exceeds this, the magnetic flux density is lowered.

〔Mn〕:Mnは鋼板の硬度を増加させ、打抜き性を改善す
るために0.1%以上添加する。積層鉄心溶接時のビード
幅はMnを0.3%以上添加すると一段と広くなるため、好
ましくは0.3%以上である(特願昭63−333830号参
照)。上限の1.5%は経済的理由によるものである。
[Mn]: Mn is added in an amount of 0.1% or more in order to increase the hardness of the steel sheet and improve the punchability. The bead width at the time of welding the laminated core becomes wider when Mn is added in an amount of 0.3% or more, and is preferably 0.3% or more (see Japanese Patent Application No. 63-333830). The upper limit of 1.5% is for economic reasons.

〔P〕:Pも鋼板の硬度を増加させ、打抜き性を改善する
ために添加する。上限の0.15%を越えると脆化が著し
い。
[P]: P is also added to increase the hardness of the steel sheet and improve the punchability. When the upper limit of 0.15% is exceeded, embrittlement becomes remarkable.

〔S〕:SはMnSなどの硫化物となり、鉄損を悪化させる
ので0.008%以下とした。Sは表面活性元素であるが、
鉄損の面から0.008%以下に限定しているため、ビード
幅には影響しないと考えられる。
[S]: S becomes a sulfide such as MnS and deteriorates iron loss, so the content was made 0.008% or less. S is a surface active element,
Since it is limited to 0.008% or less in terms of iron loss, it is considered that the bead width is not affected.

〔sol.Al〕:sol.Alは、スリット断面,打抜き断面に磁
性焼鈍時の焼鈍雰囲気中の酸素と反応して生成する酸化
皮膜をAl2O3の多い組成とし、磁性焼鈍後の積層鉄芯溶
接時のビード幅を広くするために0.01%以上添加する。
上限を1.0%としたのは、これを越えると磁束密度の低
下を招くためである。
[Sol.Al]: sol.Al is a laminated iron oxide after magnetic annealing that has a composition with a large amount of Al 2 O 3 in the oxide cross-section formed by reacting with oxygen in the annealing atmosphere during magnetic annealing in the slit cross section and punching cross section. Add 0.01% or more to widen the bead width during core welding.
The upper limit is set to 1.0% because if it exceeds this, the magnetic flux density is lowered.

〔T.N〕:NはAlNなどの窒化物となり、鉄損を悪化させる
ので、T.N量を0.005%以下とする。
[TN]: N becomes a nitride such as AlN and worsens iron loss, so the TN content is made 0.005% or less.

〔T.O〕:Oは酸化物を形成し、鉄損を悪化させるので、
T.O量は0.02%以下とする。
[TO]: O forms an oxide and worsens iron loss.
The TO amount is 0.02% or less.

〔sol.Al〕/〔Si〕:スリット断面、打抜き断面に磁性
焼鈍時の焼鈍雰囲気中の酸素と反応して生成する酸化皮
膜をAl2O3が多い組成とし、積層鉄芯溶接時のビード幅
を広くするために〔sol.Al〕/〔Si〕≧0.02とする。
[Sol.Al] / [Si]: The oxide film formed by reacting with oxygen in the annealing atmosphere during magnetic annealing on the slit cross section and punching cross section has a composition with a large amount of Al 2 O 3 and is a bead at the time of welding a laminated iron core. To widen the width, [sol.Al] / [Si] ≧ 0.02.

〔Al2O3〕/(〔SiO2〕+〔MnO〕+〔Al2O3〕)×100:
鋼中の酸化物組成をAl2O3が多い組成とし、溶接時の酸
素の放出を抑え、磁性焼鈍後の積層鉄芯溶接時のビード
幅を広くするために、 〔Al2O3〕/(〔SiO2〕+〔MnO〕+〔Al2O3〕)×100を
40%以上とする。
[Al 2 O 3 ] / ([SiO 2 ] + [MnO] + [Al 2 O 3 ]) × 100:
In order to suppress the release of oxygen during welding and to widen the bead width during laminated iron core welding after magnetic annealing, the oxide composition in the steel should be such that a large amount of Al 2 O 3 is contained in [Al 2 O 3 ] / ([SiO 2 ] + [MnO] + [Al 2 O 3 ]) × 100
40% or more.

中間焼鈍後の平均結晶粒径:中間焼鈍後の平均結晶粒径
が10μm未満であるかあるいは15μmを越えるとL方向
の磁束密度を高くすることができない。
Average grain size after intermediate annealing: If the average grain size after intermediate annealing is less than 10 μm or exceeds 15 μm, the magnetic flux density in the L direction cannot be increased.

2回目の冷間圧延の圧下率:2回目の冷間圧延の圧下率が
3%未満であるかあるいは10%を越えると、L方向の磁
束密度を高くすることができない。
Reduction ratio of second cold rolling: If the reduction ratio of the second cold rolling is less than 3% or exceeds 10%, the magnetic flux density in the L direction cannot be increased.

2回目の冷間圧延後の鋼板の表面粗度:2回目の冷間圧延
後の鋼板の表面粗度が15μ−in. R.M.S.を越えるとL方
向の磁束密度を高くすることができない。
Surface roughness of the steel sheet after the second cold rolling: When the surface roughness of the steel sheet after the second cold rolling exceeds 15 μ-in. RMS, the magnetic flux density in the L direction cannot be increased.

熱延板焼鈍温度:熱延板焼鈍は、必要に応じて実施し、
下限の700℃未満では磁気特性向上の効果がなく、上限
の1000℃を越えると冷延性が悪化する。
Hot-rolled sheet annealing temperature: Hot-rolled sheet annealing is performed as necessary,
Below the lower limit of 700 ° C, there is no effect of improving the magnetic properties, and above the upper limit of 1000 ° C, cold ductility deteriorates.

〔実施例〕〔Example〕

(実施例1) 種々の成分組成の無方向性電磁鋼板用スラブを製造し
た。これを熱延し、続いて冷間圧延し0.51〜0.57mmの中
間厚みとし、中間焼鈍の条件を変え、中間焼鈍後の平均
結晶粒径を変更した。これらに1〜13%の圧下率の2回
目の冷間圧延を実施し、鋼板の粗度は、13〜14μ−in.
R.M.S.で、0.50mmの最終製品板厚とし、絶縁皮膜を塗布
し製品とした。その後、ビード幅調査用の試料は、10×
30mmに切断し、30mm厚さに60枚積層し、750℃×2時間
の焼鈍を行った。そして、TIG溶接は、溶接電流100A,溶
接速度65cm/min,締め付け圧力25kgf/cm2,アーク長2mm,
トリウム2%入りタングステン1.6mmφ電極の溶接条件
で行った。一方、磁気特性は、エプスタイン試料を750
℃×2時間の磁性焼鈍を行い評価した。この時の成分組
成とビード幅、中間焼鈍後の平均結晶粒径、2回目の冷
間圧延の圧下率、磁気特性を第1表に示す。
(Example 1) Slabs for non-oriented electrical steel sheets having various component compositions were manufactured. This was hot rolled and then cold rolled to an intermediate thickness of 0.51 to 0.57 mm, the conditions of intermediate annealing were changed, and the average grain size after intermediate annealing was changed. These were subjected to a second cold rolling with a reduction rate of 1 to 13%, and the roughness of the steel sheet was 13 to 14 μ-in.
The final product plate thickness was 0.50 mm by RMS, and the product was coated with an insulating film. After that, the sample for bead width investigation is 10 ×
It was cut into 30 mm, 60 sheets were laminated to a thickness of 30 mm, and annealed at 750 ° C. for 2 hours. And, TIG welding, welding current 100A, welding speed 65cm / min, tightening pressure 25kgf / cm 2 , arc length 2mm,
The welding was performed under the welding conditions of 1.6 mmφ tungsten electrode containing 2% thorium. On the other hand, the magnetic characteristics of the Epstein sample are 750.
Magnetic annealing was performed at ℃ × 2 hours and evaluated. Table 1 shows the component composition, the bead width, the average grain size after the intermediate annealing, the rolling reduction in the second cold rolling, and the magnetic properties at this time.

これにより、本発明例の場合、磁気特性と積層鉄心溶接
時のビード幅ともに優れていることが分かる。
From this, it is understood that in the case of the present invention example, both the magnetic characteristics and the bead width during welding of the laminated iron core are excellent.

(実施例2) 第2表に示す成分組成の無方向性電磁鋼板用スラブを製
造した。これを熱延し、種々の条件で熱延板焼鈍した。
続いて冷間圧延し0.53mmの中間厚みとし、中間焼鈍の条
件を変え、中間焼鈍後の平均結晶粒径を変更した。これ
らに5%の圧下率の2回目の冷間圧延を実施し鋼板の粗
度は、13〜14μ−in. R.M.S.で、0.50mmの最終製品板厚
とし、絶縁皮膜を塗布し製品とした。その後、ビード幅
調査用の試料は、10×30mmに切断し、30mm厚さに60枚積
層し、750℃×2時間の焼鈍を行った。そして、TIG溶接
は、溶接電流100A,溶接速度65cm/min,締め付け圧力25kg
f/cm2,アーク長2mm,トリウム2%入りタングステン1.6
mmφ電極の溶接条件で行った。一方、磁気特性は、エプ
スタイン試料を750℃×2時間の磁性焼鈍を行い評価し
た。この時の成分組成、熱延板焼鈍条件、ビード幅、中
間焼鈍後の平均結晶粒径、磁気特性を第2表に示す。
(Example 2) A slab for non-oriented electrical steel sheets having the composition shown in Table 2 was manufactured. This was hot-rolled and hot-rolled sheet was annealed under various conditions.
Then, cold rolling was performed to an intermediate thickness of 0.53 mm, the conditions of the intermediate annealing were changed, and the average crystal grain size after the intermediate annealing was changed. A second cold rolling with a reduction rate of 5% was performed on these, and the roughness of the steel sheet was 13 to 14 μ-in. RMS, and the final product sheet thickness was 0.50 mm. Then, the sample for bead width investigation was cut into 10 × 30 mm, 60 pieces were laminated to a thickness of 30 mm, and annealed at 750 ° C. for 2 hours. And for TIG welding, welding current is 100A, welding speed is 65cm / min, tightening pressure is 25kg.
f / cm 2 , arc length 2mm, 2% thorium tungsten 1.6
The welding was performed under the welding conditions of the mmφ electrode. On the other hand, the magnetic characteristics were evaluated by magnetically annealing the Epstein sample at 750 ° C. for 2 hours. Table 2 shows the component composition, the annealing conditions of the hot rolled sheet, the bead width, the average grain size after the intermediate annealing, and the magnetic properties at this time.

これより、熱延板焼鈍を700〜1000℃で実施すると磁気
特性がより優れ、積層鉄芯熔接時のビード幅ともに優れ
ていることが分かる。
From this, it can be seen that when the hot-rolled sheet is annealed at 700 to 1000 ° C, the magnetic properties are more excellent and the bead width at the time of welding the laminated iron core is also excellent.

〔発明の効果〕 以上の如く本発明によれば、磁性焼鈍後の磁気特性が優
れ、かつ、積層鉄心溶接時のビード幅の広い無方向性電
磁鋼板を製造することができる。
[Advantages of the Invention] As described above, according to the present invention, it is possible to manufacture a non-oriented electrical steel sheet having excellent magnetic properties after magnetic annealing and having a wide bead width during welding of a laminated core.

【図面の簡単な説明】[Brief description of drawings]

第1図は、EIコアの板取りは圧延方向の割合が磁路の75
%となることを示す図、第2図は、〔Al2O3〕/(〔SiO
2〕+〔MnO〕+〔Al2O3〕)と〔sol.Al〕/〔Si〕とビ
ード幅の関係を示す図、第3図は、〔sol.Al〕と〔sol.
Al〕/〔Si〕とビード幅の関係を示す図、第4図は、中
間焼鈍後の平均結晶粒径と2回目の冷間圧延の圧下率と
L方向の磁束密度の関係を示す図、第5図は、Siの含有
量と中間焼鈍条件と中間焼鈍後の平均結晶粒径の関係を
示す図、第6図は、熱延板焼鈍温度とL方向の磁束密度
の関係を示す図である。
Fig. 1 shows that EI core plate cutting has a magnetic path ratio of 75 in the rolling direction.
2 and FIG. 2 show that [Al 2 O 3 ] / ([SiO
2 ] + [MnO] + [Al 2 O 3 ]), [sol.Al] / [Si], and bead width, and FIG. 3 shows [sol.Al] and [sol.Al].
FIG. 4 is a diagram showing the relationship between Al] / [Si] and the bead width, and FIG. 4 is a diagram showing the relationship between the average grain size after intermediate annealing, the rolling reduction of the second cold rolling, and the magnetic flux density in the L direction, FIG. 5 is a diagram showing the relationship between the Si content, the intermediate annealing conditions, and the average crystal grain size after the intermediate annealing, and FIG. 6 is a diagram showing the relationship between the hot rolled sheet annealing temperature and the magnetic flux density in the L direction. is there.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 住本 正勝 東京都千代田区大手町2―6―3 新日本 製鐵株式會社内 (56)参考文献 特開 平2−179856(JP,A) 特公 昭56−43294(JP,B2) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Masakatsu Sumimoto 2-6-3 Otemachi, Chiyoda-ku, Tokyo In-house Nippon Steel Co., Ltd. (56) Reference JP-A-2-179856 (JP, A) Kosho 56-43294 (JP, B2)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】〔C〕0.015%以下、〔Si〕0.1〜1.5%、
〔Mn〕0.1〜1.5%、〔P〕0.15%以下、〔S〕0.008%
以下、〔sol.Al〕0.01〜1.0%、〔T.N〕0.0050%以下、
〔T.O〕0.02%以下を含み、〔sol.Al〕/〔Si〕≧0.0
2、 〔Al2O3〕/(〔SiO2〕+〔MnO〕+〔Al2O3〕)×100≧
40%を満足し、残部鉄及び不可避的不純物よりなるスラ
ブを熱間圧延後、中間焼鈍を挟む2回の冷間圧延を施す
際に、中間焼鈍後の平均結晶粒径を10〜15μmとし、2
回目の冷間圧延を圧下率3〜10%、2回目の冷間圧延後
の鋼板の表面粗度を15μ−in. R.M.S.以下とすることを
特徴とする磁気特性と溶接性の優れたセミプロセス無方
向性電磁鋼板の製造方法。
1. [C] 0.015% or less, [Si] 0.1 to 1.5%,
[Mn] 0.1 to 1.5%, [P] 0.15% or less, [S] 0.008%
Below, [sol.Al] 0.01-1.0%, [TN] 0.0050% or less,
Including [TO] 0.02% or less, [sol.Al] / [Si] ≧ 0.0
2, [Al 2 O 3 ] / ([SiO 2 ] + [MnO] + [Al 2 O 3 ]) × 100 ≧
When a slab satisfying 40% and having the balance of iron and unavoidable impurities is hot-rolled and then subjected to two cold-rollings with an intermediate annealing, the average crystal grain size after the intermediate annealing is 10 to 15 μm, Two
Semi-process with excellent magnetic properties and weldability, characterized in that the reduction ratio of the cold rolling of the second time is 3 to 10% and the surface roughness of the steel sheet after the second cold rolling is 15 μ-in. RMS or less. Manufacturing method of non-oriented electrical steel sheet.
【請求項2】熱延板を700〜1000℃で熱延板焼鈍するこ
とを特徴とする請求項1記載の磁気特性と溶接性の優れ
たセミプロセス無方向性電磁鋼板の製造方法。
2. The method for producing a semi-process non-oriented electrical steel sheet having excellent magnetic properties and weldability according to claim 1, wherein the hot rolled sheet is annealed at 700 to 1000 ° C.
JP1124440A 1989-05-19 1989-05-19 Manufacturing method of semi-processed non-oriented electrical steel sheet with excellent magnetic properties and weldability Expired - Lifetime JPH0676621B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1124440A JPH0676621B2 (en) 1989-05-19 1989-05-19 Manufacturing method of semi-processed non-oriented electrical steel sheet with excellent magnetic properties and weldability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1124440A JPH0676621B2 (en) 1989-05-19 1989-05-19 Manufacturing method of semi-processed non-oriented electrical steel sheet with excellent magnetic properties and weldability

Publications (2)

Publication Number Publication Date
JPH02305920A JPH02305920A (en) 1990-12-19
JPH0676621B2 true JPH0676621B2 (en) 1994-09-28

Family

ID=14885557

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1124440A Expired - Lifetime JPH0676621B2 (en) 1989-05-19 1989-05-19 Manufacturing method of semi-processed non-oriented electrical steel sheet with excellent magnetic properties and weldability

Country Status (1)

Country Link
JP (1) JPH0676621B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109554619A (en) * 2017-09-27 2019-04-02 宝山钢铁股份有限公司 A kind of cold rolling magnetic laminations steel that magnetic property is excellent and its manufacturing method

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100435480B1 (en) * 1999-12-27 2004-06-10 주식회사 포스코 A method for manufacturing semiprocess non grain oriented electrical steel sheet with superior magnetic property
CN102482742A (en) * 2009-09-03 2012-05-30 新日本制铁株式会社 Non-oriented electromagnetic steel sheet
CN104195426B (en) * 2014-03-26 2017-02-15 浙江龙盛薄板有限公司 Semi-processed non-oriented silicon steel and manufacturing method thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61119618A (en) * 1984-11-15 1986-06-06 Kawasaki Steel Corp Manufacture of electrical sheet for iron core material in small reposer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109554619A (en) * 2017-09-27 2019-04-02 宝山钢铁股份有限公司 A kind of cold rolling magnetic laminations steel that magnetic property is excellent and its manufacturing method

Also Published As

Publication number Publication date
JPH02305920A (en) 1990-12-19

Similar Documents

Publication Publication Date Title
JP6432173B2 (en) Non-oriented electrical steel sheet with good all-round magnetic properties
US7465361B2 (en) Method for producing grain oriented magnetic steel sheet and grain oriented magnetic steel sheet
JPWO2011148849A1 (en) Manufacturing method of unidirectional electrical steel sheet
KR940008933B1 (en) Method of producing non-oriented electromagnetic steel strip having superior magnetic properties and appearance
JP6607010B2 (en) Method for producing grain-oriented electrical steel sheet
KR950005791B1 (en) Method of manufacturing silicon steel sheet having grains precisely arranged in goss orientation
JPH0676621B2 (en) Manufacturing method of semi-processed non-oriented electrical steel sheet with excellent magnetic properties and weldability
JP2003193142A (en) Method of producing grain oriented silicon steel sheet having excellent magnetic property
CN111417737B (en) Grain-oriented electromagnetic steel sheet with low iron loss and method for producing same
JP4196565B2 (en) Method for producing grain-oriented electrical steel sheet
JP3397277B2 (en) Manufacturing method of ultra-low iron loss ultra-high magnetic flux density unidirectional electromagnetic steel strip
US6500278B1 (en) Hot rolled electrical steel sheet excellent in magnetic characteristics and corrosion resistance and method for production thereof
JP4211447B2 (en) Method for producing grain-oriented electrical steel sheet
JP4259025B2 (en) Oriented electrical steel sheet having excellent bend characteristics and method for producing the same
JPH068489B2 (en) Non-oriented electrical steel sheet with excellent weldability after magnetic annealing
JPH0317892B2 (en)
JP4604449B2 (en) Oriented electrical steel sheet
JP7465354B2 (en) Non-oriented electrical steel sheet and its manufacturing method
JP4261633B2 (en) Manufacturing method of unidirectional electrical steel sheet
JP3474741B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties
JP3397273B2 (en) Manufacturing method for ultra-low iron loss ultra-high magnetic flux density unidirectional electrical steel sheet
JP4277529B2 (en) Method for producing grain-oriented electrical steel sheet having no undercoat
JP4320794B2 (en) Method for producing electrical steel sheet with excellent magnetic properties in the rolling direction
US20240047105A1 (en) Non-oriented electrical steel sheet
JP3215240B2 (en) Material for ultra high magnetic flux density unidirectional electrical steel sheet

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070928

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080928

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090928

Year of fee payment: 15

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090928

Year of fee payment: 15