JPH02305920A - Production of semi-processed non-oriented electrical steel sheet having excellent magnetic characteristic and weldability - Google Patents
Production of semi-processed non-oriented electrical steel sheet having excellent magnetic characteristic and weldabilityInfo
- Publication number
- JPH02305920A JPH02305920A JP1124440A JP12444089A JPH02305920A JP H02305920 A JPH02305920 A JP H02305920A JP 1124440 A JP1124440 A JP 1124440A JP 12444089 A JP12444089 A JP 12444089A JP H02305920 A JPH02305920 A JP H02305920A
- Authority
- JP
- Japan
- Prior art keywords
- annealing
- steel sheet
- cold rolling
- oriented electrical
- intermediate annealing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910000565 Non-oriented electrical steel Inorganic materials 0.000 title claims abstract description 15
- 238000004519 manufacturing process Methods 0.000 title claims description 16
- 238000000137 annealing Methods 0.000 claims abstract description 70
- 238000005097 cold rolling Methods 0.000 claims abstract description 35
- 229910000831 Steel Inorganic materials 0.000 claims abstract description 27
- 239000010959 steel Substances 0.000 claims abstract description 27
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 25
- 229910052742 iron Inorganic materials 0.000 claims abstract description 11
- 230000003746 surface roughness Effects 0.000 claims abstract description 5
- 239000012535 impurity Substances 0.000 claims abstract description 3
- 230000009467 reduction Effects 0.000 claims description 13
- 238000005098 hot rolling Methods 0.000 claims description 3
- 238000003466 welding Methods 0.000 abstract description 28
- 239000011324 bead Substances 0.000 abstract description 25
- 238000005096 rolling process Methods 0.000 abstract description 16
- 239000013078 crystal Substances 0.000 abstract description 7
- 229910052760 oxygen Inorganic materials 0.000 abstract description 5
- 229910052710 silicon Inorganic materials 0.000 abstract description 3
- 229910052782 aluminium Inorganic materials 0.000 abstract description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 abstract 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 abstract 2
- 229910052799 carbon Inorganic materials 0.000 abstract 2
- 229910052593 corundum Inorganic materials 0.000 abstract 2
- 229910052748 manganese Inorganic materials 0.000 abstract 2
- 229910052698 phosphorus Inorganic materials 0.000 abstract 2
- 229910052717 sulfur Inorganic materials 0.000 abstract 2
- 229910001845 yogo sapphire Inorganic materials 0.000 abstract 2
- 229910052681 coesite Inorganic materials 0.000 abstract 1
- 229910052906 cristobalite Inorganic materials 0.000 abstract 1
- 150000002505 iron Chemical class 0.000 abstract 1
- 229910052757 nitrogen Inorganic materials 0.000 abstract 1
- 239000000377 silicon dioxide Substances 0.000 abstract 1
- 235000012239 silicon dioxide Nutrition 0.000 abstract 1
- 229910052682 stishovite Inorganic materials 0.000 abstract 1
- 229910052905 tridymite Inorganic materials 0.000 abstract 1
- 238000000034 method Methods 0.000 description 20
- 230000004907 flux Effects 0.000 description 16
- 238000002474 experimental method Methods 0.000 description 11
- 239000000203 mixture Substances 0.000 description 11
- 238000005516 engineering process Methods 0.000 description 9
- 239000000463 material Substances 0.000 description 5
- 239000012467 final product Substances 0.000 description 4
- 229910052814 silicon oxide Inorganic materials 0.000 description 4
- 238000002791 soaking Methods 0.000 description 4
- ZSLUVFAKFWKJRC-IGMARMGPSA-N 232Th Chemical compound [232Th] ZSLUVFAKFWKJRC-IGMARMGPSA-N 0.000 description 3
- 229910052776 Thorium Inorganic materials 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 230000003068 static effect Effects 0.000 description 3
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 3
- 229910052721 tungsten Inorganic materials 0.000 description 3
- 239000010937 tungsten Substances 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 239000013256 coordination polymer Substances 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 238000011835 investigation Methods 0.000 description 2
- 239000005416 organic matter Substances 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 238000004080 punching Methods 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- 235000009470 Theobroma cacao Nutrition 0.000 description 1
- 229910052770 Uranium Inorganic materials 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 244000240602 cacao Species 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
Landscapes
- Soft Magnetic Materials (AREA)
- Manufacturing Of Steel Electrode Plates (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、主として小型静止器に使用されるセミプロセ
ス無方向性電磁鋼板の製造方法に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for manufacturing semi-processed non-oriented electrical steel sheets mainly used for small stationary devices.
音響機器用や安定器などの小型静止器には、主として無
方向性電磁鋼板が使用される。そして、小型静止器の一
例のEIココアは、第1図に示すように、板取りは圧延
方向(以下L方向と記す)の割合が磁路の75%となる
ため、L方向の磁気特性の優れた無方向性型1綱板が求
められる。Non-oriented electrical steel sheets are mainly used for small static devices such as audio equipment and ballasts. As shown in Fig. 1, EI Cocoa, which is an example of a small static device, has 75% of the magnetic path in the rolling direction (hereinafter referred to as the L direction), so the magnetic properties in the L direction are An excellent non-directional type 1 steel plate is required.
L方向の磁気特性の優れた鋼板の製造方法としては、下
記のものが提案されている。The following method has been proposed as a method for manufacturing a steel plate with excellent magnetic properties in the L direction.
特公昭56−43294号公報では、(Si )0、1
〜1.0%、(T,jV) 0. 0 0 7%以下を
含み、熱延板を中間焼鈍を挟む2回冷延を行う製造方法
の2回目の冷延の冷延率を2〜15%とし、圧延後の鋼
板の粗度が15μmin、R,M、S、以下となるよう
な圧延ロールで行うことを特徴とする方法。In Japanese Patent Publication No. 56-43294, (Si)0, 1
~1.0%, (T, jV) 0. 0 0 7% or less, the cold rolling rate of the second cold rolling of the manufacturing method in which the hot rolled sheet is cold rolled twice with intermediate annealing in between is 2 to 15%, and the roughness of the steel sheet after rolling is 15 μmin. , R, M, S, a method characterized in that it is carried out using rolling rolls having the following properties.
特開昭61−119618号公報では、〔Si〕1.0
%以下、(Aj)0.4%以下その他を含有するスラブ
を熱延後、熱延板焼鈍なしに中間焼鈍を挟む2回冷延を
行う製造方法において、中間焼鈍を675°C〜750
°Cで15秒〜2分の連続焼鈍で行い、2回目の冷延を
圧下率3〜7%で行うことを特徴とする方法。In JP-A-61-119618, [Si] 1.0
% or less, (Aj) 0.4% or less In a manufacturing method in which a slab containing other materials is hot-rolled and then cold-rolled twice with intermediate annealing in between without hot-rolled plate annealing, the intermediate annealing is performed at 675 ° C to 750 ° C.
A method characterized by continuous annealing at °C for 15 seconds to 2 minutes, and second cold rolling at a rolling reduction of 3 to 7%.
一方、小型静止器の鉄心は、鋼板を所定の形状に打抜き
、積層した後、クランプされるが、この方法の一つとし
て溶接がある。例えばElコアでは、E型と1型に打抜
いた後、各々積層し、750°C×2時間程度の焼鈍を
施す。次に、銅線を巻いたボビンをE型の積層に挿入し
た後■型をE型に溶接し鉄心とする。E型と1型との溶
接は、通常TIG溶接で行うが、この時、強度はさほど
必要とはしないが、ビードの形成のしやすさが問題とな
る。即ち、トーチの位置精度が悪くてもE型。On the other hand, the iron core of a small stationary device is clamped after punching steel plates into a predetermined shape and laminating them, and one method for this is welding. For example, an El core is punched into E-type and 1-type, then laminated and annealed at 750°C for about 2 hours. Next, a bobbin wound with copper wire is inserted into the E-shaped stack, and the ■-shaped part is welded to the E-shaped part to form an iron core. Welding of type E and type 1 is usually performed by TIG welding, but at this time, strength is not so required, but ease of forming a bead is a problem. In other words, it is E type even if the torch position accuracy is poor.
■型が溶接されるようにビードが広くなる鋼板が好まし
い。ところで、溶接条件たとえば溶接電流を上げ、溶接
速度を落とし、ビード幅を広げることも可能であるが、
電極の消耗の増加、生産性の低下、入熱の増大、熱歪み
等により静止器の特性が劣化するなどの問題が生じ、上
記従来技術では磁性焼鈍後の溶接性は満足できるもので
はなかった。■A steel plate with a wide bead so that the mold can be welded is preferred. By the way, it is possible to change the welding conditions such as increasing the welding current, decreasing the welding speed, and widening the bead width.
Problems such as deterioration of static device characteristics due to increased electrode wear, decreased productivity, increased heat input, thermal distortion, etc. occurred, and the weldability after magnetic annealing was not satisfactory with the above conventional technology. .
従来、有機物含有皮膜を有する無方向性電磁鋼板の積層
鉄心の溶接性改善については、特公昭49−6744号
公報、特公昭49−19078号公報において提案され
ているが、これらはいずれも磁性焼鈍前のことであり、
皮膜中の有機物が除去された磁性焼鈍後の溶接性、即ち
ビード幅増大に対する改善は従来提案されていない。Conventionally, improvements in the weldability of a laminated core of non-oriented electrical steel sheets having an organic matter-containing film have been proposed in Japanese Patent Publication No. 49-6744 and Japanese Patent Publication No. 19078-1978, but these both involve magnetic annealing. It was before,
No improvement in weldability, ie, increase in bead width, after magnetic annealing in which organic matter in the film is removed has been proposed.
本発明は、磁気特性と溶接性の両者を満足することがで
きなかった前記従来技術の欠点を解決しうる、L方向の
磁気特性に優れ、溶接性の優れた小型静止器用セミプロ
セス無方向性電磁鋼板の製造方法を提供することを目的
とする。The present invention provides a semi-processed non-directional device for small stationary devices that has excellent magnetic properties in the L direction and excellent weldability, which can solve the drawbacks of the conventional technology that could not satisfy both magnetic properties and weldability. The purpose of this invention is to provide a method for manufacturing electromagnetic steel sheets.
本発明の要旨とするところは下記のとおりである。 The gist of the present invention is as follows.
(1) (C) 0.015%以下、〔Si〕0.1
〜1.5%、(Mn) 0.1〜1.5%、CP)0.
15%以下、(s)o、oos%以下、(soZ、/I
J) 0.01〜1.0%、〔T.N) 0.0050
%以下、〔T.O)0.02%以下を含み、(sof、
Aj) / (St)≧0.02、(jVz(h) /
((Sift) +(MnO) + (/VzOs)
)×100≧40%を満足し、残部鉄及び不可避的不
純物よりなるスラブを熱間圧延後、中間焼鈍を挟む2回
の冷間圧延を施す際にJ中間焼鈍後の平均結晶粒径を1
0〜15趨とし、2回目の冷間圧延を圧下率3〜10%
、2向目の冷間圧延後の鋼板の表面粗度を15μmin
、R,M、S、以下とすることを特徴とする特許
ロセス無方向性電磁鋼板の製造方法。(1) (C) 0.015% or less, [Si] 0.1
~1.5%, (Mn) 0.1-1.5%, CP) 0.
15% or less, (s)o, oos% or less, (soZ, /I
J) 0.01-1.0%, [T. N) 0.0050
% or less, [T. O) Contains 0.02% or less, (sof,
Aj) / (St)≧0.02, (jVz(h) /
((Sift) + (MnO) + (/VzOs)
) x 100 ≧ 40%, and after hot rolling a slab consisting of residual iron and unavoidable impurities, cold rolling is performed twice with intermediate annealing in between, and the average grain size after J intermediate annealing is
0 to 15, and the second cold rolling with a reduction rate of 3 to 10%.
, the surface roughness of the steel plate after cold rolling in the second direction is 15 μmin.
, R, M, S, a method for producing a non-oriented electrical steel sheet using a patented process characterized by the following.
(2)熱延板を700〜1000゜Cで熱延板焼鈍する
ことを特徴とする前項1記載の磁気特性と溶接性の優れ
たセミプロセス無方向性電磁鋼板の製造方法。(2) The method for producing a semi-processed non-oriented electrical steel sheet with excellent magnetic properties and weldability according to item 1 above, characterized in that the hot-rolled sheet is annealed at 700 to 1000°C.
本発明者は、L方向の磁気特性に優れ、かつ、溶接性の
優れた小型静止器用のセミプロセス無方向性電磁鋼板の
製造方法を開発すべく鋭意取り組んだ.以下に新たに得
られた知見を述べる。The present inventors have worked diligently to develop a method for manufacturing semi-processed non-oriented electrical steel sheets for small stationary devices that have excellent magnetic properties in the L direction and excellent weldability. The newly obtained findings are described below.
先ず、溶接性について、本発明者は、磁性焼鈍後のTI
G溶接時のビード幅を広くすべく研究を重ねた。この結
果、(soZ.AZ) / (St) 。First, regarding weldability, the present inventors investigated the weldability of TI after magnetic annealing.
We conducted repeated research to widen the bead width during G welding. As a result, (soZ.AZ) / (St).
(jVzOa) / ( (Si(h) + (MnO
) + (Ajz(h) )x 1 0 0 、 C
sol.At’Jを特定の範囲に限定することにより、
ビード幅を広くできることを新たに発見した。第2図は
、本発明者が行った実験結果である.(C)0.003
%、(St)0.9〜1.1%、(Mn)0.2%、、
〔P〕0.07%、〔S〕 0.0022 〜0、00
39%、(T.N) 0.0019 〜0.0035%
、(T.O)0、 0 0 7〜0.012%、(so
lAj) 0. 0 0 1〜1、3%含有する溶鋼を
脱酸方法を変更して溶製し、酸化物系介在物の組成とC
SOI.I’J’J / (St)の比率を変更し、ス
ラブとした。続いて熱延し、板厚0.50mmに冷延し
、連続焼鈍し、絶縁皮膜を塗布し、750℃X2時間の
焼鈍を行った。そしてTIG溶接は、溶接電流100A
、溶接速度65cm/win 。(jVzOa) / ((Si(h) + (MnO
) + (Ajz(h))x 1 0 0, C
sol. By limiting At'J to a specific range,
We have newly discovered that the bead width can be made wider. Figure 2 shows the results of an experiment conducted by the inventor. (C)0.003
%, (St) 0.9-1.1%, (Mn) 0.2%,
[P] 0.07%, [S] 0.0022 ~ 0,00
39%, (T.N) 0.0019 ~ 0.0035%
, (T.O) 0, 0 0 7~0.012%, (so
lAj) 0. 0 0 Molten steel containing 1 to 1.3% was produced by changing the deoxidation method, and the composition of oxide inclusions and C
SOI. The ratio of I'J'J/(St) was changed to form a slab. Subsequently, it was hot rolled, cold rolled to a plate thickness of 0.50 mm, continuously annealed, an insulating film was applied, and annealing was performed at 750° C. for 2 hours. And TIG welding uses a welding current of 100A.
, welding speed 65cm/win.
アーク長2III11.アルゴン流量54!/min、
締め付は圧力25 kgf/d、電極:トリウム2%入
りタングステン1.6閣φの溶接条件で行った。このと
きの(IVzOs) / ((Sing) +(MnO
) +(AhOz) ) X 100と(sof、7V
) / (St)とビード幅の関係を第2図に示す、こ
れより、(7Vz(h) / ((SiOz) + (
MnO) + (jVzoa) )×100≧40%か
つ(sol、jV) / 〔Si〕≧0.02の場合に
ビード幅が安定して3閤以上に広くなることが判明した
。Arc length 2III11. Argon flow rate 54! /min,
Tightening was carried out under the welding conditions of a pressure of 25 kgf/d and an electrode of 1.6 mm diameter of tungsten containing 2% thorium. At this time, (IVzOs) / ((Sing) + (MnO
) + (AhOz) ) X 100 and (sof, 7V
) / (St) and the bead width are shown in Figure 2. From this, (7Vz(h) / ((SiOz) + (
It has been found that when MnO) + (jVzoa))×100≧40% and (sol, jV)/[Si]≧0.02, the bead width becomes stable and becomes wider than 3 squares.
第3図の実験は、(C)0.002%、〔Si〕0.1
0〜0.32%、(Mn)0.2%、CP)0.07%
、(S ) 0.0033〜0.0047%、(N)
0.0025〜0.0032%、〔T.0) 0.01
1〜0.014%、(sof、Aj) 0.001〜0
.05%を含有する溶鋼を溶製した。酸化物系介在物の
組成は、CM、O’s )/ ((SiOz) +(M
nO) + (jVz03〕) X 100を47〜5
9%とし、(solA7) / (St)の値を変えス
ラブとした。これを熱延し、板厚0.50mmに冷延し
、連続焼鈍し、絶縁皮膜を塗布し、製品とした。その後
の試料調整、磁性焼鈍、溶接条件は第2図の実験と同一
である。これより、(sol、Aj)の絶対量としては
0.01%以上必要なことが明らかとなつた。In the experiment shown in Figure 3, (C) 0.002%, [Si] 0.1
0-0.32%, (Mn) 0.2%, CP) 0.07%
, (S) 0.0033-0.0047%, (N)
0.0025-0.0032%, [T. 0) 0.01
1-0.014%, (sof, Aj) 0.001-0
.. Molten steel containing 0.05% was produced. The composition of the oxide inclusions is CM, O's )/((SiOz) + (M
nO) + (jVz03]) X 100 to 47~5
9%, and the value of (solA7)/(St) was changed to create a slab. This was hot rolled, cold rolled to a plate thickness of 0.50 mm, continuously annealed, and an insulating film was applied to produce a product. The subsequent sample preparation, magnetic annealing, and welding conditions were the same as in the experiment shown in FIG. From this, it has become clear that the absolute amount of (sol, Aj) is required to be 0.01% or more.
以上のように、鋼中の成分と酸化物系介在物の組成が磁
性焼鈍後のビード幅を左右することを新たに見出した(
この知見に基づ〈発明は特願昭63−333830号と
して特許出願済)。As described above, we have newly discovered that the composition of the components and oxide inclusions in the steel affect the bead width after magnetic annealing (
Based on this knowledge (the invention has been patented as Japanese Patent Application No. 63-333830).
上記実験は、−回冷延法による実験であるが、本発明者
は、中間焼鈍を挟む2回冷延法の実験や、これに加え熱
延板焼鈍を実施した場合の実験も行ったが、工程の差は
磁性焼鈍後のビード幅に影響を及ぼさないことを確認し
た。The above experiment is an experiment using a two-time cold rolling method, but the present inventor also conducted an experiment using a two-time cold rolling method with intermediate annealing, and an experiment in which hot-rolled sheet annealing was performed in addition to this. It was confirmed that the difference in process did not affect the bead width after magnetic annealing.
ところで、前記特公昭56−43294号公報では、(
Si30.1〜1.0%、 〔T.Aj) O,OO
7%以下を含む熱延板を中間焼鈍を挟み2回冷延を行う
にあたり、2回目の冷延の冷延率を2〜15%とし、圧
延後の鋼板の粗度が15μ〜in、R,M、S、以下と
なるような圧延ロールを用いて行うことを特徴とするし
方向の磁束密度の高い無方向性電磁鋼板の製造方法が提
案されている。しかし、この方法では〔T.7V)が0
.007%以下に限定されており、明細書中では、アル
ミニウムが、様々の析出物。By the way, in the aforementioned Japanese Patent Publication No. 56-43294, (
Si30.1-1.0%, [T. Aj) O,OO
When cold rolling a hot rolled sheet containing 7% or less with an intermediate annealing in between, the cold rolling rate of the second cold rolling is 2 to 15%, and the roughness of the steel sheet after rolling is 15 μ to in, R , M, S, a method for manufacturing a non-oriented electrical steel sheet with high magnetic flux density in the grain direction has been proposed, which is characterized by using rolling rolls as follows. However, this method [T. 7V) is 0
.. 0.007% or less, and in the specification, aluminum is used in various precipitates.
介在物の形態で存在し、それらが焼鈍による結晶粒成長
の際に透磁率を下げる様な好ましくない結晶方位を発達
せしめたものと想像し、〔T.AI)を0.007%を
越えて含有する場合には、L方向の磁束密度を高くでき
ないと述べている。一方、前述のようにビード幅を広く
するためには、(sol/1j)を0.01%以上含有
し、かつ、酸化物系介在物をM2O3の比率の多い組成
にすることが必須である。We imagine that they exist in the form of inclusions, and that they develop unfavorable crystal orientations that lower magnetic permeability during grain growth due to annealing [T. It states that if the content exceeds 0.007%, the magnetic flux density in the L direction cannot be increased. On the other hand, in order to widen the bead width as mentioned above, it is essential to contain (sol/1j) at least 0.01% and to have a composition with a high proportion of M2O3 in oxide inclusions. .
そこで、本発明者は、(solA7)を0.01%以上
含有し、酸化物系介在物をM2O,の比率の多い組成に
し磁性焼鈍後のビード幅が広く、かつ、L方向の磁束密
度の高い無方向性電磁鋼板の製造方法の発明に鋭意取り
組んだ。Therefore, the present inventor created a composition containing 0.01% or more of (solA7) and a high ratio of M2O as oxide inclusions, resulting in a wide bead width after magnetic annealing and a decrease in the magnetic flux density in the L direction. He worked hard to invent a method for producing highly non-oriented electrical steel sheets.
第4図の実験は、(C)0.003%、(St)0.3
4%、 (Mn)0.2%、 〔P〕0.07%、 〔
S〕0.0032%、 〔T.N) 0.0021%、
〔T.O) 0.007 %、(sof、 kl
) 0.26%を含有し、(Aj203) /([Si
Og) + (MnO) + (jVto*) ) X
100が51%であるスラブを熱延し、中間焼鈍を挟
む2回冷延法の工程において、0.51〜0.57nn
uの中間厚みとし、種々の中間焼鈍温度で焼鈍し、次い
で、0〜15%の冷延率で2回目の冷延を行い、鋼板の
粗度は、13〜14 ll−1n、R,M、S、とし、
最終製品板厚を0.50mmとした。そして、750°
C×2時間の磁性焼鈍を行い、磁気特性を評価した。こ
の時の中間焼鈍後の平均結晶粒径、2回目の冷延率とL
方向の磁束密度の関係を第4図に示す。第4図の実験例
より、中間結晶粒径が10〜15m、2回目7の冷延率
3〜10%の場合にL方向の磁束密度が高くなることが
分かる。即ち、中間結晶粒径と2回目の冷延率を狭い範
囲に限定することにより、(soj、jV)を0.01
%以上含有してもし方向の磁束密度を高くすることに成
功し、例えば、Si+lJが0.60%の鋼板でL方向
の磁束密度BS6で1.82 T以上を得ることができ
たのである。In the experiment shown in Figure 4, (C) 0.003%, (St) 0.3
4%, (Mn) 0.2%, [P] 0.07%, [
S] 0.0032%, [T. N) 0.0021%,
[T. O) 0.007%, (sof, kl
) 0.26%, (Aj203) /([Si
Og) + (MnO) + (jVto*) ) X
In the process of hot rolling a slab with 51% of 100 and two-time cold rolling with intermediate annealing, the
The steel plate has an intermediate thickness of 13 to 14 mm, is annealed at various intermediate annealing temperatures, and then cold rolled for the second time at a cold rolling rate of 0 to 15%. , S, and
The final product plate thickness was 0.50 mm. And 750°
Magnetic annealing was performed for C×2 hours, and the magnetic properties were evaluated. At this time, the average grain size after intermediate annealing, the second cold rolling rate and L
The relationship between magnetic flux density and direction is shown in FIG. From the experimental example shown in FIG. 4, it can be seen that the magnetic flux density in the L direction becomes high when the intermediate grain size is 10 to 15 m and the second cold rolling ratio of 7 is 3 to 10%. That is, by limiting the intermediate grain size and the second cold rolling rate to narrow ranges, (soj, jV) can be reduced to 0.01.
% or more, we succeeded in increasing the magnetic flux density in the direction. For example, we were able to obtain a magnetic flux density BS6 of 1.82 T or more in the L direction with a steel plate containing 0.60% Si+lJ.
なお、中間焼鈍の温度、時間と平均結晶粒径の関係は、
一つの素材については厳密に存在するが、成分素材など
が変わった時にこの関係は、ずれてくる。例えば、Si
の含有量により再結晶開始温度や粒成長速度が変わる。The relationship between the temperature and time of intermediate annealing and the average grain size is as follows:
Although it strictly exists for one material, this relationship becomes deviated when the component materials change. For example, Si
The recrystallization start temperature and grain growth rate vary depending on the content.
この関係について実験した例を第5図に示す。(St)
0.1%、1.0%、1.8%の3種類で、鉄以外の
その他の元素は0.005%以下の成分素材の熱延板を
82%の圧下率で冷間圧延し、中間焼鈍の均熱時間は3
0秒に固定し、均熱温度を変え、平均結晶粒径との関係
を調査した。これより、Si含有量により同じ均熱時間
でも、得られる平均結晶粒径が異なることが分かる。こ
のため、本発明では、冶金的に意味のある平均結晶粒径
で中間焼鈍の条件を規定する。An example of an experiment regarding this relationship is shown in FIG. (St)
A hot-rolled sheet made of component materials of three types: 0.1%, 1.0%, and 1.8%, with other elements other than iron being 0.005% or less, is cold-rolled at a reduction rate of 82%, Soaking time for intermediate annealing is 3
The soaking temperature was fixed at 0 seconds, the soaking temperature was changed, and the relationship with the average crystal grain size was investigated. From this, it can be seen that the obtained average crystal grain size differs depending on the Si content even when the soaking time is the same. Therefore, in the present invention, the intermediate annealing conditions are defined by a metallurgically meaningful average grain size.
第6図の実験は、第4図の実験に使用した熱延板を種々
の温度で熱延板焼鈍した。そして、0.52〜0.56
mmの中間厚みとし中間焼鈍を行い中間焼鈍後の平均
結晶粒径を121とした。そして、3〜10%の圧下率
の2回目の冷間圧延を行い、鋼板の粗度は、1 ’3〜
14 II −in、 R,M、S、とじ、最終製品板
厚を0.50 mmとした。そして、750°C×2時
間の磁性焼鈍を行い、磁気特性を評価した。In the experiment shown in FIG. 6, the hot rolled sheet used in the experiment shown in FIG. 4 was annealed at various temperatures. and 0.52 to 0.56
It was made into an intermediate thickness of mm, and intermediate annealing was performed, and the average crystal grain size after intermediate annealing was set to 121 mm. Then, a second cold rolling is performed with a reduction ratio of 3 to 10%, and the roughness of the steel plate is 1'3 to 10%.
14 II-in, R, M, S, binding, final product board thickness was 0.50 mm. Then, magnetic annealing was performed at 750°C for 2 hours, and the magnetic properties were evaluated.
第6図の実験例より700 ”C以上で熱延板焼鈍する
と、磁束密度が約100G高くなることが分かる。From the experimental example shown in FIG. 6, it can be seen that when the hot rolled sheet is annealed at 700''C or higher, the magnetic flux density increases by about 100G.
(従来公知技術との関連)
前記特公昭56−43294号公報では、(St) 0
.1〜1.0%、 〔T.A7) O,OO7%以下
を含む熱延板を中間焼鈍を挟み2回冷延を行う製造方法
の2回目の冷延の冷延率を2〜15%とし、圧延後の鋼
板の粗度が15μmin、 R,11,S、以下となる
ような圧延ロールで行うことを特徴とする方法が提案さ
れている。(Relationship with conventionally known technology) In the aforementioned Japanese Patent Publication No. 56-43294, (St) 0
.. 1-1.0%, [T. A7) In a production method in which a hot rolled sheet containing 7% or less of O, OO is cold rolled twice with an intermediate annealing in between, the cold rolling rate of the second cold rolling is 2 to 15%, and the roughness of the steel sheet after rolling is A method has been proposed which is characterized in that the rolling process is carried out using a rolling roll having the following properties: 15 μmin, R, 11, S, or less.
しかし、この技術では(TJJ)の上限が0.007%
であるため、磁性焼鈍後の溶接時のビード幅が狭くなっ
てしまう。However, with this technology, the upper limit of (TJJ) is 0.007%
Therefore, the bead width during welding after magnetic annealing becomes narrow.
これに対し本発明は、(sojJJ)を0.01%以上
含有し、(sol/V) / (St) 、 (Al
zOs) /((SiOz) + (MnO) + (
/’JzOs) ) X 100を狭い範囲に制御する
ことより優れた溶接性を発現させ、そして、中間焼鈍後
の平均結晶粒径、2回目の冷間圧延の圧下率を狭い範囲
に限定し、(so7.AI)を0.01%以上含有して
も優れた磁気特性を得ることに成功したものであり、磁
性焼鈍後の磁気特性と溶接性の両者を満足する技術であ
る。従って、本発明は、前記特公昭56−43294号
公報記載の技術とは全く異なる技術であると解される。On the other hand, the present invention contains (sojJJ) at 0.01% or more, (sol/V) / (St), (Al
zOs) /((SiOz) + (MnO) + (
/'JzOs) ) By controlling X 100 within a narrow range, excellent weldability is exhibited, and the average grain size after intermediate annealing and the rolling reduction ratio during the second cold rolling are limited within a narrow range. This technology succeeded in obtaining excellent magnetic properties even when containing 0.01% or more of (so7.AI), and is a technique that satisfies both the magnetic properties and weldability after magnetic annealing. Therefore, the present invention is understood to be a completely different technology from the technology described in Japanese Patent Publication No. 56-43294.
特開昭61−119618号公報では、(Si20.0
%以下、(/V)0.4%以下その他を含有するスラブ
を熱延後、熱延板焼鈍なしに中間焼鈍を挟む2回冷延を
行う製造方法において、中間焼鈍を675〜750°C
で15秒〜2分の連続焼鈍で行い、2回目の冷延を圧下
率3〜7%で行うことを特徴とする方法が提案されてい
る。しかし、この技術では、磁性焼鈍後の溶接性につい
ての記載がなく、鋼中の成分、酸化物系介在物の範囲を
限定するという思想がなく、また、本発明では2回目の
冷間圧延後の鋼板の粗度を15μmin、 R,M、S
、以下とすることがL方向の磁束密度を高めるために必
須であるが、これについての思想も記載がなく本発明と
は全く異なる技術であると解される。In JP-A-61-119618, (Si20.0
% or less, (/V) 0.4% or less In a manufacturing method in which a slab containing other components is hot-rolled and then cold-rolled twice with intermediate annealing in between without hot-rolled sheet annealing, the intermediate annealing is performed at 675 to 750 °C.
A method has been proposed in which continuous annealing is carried out for 15 seconds to 2 minutes, and the second cold rolling is carried out at a rolling reduction of 3 to 7%. However, in this technique, there is no description of weldability after magnetic annealing, and there is no idea of limiting the range of components and oxide inclusions in the steel. The roughness of the steel plate is 15μmin, R, M, S
, the following is essential to increase the magnetic flux density in the L direction, but there is no description of the concept and it is understood that this is a completely different technology from the present invention.
(C):Cは0.015%を越えると磁気特性に有害と
なるばかりかCの析出による磁気時効が著しくなり、磁
気特性が劣化するので0.015%以下、好ましくは、
o、 o i o%以下とする。(C): If C exceeds 0.015%, it will not only be harmful to the magnetic properties but also cause significant magnetic aging due to the precipitation of C, deteriorating the magnetic properties.
o, oio% or less.
〔Si〕 :Siは鉄損を減少させる元素である。[Si]: Si is an element that reduces iron loss.
0.1%未満では、鉄損が悪すぎ、1.5%を上限とし
たのは、これを越えると磁束密度の低下を招くからであ
る。If it is less than 0.1%, the iron loss will be too bad, and the reason why the upper limit is set at 1.5% is because if it exceeds this, the magnetic flux density will decrease.
(Mn) :Mnは鋼板の硬度を増加させ、打抜き性
を改善するため、に011%以上添加する。積層鉄心溶
接時のビード幅はMnを0.3%以上添加すると一段と
広くなるため、好ましくは0.3%以上である(特願昭
63−333830号参照)。上限の1.5%は経済的
理由によるものである。(Mn): Mn is added in an amount of 0.11% or more to increase the hardness of the steel sheet and improve punchability. The bead width during laminated core welding becomes wider when 0.3% or more of Mn is added, so it is preferably 0.3% or more (see Japanese Patent Application No. 63-333830). The upper limit of 1.5% is for economic reasons.
〔P〕:Pも鋼板の硬度を増加させ、打抜き性を改善す
るために添加する。上限の0.15%を越えると脆化が
著しい。[P]: P is also added to increase the hardness of the steel sheet and improve punching properties. If the upper limit of 0.15% is exceeded, embrittlement will be significant.
〔S〕:SはMnSなどの硫化物となり、鉄損を悪化さ
せるのでo、 o o s%以下とした。Sは表面活性
元素であるが、鉄損の面から0.008%以下に限定し
ているため、ビード幅には影響しないと考えられる。[S]: S becomes a sulfide such as MnS and worsens iron loss, so the content was set to 0.0 s% or less. Although S is a surface-active element, it is limited to 0.008% or less in view of iron loss, so it is thought that it does not affect the bead width.
〔sol、 IJ ) : sat、 jVは、スリ
ット断面、打抜き断面に磁性焼鈍時の焼鈍雰囲気中の酸
素と反応して生成する酸化皮膜をM2O3の多い組成と
し、磁性焼鈍後の積層鉄芯溶接時のと一ド幅を広くする
ために0.01%以上添加する。上限を1.0%とした
のは、これを越えると磁束密度の低下を招くためである
。[sol, IJ): sat, jV has an oxide film that is generated on the slit cross section and punched cross section by reacting with oxygen in the annealing atmosphere during magnetic annealing, and has a composition rich in M2O3, and when welding the laminated iron core after magnetic annealing. It is added in an amount of 0.01% or more to widen the dot width. The reason why the upper limit is set to 1.0% is that exceeding this value causes a decrease in magnetic flux density.
〔T.N):Nは7VNなどの窒化物となり、鉄損を悪
化させるので、T、N量をO,OO5%以下とする。[T. N): Since N becomes a nitride such as 7VN and worsens iron loss, the amounts of T and N are set to 5% or less of O and OO.
〔T.O):Oは酸化物を形成し、鉄損を悪化させるの
で、T、O量は0.02%以下とする。[T. O): Since O forms an oxide and worsens iron loss, the amounts of T and O are set to 0.02% or less.
(soljlJ) / (St) ニスリット断面、打
抜き断面に磁性焼鈍時の焼鈍雰囲気中の酸素と反応して
生成する酸化皮膜をU、O,が多い組成とし、積層鉄芯
溶接時のビード幅を広くするために(soj、V]/
(St)≧0.02とする。(soljlJ) / (St) The oxide film that is generated by reacting with oxygen in the annealing atmosphere during magnetic annealing on the Nislit cross section and punched cross section has a composition rich in U and O, and the bead width during laminated iron core welding is widened. In order to (soj, V]/
(St)≧0.02.
CI’JzQz) / ((SiOz) + (MnO
) + (AJgOi) )X100:鋼中の酸化物組
成をU、O,が多い組成とし、溶接時の酸素の放出を抑
え、磁性焼鈍後の積層鉄芯溶接時のビード幅を広くする
ために、(Ajz(1+) / ((Stow) +
(MnO) + (A1z03) )X100を40%
以上とする。CI'JzQz) / ((SiOz) + (MnO
) + (AJgOi) ) , (Ajz(1+) / ((Stow) +
(MnO) + (A1z03) )X100 by 40%
The above shall apply.
中間焼鈍後の平均結晶粒径:中間焼鈍後の平均結晶粒径
が10−未満であるかあるいは15−を越えるとL方向
の磁束密度を高くすることができない。Average crystal grain size after intermediate annealing: If the average crystal grain size after intermediate annealing is less than 10- or exceeds 15-, the magnetic flux density in the L direction cannot be increased.
2回目の冷間圧延の圧下率:2回目の冷間圧延の圧下率
が3%未満であるかあるいは10%を越えると、L方向
の磁束密度を高くすることができない。Reduction ratio of second cold rolling: If the reduction ratio of second cold rolling is less than 3% or exceeds 10%, the magnetic flux density in the L direction cannot be increased.
2回目の冷間圧延後の鋼板の表面粗度:2回目の冷間圧
延後の鋼板の表面粗度が15μmin。Surface roughness of the steel plate after the second cold rolling: The surface roughness of the steel plate after the second cold rolling is 15 μmin.
R,M、S、を越えるとL方向の磁束密度を高くするこ
とができない。If R, M, and S are exceeded, the magnetic flux density in the L direction cannot be increased.
熱延板焼鈍温度:熱延板焼鈍は、必要に応じて実施し、
下限の700℃未満では磁気特性向上の効果がなく、上
限の1000°Cを越えると冷延性が悪化する。Hot-rolled plate annealing temperature: Hot-rolled plate annealing is carried out as necessary,
Below the lower limit of 700°C, there is no effect of improving magnetic properties, and above the upper limit of 1000°C, cold rollability deteriorates.
(実施例1)
種々の成分組成の無方向性電m鋼板用スラブを製造した
。これを熱延し、続いて冷間圧延し0.51〜0.57
wnの中間厚みとし、中間焼鈍の条件を変え、中間焼
鈍後の平均結晶粒径を変更した。これらに1〜13%の
圧下率の2回目の冷間圧延を実施し、鋼板の粗度は、1
3〜14 g −in、 R,M、’S。(Example 1) Slabs for non-oriented electrical steel sheets having various compositions were manufactured. This was hot rolled and then cold rolled to 0.51 to 0.57
The intermediate thickness was set to wn, the conditions of intermediate annealing were changed, and the average grain size after intermediate annealing was changed. These were subjected to a second cold rolling with a rolling reduction of 1 to 13%, and the roughness of the steel plate was 1.
3-14 g-in, R,M,'S.
で、0.50+nmの最終製品板厚とし、絶縁皮膜を塗
布し製品とした。その後、ビード幅調査用の試料は、1
10X30aに切断し、30閣厚さに60枚積層し、7
50 ’CX 2時間の焼鈍を行った。そして、T I
G′f4接は、溶接電流100A、溶接速度65cm
/min 、締め付は圧力25 kgfloor、アー
ク長2mm、トリウム2%入りタングステン1.6肛φ
電極の溶接条件で行った。一方、磁気特性は、エプスタ
イン試料を750’CX2時間の磁性焼鈍を行い評価し
た。この時の成分組成とビード幅、中間焼鈍後の平均結
晶粒径、2回目の冷間圧延の圧下率、磁気特性を第1表
に示す。The final product was made to have a thickness of 0.50+nm, and an insulating film was applied to produce a product. After that, the sample for bead width investigation was 1
Cut to 10x30a, stack 60 sheets to 30mm thickness, 7
Annealing was performed at 50'CX for 2 hours. And T I
For G'f4 contact, welding current 100A, welding speed 65cm
/min, tightening pressure is 25 kgfloor, arc length 2mm, tungsten with 2% thorium 1.6 diameter
This was carried out under the welding conditions of the electrode. On the other hand, the magnetic properties were evaluated by magnetically annealing the Epstein sample at 750'CX for 2 hours. Table 1 shows the component composition, bead width, average grain size after intermediate annealing, rolling reduction of the second cold rolling, and magnetic properties at this time.
これにより、本発明例の場合、磁気特性と積層鉄芯溶接
時のビード幅ともに優れていることが分かる。This shows that in the case of the example of the present invention, both the magnetic properties and the bead width during laminated core welding are excellent.
(実施例2)
第2表に示す成分組成の無方向性電磁鋼板用スラブを製
造した。これを熱延し、種々の条件で熱延板焼鈍した。(Example 2) A slab for a non-oriented electrical steel sheet having the composition shown in Table 2 was manufactured. This was hot-rolled and hot-rolled sheets were annealed under various conditions.
続いて冷間圧延し0.53mmの中間厚みとし、中間焼
鈍の条件を変え、中間焼鈍後の平均結晶粒径を変更した
。これらに5%の圧下率の2回目の冷間圧延を実施し鋼
板の粗度は、13〜14 tl −in、 R,M、S
、で、0.50mmの最終製品板厚とし、絶縁皮膜を塗
布し製品とした。その後、ビード幅調査用の試料は、1
010X30に切断し、30閣厚さに60枚積層し、7
50°CX2時間の焼鈍を行った。そして、TIC溶接
は、溶接電流100A、溶接速度55 cm/min
、締め付は圧力25)cgf/d、アーク長2鵬、トリ
ウム2%入りタングステン1.6 mmφ電極の溶接条
′件で行った。Subsequently, the material was cold rolled to an intermediate thickness of 0.53 mm, and the intermediate annealing conditions were changed to change the average grain size after the intermediate annealing. These were subjected to a second cold rolling at a reduction rate of 5%, and the roughness of the steel plate was 13 to 14 tl-in, R, M, S.
, the final product plate thickness was set to 0.50 mm, and an insulating film was applied to produce a product. After that, the sample for bead width investigation was 1
Cut to 010x30, stack 60 sheets to 30mm thickness, 7
Annealing was performed at 50°C for 2 hours. TIC welding requires a welding current of 100A and a welding speed of 55 cm/min.
Tightening was carried out under the following welding conditions: a pressure of 25) cgf/d, an arc length of 2 mm, and a 1.6 mm diameter tungsten electrode containing 2% thorium.
一方、磁気特性は、エプスタイン試料を750°C×2
時間の磁性焼鈍を行い評価した。この時の成分組成、熱
延板焼鈍条件、ビード幅、中間焼鈍後の平均結晶粒径、
磁気特性を第2表に示す。On the other hand, the magnetic properties of the Epstein sample were measured at 750°C x 2
Magnetic annealing for hours was performed and evaluated. At this time, the component composition, hot rolled sheet annealing conditions, bead width, average grain size after intermediate annealing,
The magnetic properties are shown in Table 2.
これより、熱延板焼鈍を700〜1000 ’Cで実施
すると磁気特性がより優れ、積層鉄芯溶接時のビード幅
ともに優れていることが分かる。From this, it can be seen that when the hot rolled sheet is annealed at 700 to 1000'C, the magnetic properties are better and the bead width during laminated core welding is also better.
以上の如く本発明によれば、磁性焼鈍後の磁気特性が優
れ、かつ、積層鉄心溶接時のビード幅の広い無方向性を
磁鋼板を製造することができる。As described above, according to the present invention, it is possible to manufacture a magnetic steel sheet which has excellent magnetic properties after magnetic annealing and has a non-directional welding width with a wide bead width during laminated core welding.
第1図は、Elコアの板取りは圧延方向の割合が磁路の
75%となることを示す図、第2図は、(Ajz(h)
/ ((St(h) + (MnO) + (A7z
O:+) )と(sol、AJ) / 〔Si〕とビー
ド幅の関係を示す図、第3図は、(soZ、AJ:lと
(solJJ) / (St)とビード幅の関係を示す
図、第4図は、中間焼鈍後の平均結晶粒径と2回目の冷
間圧延の圧下率とL方向の磁束密度の関係を示す図、第
5図は、Stの含有量と中間焼鈍条件と中間焼鈍後の平
均結晶粒径の関係を示す図、第6図は、熱延板焼鈍温度
とL方向の磁束密度の関係を示す図である。
第1図
7 C二旺是と直角力向
第2図
−炸旨扇y剛
第4図
ψ藺麓急/)碕騒はメ柳
第5図
中藺焼銃温度(v)
第6図
し
枳[琵y#L (τ〕Figure 1 is a diagram showing that the ratio of the rolling direction in the planing of the El core is 75% of the magnetic path, and Figure 2 is a diagram showing that (Ajz (h)
/ ((St(h) + (MnO) + (A7z
Figure 3 shows the relationship between (soZ, AJ: l and (solJJ) / (St) and bead width. Figure 4 shows the relationship between the average grain size after intermediate annealing, the rolling reduction of the second cold rolling, and the magnetic flux density in the L direction, and Figure 5 shows the relationship between the St content and intermediate annealing conditions. Figure 6 is a diagram showing the relationship between hot-rolled sheet annealing temperature and magnetic flux density in the L direction. Figure 2 - Explosion fan y Go Figure 4 ψ 藺黓KYU /) Meyanagi Figure 5 Temperature of the fire gun (v) Figure 6 Shikou [琵y#L (τ)
Claims (2)
5%、〔Mn)0.1〜1.5%、〔P〕0.15%以
下、〔S〕0.008%以下、〔sol.Al〕0.0
1〜1.0%、〔T.N〕0.0050%以下、〔T.
O〕0.02%以下を含み、〔sol.Al〕/〔Si
〕≧0.02、〔Al_2O_3〕/(〔SiO_2〕
+〔MnO〕+〔Al_2O_3〕)×100≧40%
を満足し、残部鉄及び不可避的不純物よりなるスラブを
熱間圧延後、中間焼鈍を挟む2回の冷間圧延を施す際に
、中間焼鈍後の平均結晶粒径を10〜15μmとし、2
回目の冷間圧延を圧下率3〜10%、2回目の冷間圧延
後の鋼板の表面粗度を15μ−in.R.M.S.以下
とすることを特徴とする磁気特性と溶接性の優れたセミ
プロセス無方向性電磁鋼板の製造方法。(1) [C] 0.015% or less, [Si] 0.1-1.
5%, [Mn] 0.1-1.5%, [P] 0.15% or less, [S] 0.008% or less, [sol. Al〕0.0
1-1.0%, [T. N] 0.0050% or less, [T.
O] 0.02% or less, [sol. Al]/[Si
]≧0.02, [Al_2O_3]/([SiO_2]
+ [MnO] + [Al_2O_3])×100≧40%
When hot-rolling a slab that satisfies the following and consists of residual iron and unavoidable impurities, and then cold-rolling it twice with intermediate annealing in between, the average grain size after intermediate annealing is 10 to 15 μm, and 2
The reduction rate of the second cold rolling was 3 to 10%, and the surface roughness of the steel plate after the second cold rolling was 15μ-in. R. M. S. A method for producing a semi-processed non-oriented electrical steel sheet with excellent magnetic properties and weldability, characterized by the following:
とを特徴とする請求項1記載の磁気特性と溶接性の優れ
たセミプロセス無方向性電磁鋼板の製造方法。(2) The method for producing a semi-processed non-oriented electrical steel sheet with excellent magnetic properties and weldability according to claim 1, characterized in that the hot-rolled sheet is annealed at 700 to 1000°C.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1124440A JPH0676621B2 (en) | 1989-05-19 | 1989-05-19 | Manufacturing method of semi-processed non-oriented electrical steel sheet with excellent magnetic properties and weldability |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1124440A JPH0676621B2 (en) | 1989-05-19 | 1989-05-19 | Manufacturing method of semi-processed non-oriented electrical steel sheet with excellent magnetic properties and weldability |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH02305920A true JPH02305920A (en) | 1990-12-19 |
JPH0676621B2 JPH0676621B2 (en) | 1994-09-28 |
Family
ID=14885557
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1124440A Expired - Lifetime JPH0676621B2 (en) | 1989-05-19 | 1989-05-19 | Manufacturing method of semi-processed non-oriented electrical steel sheet with excellent magnetic properties and weldability |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0676621B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100435480B1 (en) * | 1999-12-27 | 2004-06-10 | 주식회사 포스코 | A method for manufacturing semiprocess non grain oriented electrical steel sheet with superior magnetic property |
CN102482742A (en) * | 2009-09-03 | 2012-05-30 | 新日本制铁株式会社 | Non-oriented electromagnetic steel sheet |
CN104195426A (en) * | 2014-03-26 | 2014-12-10 | 浙江龙盛薄板有限公司 | Semi-processed non-oriented silicon steel and manufacturing method thereof |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109554619A (en) * | 2017-09-27 | 2019-04-02 | 宝山钢铁股份有限公司 | A kind of cold rolling magnetic laminations steel that magnetic property is excellent and its manufacturing method |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61119618A (en) * | 1984-11-15 | 1986-06-06 | Kawasaki Steel Corp | Manufacture of electrical sheet for iron core material in small reposer |
-
1989
- 1989-05-19 JP JP1124440A patent/JPH0676621B2/en not_active Expired - Lifetime
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61119618A (en) * | 1984-11-15 | 1986-06-06 | Kawasaki Steel Corp | Manufacture of electrical sheet for iron core material in small reposer |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100435480B1 (en) * | 1999-12-27 | 2004-06-10 | 주식회사 포스코 | A method for manufacturing semiprocess non grain oriented electrical steel sheet with superior magnetic property |
CN102482742A (en) * | 2009-09-03 | 2012-05-30 | 新日本制铁株式会社 | Non-oriented electromagnetic steel sheet |
CN104195426A (en) * | 2014-03-26 | 2014-12-10 | 浙江龙盛薄板有限公司 | Semi-processed non-oriented silicon steel and manufacturing method thereof |
Also Published As
Publication number | Publication date |
---|---|
JPH0676621B2 (en) | 1994-09-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6838601B2 (en) | Low iron loss directional electromagnetic steel sheet and its manufacturing method | |
JP3456862B2 (en) | Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss | |
KR20030013258A (en) | Method of manufacturing grain-oriented electrical steel sheet | |
CN111417737A (en) | Grain-oriented electromagnetic steel sheet with low iron loss and method for producing same | |
JP3921806B2 (en) | Method for producing grain-oriented silicon steel sheet | |
JPH02305920A (en) | Production of semi-processed non-oriented electrical steel sheet having excellent magnetic characteristic and weldability | |
JPH0713266B2 (en) | Manufacturing method of thin high magnetic flux density unidirectional electrical steel sheet with excellent iron loss | |
JP4810777B2 (en) | Oriented electrical steel sheet and manufacturing method thereof | |
JP3397277B2 (en) | Manufacturing method of ultra-low iron loss ultra-high magnetic flux density unidirectional electromagnetic steel strip | |
CA2338775C (en) | Hot rolled electromagnetic steel sheet having excellent magnetic properties and corrosion resistance and method of producing the same | |
JP3456860B2 (en) | Manufacturing method of unidirectional electrical steel sheet with extremely excellent iron loss characteristics | |
JP4241125B2 (en) | Method for producing grain-oriented electrical steel sheet without forsterite coating | |
JP3921807B2 (en) | Method for producing grain-oriented silicon steel sheet | |
JPS62102507A (en) | Manufacture of non-oriented silicon steel plate | |
JP3360236B2 (en) | Manufacturing method of semi-process non-oriented electrical steel sheet with excellent magnetic properties | |
JPS6253571B2 (en) | ||
JP3392695B2 (en) | Manufacturing method of grain-oriented electrical steel sheet with extremely excellent iron loss characteristics | |
JP4277529B2 (en) | Method for producing grain-oriented electrical steel sheet having no undercoat | |
JP4604449B2 (en) | Oriented electrical steel sheet | |
JPH09310124A (en) | Manufacture of nonoriented silicon steel sheet excellent in shape and magnetic property | |
JP3392698B2 (en) | Method for manufacturing grain-oriented electrical steel sheet with extremely excellent magnetic properties | |
JPH0625381B2 (en) | Method for producing grain-oriented electrical steel sheet | |
JPH01119622A (en) | Production of grain oriented electrical steel sheet having excellent magnetic characteristic and glass film characteristic | |
JP3397273B2 (en) | Manufacturing method for ultra-low iron loss ultra-high magnetic flux density unidirectional electrical steel sheet | |
JP4320794B2 (en) | Method for producing electrical steel sheet with excellent magnetic properties in the rolling direction |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20070928 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080928 Year of fee payment: 14 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090928 Year of fee payment: 15 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090928 Year of fee payment: 15 |