JPH0669730A - Current amplification ratio compensation circuit - Google Patents
Current amplification ratio compensation circuitInfo
- Publication number
- JPH0669730A JPH0669730A JP4219211A JP21921192A JPH0669730A JP H0669730 A JPH0669730 A JP H0669730A JP 4219211 A JP4219211 A JP 4219211A JP 21921192 A JP21921192 A JP 21921192A JP H0669730 A JPH0669730 A JP H0669730A
- Authority
- JP
- Japan
- Prior art keywords
- transistor
- current
- base
- emitter
- gain
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Amplifiers (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、トランジスタのβ(電
流増幅率)の設計値に対する変動を補償する電流増幅率
補償回路に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a current amplification factor compensating circuit for compensating a variation of β (current amplification factor) of a transistor with respect to a design value.
【0002】[0002]
【従来の技術】動作電流源として電流ミラー回路を使用
した増幅回路として図2の回路が知られている。図2に
おいて、信号源(1)からの入力信号は、差動増幅回路
(2)を構成する第1及び第2トランジスタ(3)及び
(4)で増幅されて、出力端子(5)より導出される。
トランジスタ(6)は、差動増幅回路(2)の動作電流
源を構成している。トランジスタ(6)及び(7)は、
電流ミラー回路(8)を構成し、トランジスタ(7)に
流れる電流と等しい電流がトランジスタ(6)に流れ
る。その為、電流ミラー回路(8)に流れる電流を所定
値に設定することにより、一定利得の差動増幅回路
(2)が得られる。2. Description of the Related Art The circuit of FIG. 2 is known as an amplifier circuit using a current mirror circuit as an operating current source. In FIG. 2, an input signal from the signal source (1) is amplified by the first and second transistors (3) and (4) forming the differential amplifier circuit (2) and is derived from the output terminal (5). To be done.
The transistor (6) constitutes an operating current source of the differential amplifier circuit (2). Transistors (6) and (7) are
A current mirror circuit (8) is formed, and a current equal to the current flowing through the transistor (7) flows through the transistor (6). Therefore, by setting the current flowing through the current mirror circuit (8) to a predetermined value, the differential amplifier circuit (2) having a constant gain can be obtained.
【0003】[0003]
【発明が解決しようとする課題】しかしながら、図2の
回路においては、第1及び第2トランジスタ(3)及び
(4)やトランジスタ(6)のβが製造条件や製造後の
温度変化等により変動し差動増幅回路(2)の利得が変
動するという問題がある。However, in the circuit shown in FIG. 2, β of the first and second transistors (3) and (4) and the transistor (6) vary depending on manufacturing conditions, temperature changes after manufacturing, and the like. However, there is a problem that the gain of the differential amplifier circuit (2) varies.
【0004】[0004]
【課題を解決するための手段】本発明は上述の点に鑑み
成されたもので、一方の入力端子に基準電源が、他方の
入力端子と出力端子との間に抵抗が接続された負帰還増
幅器と、該負帰還増幅器の前記出力端子がベースに接続
されたトランジスタ、該トランジスタのコレクタ・エミ
ッタ路に流れる電流に応じて利得の定まる増幅器とから
なり、前記抵抗の値に応じて前記差動増幅器の利得を一
定にすることを特徴とする。SUMMARY OF THE INVENTION The present invention has been made in view of the above points, and has a negative power source in which a reference power source is connected to one input terminal and a resistor is connected between the other input terminal and an output terminal. An amplifier, a transistor whose output terminal is connected to the base of the negative feedback amplifier, and an amplifier whose gain is determined according to the current flowing through the collector / emitter path of the transistor, and the differential circuit according to the value of the resistor. It is characterized in that the gain of the amplifier is constant.
【0005】[0005]
【作用】本発明に依れば、負帰還増幅器の出力端子と一
方の入力端子との間に抵抗を設け、該抵抗にβの変動に
起因する電圧を発生させる。そして、前記電圧を補償電
圧としてβの変動が生じるトランジスタ及び増幅器に印
加している。According to the present invention, a resistor is provided between the output terminal of the negative feedback amplifier and one of the input terminals, and a voltage caused by the fluctuation of β is generated in the resistor. Then, the voltage is applied as a compensation voltage to a transistor and an amplifier in which β fluctuates.
【0006】[0006]
【実施例】図1は、本発明の一実施例を示す回路図で、
(9)は、差動接続されたトランジスタ(10)及び
(11)と、電流ミラー接続されたトランジスタ(1
2)及び(13)と、帰還及びバッファ用の出力トラン
ジスタ(14)と、抵抗(15)と、から構成される負
帰還増幅器である。FIG. 1 is a circuit diagram showing an embodiment of the present invention.
(9) is a differentially connected transistor (10) and (11) and a current mirror connected transistor (1
2) and 13), a feedback and buffer output transistor (14), and a resistor (15).
【0007】尚、図1において図2と同一の回路素子に
ついては同一の符号を付し、説明を省略する。負帰還増
幅器(9)の負帰還作用により、トランジスタ(10)
及び(11)のベース電圧は、常に等しくなる。トラン
ジスタ(10)のベース電圧は、トランジスタ(16)
側から定まり、一定値Vconstとなり、トランジスタ
(11)のベース電圧もVconstと等しくなる。In FIG. 1, the same circuit elements as those in FIG. 2 are designated by the same reference numerals and the description thereof will be omitted. Due to the negative feedback action of the negative feedback amplifier (9), the transistor (10)
The base voltages of (11) and (11) are always equal. The base voltage of the transistor (10) is the same as that of the transistor (16).
It is determined from the side and has a constant value Vconst, and the base voltage of the transistor (11) is also equal to Vconst.
【0008】この際、抵抗(15)の値を比較的小さく
(例えば4KΩ)設定すれば、抵抗(15)に流れる電
流は、トランジスタ(11)のベース電流のみであるの
で、前記一定値Vconstより微小電圧ΔVだけ高い電圧
が負帰還増幅器(9)の出力端子(17)に発生する。
それ故、トランジスタ(6)のベース電圧は、トランジ
スタ(10)のベース電圧に応じて設定することができ
る。負帰還増幅器(9)の入力インピーダンスは非常に
高いので、前記抵抗(15)に流れる電流は、微小であ
り、前記ΔVは非常に小さい。At this time, if the value of the resistor (15) is set to be relatively small (for example, 4 KΩ), the current flowing through the resistor (15) is only the base current of the transistor (11), so that the constant value Vconst is exceeded. A voltage higher by the minute voltage ΔV is generated at the output terminal (17) of the negative feedback amplifier (9).
Therefore, the base voltage of the transistor (6) can be set according to the base voltage of the transistor (10). Since the input impedance of the negative feedback amplifier (9) is very high, the current flowing through the resistor (15) is very small and the ΔV is very small.
【0009】負帰還増幅器(9)の働きにより、トラン
ジスタ(11)のエミッタ電圧は、一定値(Vconst−
VBE4)(VBE4はトランジスタ(11)のベース・エミ
ッタ間電圧)となる。その結果、トランジスタ(11)
のエミッタには等価的に定電流源が接続されていると見
倣せる。そこで、図1のトランジスタ(6)及び(1
1)のβに変動が生じたとする。例えば、トランジスタ
(6)及び(11)のβが低下したとすると、トランジ
スタ(11)のコレクタ電流の減小分だけ、トランジス
タ(11)のベース電流が増加し、その分、出力端子
(17)の電圧が上昇する。出力端子(17)の電圧上
昇に伴いトランジスタ(6)のベース電流が増加する。
ここで、前記ベース電流は、前述のβの変動に応じて生
じたものであり、同一ICで作成すればトランジスタ
(6)及び(11)のβの変動量はほぼ等しいので、ト
ランジスタ(6)に対する補償電流となる。Due to the function of the negative feedback amplifier (9), the emitter voltage of the transistor (11) is constant (Vconst-).
VBE4) (VBE4 is the base-emitter voltage of the transistor (11)). As a result, the transistor (11)
It can be considered that a constant current source is equivalently connected to the emitter of. Therefore, the transistors (6) and (1
It is assumed that β in 1) has changed. For example, if β of the transistors (6) and (11) is reduced, the base current of the transistor (11) is increased by the decrease of the collector current of the transistor (11), and the output terminal (17) is increased accordingly. Voltage rises. The base current of the transistor (6) increases as the voltage of the output terminal (17) increases.
Here, the base current is generated in accordance with the above-mentioned fluctuation of β, and if it is created by the same IC, the fluctuation amounts of β of the transistors (6) and (11) are almost equal, so the transistor (6) It becomes the compensation current for.
【0010】即ち、トランジスタ(6)のβが低下し、
その分コレクタ電流が低下しても、その分トランジスタ
(6)のベース電流が増加するので、前記コレクタ電流
は元の値に戻る。図1の実際の回路では、トランジスタ
(6)及び(11)のβが低下したとすれば、第1及び
第2トランジスタ(3)及び(4)のβも同様に低下す
る。そこで、予め第1及び第2トランジスタ(3)及び
(4)のβの低下を見込んで、トランジスタ(6)のコ
レクタ補償電流を大きく設定することにより、差動増幅
回路(2)の利得が一定にできる。That is, β of the transistor (6) decreases,
Even if the collector current decreases by that amount, the base current of the transistor (6) increases by that amount, so that the collector current returns to the original value. In the actual circuit of FIG. 1, if β of the transistors (6) and (11) decreases, β of the first and second transistors (3) and (4) also decreases. Therefore, the gain of the differential amplifier circuit (2) is made constant by setting the collector compensation current of the transistor (6) to a large value in anticipation of a decrease in β of the first and second transistors (3) and (4). You can
【0011】次に、抵抗(15)の抵抗値R8の定め方
について説明する。図1のトランジスタ(11)のベー
スエミッタ間電圧VBE4は、Next, how to determine the resistance value R 8 of the resistor (15) will be described. The base-emitter voltage V BE4 of the transistor (11) shown in FIG.
【0012】[0012]
【数1】 [Equation 1]
【0013】と成る。又、トランジスタ(11)のベー
ス電圧は、上述の如く一定値Vconstとなるので、トラ
ンジスタ(11)のエミッタ電流IR6は、[0013] Since the base voltage of the transistor (11) becomes the constant value Vconst as described above, the emitter current I R6 of the transistor (11) becomes
【0014】[0014]
【数2】 [Equation 2]
【0015】となり、式(2)に式(1)を代入すると
エミッタ電流IR6は、Substituting equation (1) into equation (2), the emitter current I R6 becomes
【0016】[0016]
【数3】 [Equation 3]
【0017】となる。そのため、トランジスタ(11)
のベース電流IB2は、[0017] Therefore, the transistor (11)
The base current I B2 of
【0018】[0018]
【数4】 [Equation 4]
【0019】となる。そのため、出力端子(17)の電
圧V1は、It becomes Therefore, the voltage V 1 at the output terminal (17) is
【0020】[0020]
【数5】 [Equation 5]
【0021】と成る。トランジスタ(6)のベースエミ
ッタ間電圧をVBE8とし、抵抗(19)の値をR12とす
ると、トランジスタ(6)のエミッタ電流IR12は、[0021] When the base-emitter voltage of the transistor (6) is V BE8 and the value of the resistor (19) is R 12 , the emitter current I R12 of the transistor (6) is
【0022】[0022]
【数6】 [Equation 6]
【0023】となり、VBE8として、式(1)に対応す
る値を式(6)に代入するとエミッタ電流IR12は、Substituting the value corresponding to equation (1) into equation (6) as V BE8 , the emitter current I R12 becomes
【0024】[0024]
【数7】 [Equation 7]
【0025】となり、さらにトランジスタ(6)のコレ
クタ電流ICは、Further, the collector current I C of the transistor (6) is
【0026】[0026]
【数8】 [Equation 8]
【0027】となる。ここで、計算を簡単にするため、
VCONST−Vbe=Vo ,R6=R12とおくと、前記コレ
クタ電流ICは、[0027] Here, in order to simplify the calculation,
When V CONST −V be = V o and R 6 = R 12 are set, the collector current I C becomes
【0028】[0028]
【数9】 [Equation 9]
【0029】と表される。差動増幅回路(2)の負荷抵
抗(20)及び(21)の値をR11、R13とし互いに等
しくすると、その利得Gは、It is expressed as follows. When the values of the load resistances (20) and (21) of the differential amplifier circuit (2) are R 11 and R 13 and are equal to each other, the gain G is
【0030】[0030]
【数10】 [Equation 10]
【0031】となる。式(10)の第1項のみでは利得
Gが電流増幅率βによって変化するが、第2項の働き
(抵抗R8を有する)により一定値になることが考えら
れる。利得Gが電流増幅率βによらず一定となる要件
は、dG/dβ=0である。そこで、式(10)を電流
増幅率βで微分し、その結果の分子をゼロとおくと、It becomes It is conceivable that the gain G changes depending on the current amplification factor β only with the first term of the equation (10), but has a constant value due to the action of the second term (having the resistance R 8 ). The requirement that the gain G be constant regardless of the current amplification factor β is dG / dβ = 0. Therefore, when the equation (10) is differentiated by the current amplification factor β and the resulting numerator is set to zero,
【0032】[0032]
【数11】 [Equation 11]
【0033】が得られる。そして、式(11)を整理
し、抵抗R8を求めると、Is obtained. Then, by rearranging equation (11) and obtaining the resistance R 8 ,
【0034】[0034]
【数12】 [Equation 12]
【0035】となる。従って、式(12)の如く抵抗R
8の値を定めれば、式(10)に示す利得Gを一定値に
できる。これについて、実際の値を代入して確認する。
今、電流増幅率β=100、R 12=R6=2.7KΩ,
Re=260Ω(エミッタ電流を100μAとする)、
R E=50Ω、Rbb=1KΩ、Vbe=0.65V、Vcon
st=1V とすると、抵抗値の和Rは3010Ωとな
り、式(12)より抵抗R8は、7308.6Ωとな
る。そこで、この値を式(10)に代入し、電流増幅率
βをパラメータにして変化させると、次のようになる。[0035] Therefore, the resistance R
8If the value of is determined, the gain G shown in equation (10) is set to a constant value.
it can. Confirm this by substituting the actual value.
Current amplification factor β = 100, R 12= R6= 2.7 KΩ,
Re= 260Ω (emitter current is 100 μA),
R E= 50Ω, Rbb= 1KΩ, Vbe= 0.65V, Vcon
If st = 1V, the sum R of the resistance values is 3010Ω.
From equation (12), the resistance R8Is 7308.6Ω
It Therefore, by substituting this value into equation (10), the current amplification factor
When β is used as a parameter and changed, the result is as follows.
【0036】[0036]
【表1】 [Table 1]
【0037】表1から明らかなように、電流増幅率βが
変化して式(10)の第1項が増加しても利得Gの値
は、一定である。図3は、表1の関係を図示したしたも
のであり、式(10)の第1項が変動すると、それに応
じて第2項がその変動分をキャンセルするように働き結
果として、利得Gの値が一定となる。尚、図1のトラン
ジスタのβが増加したとすると、トランジスタ(11)
のコレクタからベースに電流が流れ、出力端子(17)
の電圧を低下させる。その結果、トランジスタ(6)の
コレクタ電流を低下させることもできる。As is clear from Table 1, the value of the gain G is constant even if the current amplification factor β changes and the first term of the equation (10) increases. FIG. 3 illustrates the relationship in Table 1. When the first term of the equation (10) fluctuates, the second term works accordingly to cancel the fluctuation, and as a result, the gain G The value becomes constant. If β of the transistor in FIG. 1 is increased, the transistor (11)
Current flows from the collector to the base of the output terminal (17)
Lower the voltage. As a result, the collector current of the transistor (6) can be reduced.
【0038】[0038]
【発明の効果】以上述べた如く、本発明によれば、トラ
ンジスタの電流増幅率βが変動しても増幅回路の利得を
自動的に補償することのできる電流増幅率補償回路を提
供することができる。As described above, according to the present invention, it is possible to provide a current amplification factor compensating circuit capable of automatically compensating the gain of the amplification circuit even if the current amplification factor β of the transistor fluctuates. it can.
【図1】本発明の電流増幅率補償回路を示す回路図であ
る。FIG. 1 is a circuit diagram showing a current amplification factor compensation circuit of the present invention.
【図2】従来の増幅回路を示す回路図である。FIG. 2 is a circuit diagram showing a conventional amplifier circuit.
【図3】図1の説明に供するための特性図である。FIG. 3 is a characteristic diagram for use in explaining FIG.
(2) 差動増幅器 (6) トランジスタ (9) 負帰還増幅器 (15) 抵抗 (2) Differential amplifier (6) Transistor (9) Negative feedback amplifier (15) Resistor
Claims (2)
力端子と出力端子との間に抵抗が接続された負帰還増幅
器と、 該負帰還増幅器の前記出力端子がベースに接続されたト
ランジスタと該トランジスタのコレクタ・エミッタ路に
流れる電流に応じて利得の定まる増幅器と、 から成り、前記抵抗の値に応じて前記増幅器の利得を一
定にすることを特徴とする電流増幅率補償回路。1. A negative feedback amplifier having a reference power supply connected to one input terminal, a resistor connected between the other input terminal and an output terminal, and a transistor having the output terminal of the negative feedback amplifier connected to a base. And an amplifier whose gain is determined according to the current flowing in the collector-emitter path of the transistor, and wherein the gain of the amplifier is made constant according to the value of the resistance.
ジスタを備える差動増幅器と、 前記第1トランジスタのベースに基準電圧を印加する基
準電源と、 前記差動増幅器の出力信号を発生するバッファトランジ
スタと、 該バッファトランジスタのエミッタと前記第2トランジ
スタのベースとの間に接続された第1抵抗と、 前記第2トランジスタのエミッタに接続された第2抵抗
と、 前記バッファトランジスタのエミッタと前記第1抵抗の
接続点がベースに接続された第3トランジスタと、 該第3トランジスタのエミッタに接続された第3抵抗
と、 前記第3トランジスタのコレクタ・エミッタ路に流れる
電流に応じて利得の定まる差動増幅器と、 を備え、前記第1抵抗の値R8を R8=〔 β(2R+2Rβ+Rbb)・{(1+β)R+Rbb}−2(1+β) ・{(1+β)R+Rbb }2 〕 / 〔 2(1+β){(1+β)R+Rbb} −β{(1+β)R+Rbb}−2Rβ(1+β) 〕 但し、R=R6+Re+RE、R6:第2抵抗の値、Re:
トランジスタのエミッタ動作抵抗、RE:トランジスタ
のエミッタのバルク抵抗、β:トランジスタの電流増幅
率、Rbb:トランジスタのベース抵抗と定め、前記差動
増幅器の利得をβに関わらず一定にすることを特徴とす
る電流増幅率補償回路。2. A differential amplifier including first and second transistors having emitters connected to each other, a reference power source for applying a reference voltage to the base of the first transistor, and a buffer for generating an output signal of the differential amplifier. A transistor, a first resistor connected between the emitter of the buffer transistor and the base of the second transistor, a second resistor connected to the emitter of the second transistor, an emitter of the buffer transistor and the first resistor. A third transistor having a connection point of one resistor connected to the base, a third resistor connected to the emitter of the third transistor, and a difference in gain determined depending on a current flowing through a collector-emitter path of the third transistor. A dynamic amplifier, and the value R 8 of the first resistor is R 8 = [β (2R + 2Rβ + R bb ) · {(1 + β) R + R bb } -2 (1 + β) · {(1 + β) R + R bb} 2 ] / [2 (1 + β) {( 1 + β) R + R bb} -β {(1 + β) R + R bb} -2Rβ (1 + β) ] where, R = R 6 + R e + R E , R 6 : second resistance value, R e :
The emitter operating resistance of the transistor, R E : bulk resistance of the emitter of the transistor, β: current amplification factor of the transistor, R bb : base resistance of the transistor, and the gain of the differential amplifier is made constant regardless of β. Characteristic current amplification factor compensation circuit.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP04219211A JP3123822B2 (en) | 1992-08-18 | 1992-08-18 | Current amplification factor compensation circuit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP04219211A JP3123822B2 (en) | 1992-08-18 | 1992-08-18 | Current amplification factor compensation circuit |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0669730A true JPH0669730A (en) | 1994-03-11 |
JP3123822B2 JP3123822B2 (en) | 2001-01-15 |
Family
ID=16731954
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP04219211A Expired - Lifetime JP3123822B2 (en) | 1992-08-18 | 1992-08-18 | Current amplification factor compensation circuit |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3123822B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5914646A (en) * | 1994-03-16 | 1999-06-22 | Fujitsu Limited | Surface acoustic wave filter with larger driving electrode areas in some parallel resonators, and packaging thereof |
KR100618786B1 (en) * | 1997-09-12 | 2006-12-13 | 삼성전자주식회사 | Current amplifier using current source |
-
1992
- 1992-08-18 JP JP04219211A patent/JP3123822B2/en not_active Expired - Lifetime
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5914646A (en) * | 1994-03-16 | 1999-06-22 | Fujitsu Limited | Surface acoustic wave filter with larger driving electrode areas in some parallel resonators, and packaging thereof |
KR100618786B1 (en) * | 1997-09-12 | 2006-12-13 | 삼성전자주식회사 | Current amplifier using current source |
Also Published As
Publication number | Publication date |
---|---|
JP3123822B2 (en) | 2001-01-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5311146A (en) | Current mirror for low supply voltage operation | |
JPH10294625A (en) | Self-compensating differential amplifier | |
JPS59184924A (en) | Current source unit | |
EP0302605A1 (en) | Cascode amplifier with non-linearity correction and improve transient response | |
JP3123822B2 (en) | Current amplification factor compensation circuit | |
US4612513A (en) | Differential amplifier | |
US11418159B2 (en) | Differential signal offset adjustment circuit and differential system | |
JP2625552B2 (en) | Filter circuit | |
JPWO2002031968A1 (en) | High frequency amplifier | |
US4439745A (en) | Amplifier circuit | |
JPH0252892B2 (en) | ||
JP3129071B2 (en) | Voltage controlled amplifier | |
JP3123821B2 (en) | Current amplification factor compensation circuit | |
KR100209473B1 (en) | Wide band amplifier | |
JP2991727B2 (en) | Active filter circuit | |
US4748406A (en) | Circuit arrangement for controlling a rotary-magnet measuring instrument | |
JPS62173807A (en) | Constant current source bias circuit | |
JPH0225286B2 (en) | ||
JP3105716B2 (en) | Current mirror circuit | |
JPS5816206B2 (en) | constant current circuit | |
JP2969665B2 (en) | Bias voltage setting circuit | |
JPH066607Y2 (en) | Gain control circuit | |
JPH0582083B2 (en) | ||
JP3128361B2 (en) | Differential amplifier circuit | |
JPH0771005B2 (en) | D / A converter |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071027 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081027 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081027 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091027 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101027 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101027 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111027 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111027 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121027 Year of fee payment: 12 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121027 Year of fee payment: 12 |