JPH0669625A - Mounting method for capacitor - Google Patents

Mounting method for capacitor

Info

Publication number
JPH0669625A
JPH0669625A JP21992292A JP21992292A JPH0669625A JP H0669625 A JPH0669625 A JP H0669625A JP 21992292 A JP21992292 A JP 21992292A JP 21992292 A JP21992292 A JP 21992292A JP H0669625 A JPH0669625 A JP H0669625A
Authority
JP
Japan
Prior art keywords
ceramic capacitor
printed wiring
capacitor
wiring board
aluminum substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21992292A
Other languages
Japanese (ja)
Inventor
Akira Uehara
章 上原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu General Ltd
Original Assignee
Fujitsu General Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu General Ltd filed Critical Fujitsu General Ltd
Priority to JP21992292A priority Critical patent/JPH0669625A/en
Publication of JPH0669625A publication Critical patent/JPH0669625A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0201Thermal arrangements, e.g. for cooling, heating or preventing overheating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0393Flexible materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/05Insulated conductive substrates, e.g. insulated metal substrate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/14Structural association of two or more printed circuits
    • H05K1/141One or more single auxiliary printed circuits mounted on a main printed circuit, e.g. modules, adapters
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • H05K3/341Surface mounted components
    • H05K3/3431Leadless components
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/36Assembling printed circuits with other printed circuits
    • H05K3/361Assembling flexible printed circuits with other printed circuits
    • H05K3/363Assembling flexible printed circuits with other printed circuits by soldering

Abstract

PURPOSE:To prevent a capacitor from being broken by a difference of thermal expansion coefficient by mounting a ceramic capacitor on an aluminum substrate or a printed wiring board through a flexible board. CONSTITUTION:Solder print treatment is first performed for an electrode land part 4 of a flexible board 2. After an electrode part 10 of a ceramic capacitor 3 is mounted on the electrode land part 4 which is correspondingly provided to stride over an opening part 5 provided to a flexible board 2, soldering treatment is performed. After solder print treatment is performed for a required part of a copper foil pattern part 7 of an aluminum substrate or a printed board 1 and a connection land 9 of the flexible board 2 whereon the ceramic capacitor 3 is mounted is mounted on the copper foil pattern part 7, soldering treatment is carried out. Thereby, difference of thermal expansion coefficient between the ceramic capacitor 3 and the aluminum substrate or the printed wiring board 1 is absorbed by the flexible board 2.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は面実装技術に係り、コン
デンサの実装方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a surface mounting technique, and more particularly to a method for mounting a capacitor.

【0002】[0002]

【従来の技術】ハイブリッドICや面実装技術を用いた
プリント配線基板へのセラミックコンデンサの実装は、
プリント配線基板、セラミック基板、アルミ基板等に直
接半田付けすることにより行われていた。コンデンサの
サイズが、長さ=2mm、幅=1.25mm、厚み=1
mm程度の比較的小さいものの場合は特に問題はない
が、長さ=5.7mm、幅=2.7mm、厚み=1.8
mm程度と大きいものの場合、アルミ基板或いはプリン
ト配線基板に実装した際に、これら基板とセラミックコ
ンデンサの熱膨張係数が大幅に異なるため、大きな熱ス
トレスが加わるとセラミックコンデンサが割れてしまう
という現象が発生する。
2. Description of the Related Art Mounting a ceramic capacitor on a printed wiring board using a hybrid IC or surface mounting technology is
It is performed by directly soldering to a printed wiring board, a ceramic board, an aluminum board, or the like. Capacitor size is length = 2mm, width = 1.25mm, thickness = 1
There is no particular problem in the case of a relatively small size of about mm, but length = 5.7 mm, width = 2.7 mm, thickness = 1.8.
When the size is as large as about mm, when mounted on an aluminum board or a printed wiring board, the coefficient of thermal expansion of these boards and the ceramic capacitors are significantly different, so there is a phenomenon that the ceramic capacitors will crack when large thermal stress is applied. To do.

【0003】[0003]

【発明が解決しようとする課題】本発明はこのような点
に鑑みなされたもので、例えば、長さ=5.7mm、幅
=2.7mm、厚み=1.8mm程度の大きなサイズの
コンデンサをアルミ基板或いはプリント配線基板に実装
した場合においても、熱膨張係数の大幅な差によりコン
デンサーが割れることのないコンデンサの実装方法を提
供するものである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and for example, a large-sized capacitor having a length of 5.7 mm, a width of 2.7 mm, and a thickness of 1.8 mm is provided. Provided is a method for mounting a capacitor which does not crack even when mounted on an aluminum substrate or a printed wiring board due to a large difference in thermal expansion coefficient.

【0004】[0004]

【課題を解決するための手段】本発明は上述の課題を解
決するため、セラミックコンデンサをアルミ基板若しく
はプリント配線基板に半田付けにより実装するものにお
いて、開口部を形成し、この開口部を挟んだ両側に前記
セラミックコンデンサの電極部に対応する銅箔パターン
を設けたフレキシブル基板に、前記セラミックコンデン
サを前記開口部を跨ぐように実装した後、このフレキシ
ブル基板を前記アルミ基板若しくはプリント配線基板に
実装してなることを特徴とする。
In order to solve the above problems, the present invention mounts a ceramic capacitor on an aluminum substrate or a printed wiring board by soldering, forming an opening and sandwiching the opening. After mounting the ceramic capacitor on the flexible substrate provided with copper foil patterns corresponding to the electrode portions of the ceramic capacitor on both sides so as to straddle the opening, the flexible substrate is mounted on the aluminum substrate or the printed wiring board. It is characterized by

【0005】[0005]

【作用】以上のように構成したので、本発明によるコン
デンサの実装方法においては、セラミックコンデンサを
フレキシブル基板を介してアルミ基板若しくはプリント
配線基板に実装することにより、セラミックコンデンサ
とアルミ基板若しくはプリント配線基板の熱膨張量の差
は、軟らかく、撓み易いフレキシブル基板にある程度吸
収され、更にこのフレキシブル基板に開口部を形成する
ことにより、前記熱膨張量の差をより確実に吸収するこ
とができる。
With the above construction, in the method of mounting a capacitor according to the present invention, the ceramic capacitor is mounted on the aluminum substrate or the printed wiring board through the flexible substrate, so that the ceramic capacitor and the aluminum substrate or the printed wiring board are mounted. The difference in the amount of thermal expansion is absorbed to some extent by the flexible substrate that is soft and easily bent, and by forming an opening in this flexible substrate, the difference in the amount of thermal expansion can be more reliably absorbed.

【0006】[0006]

【実施例】以下、図面に基づいて本発明による実施例を
詳細に説明する。図1は本発明によるコンデンサの実装
方法の一実施例であるフレキシブル基板の要部平面図で
あり、図2は本発明によるコンデンサの実装方法の一実
施例の要部断面図である。図において、1はアルミ基板
若しくはプリント配線基板で、このアルミ基板若しくは
プリント配線基板1には銅箔パターン7が設けられてい
る。2はポリアミド系のフレキシブル基板2で、このフ
レキシブル基板2の両側に設けた接続ランド部9と前記
銅箔パターン7が半田付けされて、半田部分8を形成し
ている。また、前記フレキシブル基板2には、開口部5
を形成し、この開口部5を挟んだ両側にセラミックコン
デンサ3の電極部10に対応するように前記接続ランド
部9と繋がった銅箔パターンからなる電極ランド部4を
設けてある。セラミックコンデンサ3はこの開口部5を
跨ぐようにして両側の電極ランド部4に半田付けされ
て、半田部分6を形成している。セラミックコンデンサ
3をアルミ基板若しくはプリント配線基板1に実装する
には、まずフレキシブル基板2の電極ランド部4をメタ
ルマスクを用いて半田印刷処理し、セラミックコンデン
サ3の電極部10を前記フレキシブル基板2に設けた開
口部5を跨ぐようにして、対応して設けた電極ランド部
4に搭載した後、リフローにより半田付け処理を行う。
さらに、アルミ基板若しくはプリント配線基板1の銅箔
パターン部7の所要部分をメタルマスクを用いて半田印
刷処理し、前記のセラミックコンデンサ3が実装された
フレキシブル基板2の接続ランド部9を前記銅箔パター
ン部7に搭載した後、リフローにより半田付け処理を行
う。セラミックコンデンサ3を開口部5を形成したフレ
キシブル基板2を介してアルミ基板若しくはプリント配
線基板1に実装することにより、アルミ基板若しくはプ
リン配線基板1は、セラミックコンデンサ3の熱膨張係
数の2.5〜3.5倍の熱膨張係数を有しているが、こ
の熱膨張係数の差はフレキシブル基板2によって吸収さ
れる。
Embodiments of the present invention will be described in detail below with reference to the drawings. FIG. 1 is a plan view of a main part of a flexible substrate which is an embodiment of a method for mounting a capacitor according to the present invention, and FIG. 2 is a cross-sectional view of a main part of an embodiment of a method for mounting a capacitor according to the present invention. In the figure, 1 is an aluminum substrate or a printed wiring board, and a copper foil pattern 7 is provided on the aluminum substrate or the printed wiring board 1. Reference numeral 2 is a polyamide-based flexible substrate 2, and the connection land portions 9 provided on both sides of the flexible substrate 2 and the copper foil pattern 7 are soldered to form a solder portion 8. In addition, the flexible substrate 2 has an opening 5
And the electrode land portions 4 made of a copper foil pattern connected to the connection land portions 9 are provided on both sides of the opening 5 so as to correspond to the electrode portions 10 of the ceramic capacitor 3. The ceramic capacitor 3 is soldered to the electrode lands 4 on both sides so as to straddle the opening 5 to form a solder portion 6. To mount the ceramic capacitor 3 on the aluminum substrate or the printed wiring board 1, first, the electrode land portion 4 of the flexible substrate 2 is solder-printed using a metal mask, and the electrode portion 10 of the ceramic capacitor 3 is mounted on the flexible substrate 2. After being mounted on the corresponding electrode land portion 4 so as to straddle the provided opening portion 5, soldering processing is performed by reflow.
Further, a required portion of the copper foil pattern portion 7 of the aluminum substrate or the printed wiring board 1 is solder-printed using a metal mask, and the connection land portion 9 of the flexible substrate 2 on which the ceramic capacitor 3 is mounted is connected to the copper foil. After mounting on the pattern portion 7, a soldering process is performed by reflow. By mounting the ceramic capacitor 3 on the aluminum substrate or the printed wiring board 1 through the flexible substrate 2 having the opening 5, the aluminum substrate or the printed wiring board 1 has a coefficient of thermal expansion of 2.5 to 5% of that of the ceramic capacitor 3. Although it has a thermal expansion coefficient of 3.5 times, the difference in the thermal expansion coefficient is absorbed by the flexible substrate 2.

【0007】[0007]

【発明の効果】以上に説明したように、本発明によるコ
ンデンサの実装方法においては、セラミックコンデンサ
をフレキシブル基板を介してアルミ基板若しくはプリン
ト配線基板に実装することにより、セラミックコンデン
サとアルミ基板若しくはプリント配線基板の熱膨張量の
差は、軟らかく、撓み易いフレキシブル基板にある程度
吸収され、更にこのフレキシブル基板に開口部を形成す
ることにより、前記熱膨張量の差をより確実に吸収する
ことができので、熱ストレスによるセラミックコンデン
サの割れを防止することができる。
As described above, in the method of mounting a capacitor according to the present invention, the ceramic capacitor is mounted on the aluminum substrate or the printed wiring board through the flexible substrate, so that the ceramic capacitor and the aluminum substrate or the printed wiring are mounted. The difference in the amount of thermal expansion of the substrate is soft and is absorbed to some extent by the flexible substrate that is easily bent, and by forming an opening in this flexible substrate, the difference in the amount of thermal expansion can be more reliably absorbed. It is possible to prevent the ceramic capacitor from cracking due to thermal stress.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明によるコンデンサの実装方法の一実施例
であるフレキシブル基板の要部平面図である。
FIG. 1 is a plan view of a main part of a flexible substrate which is an embodiment of a method of mounting a capacitor according to the present invention.

【図2】本発明によるコンデンサの実装方法の一実施例
の要部断面図である。
FIG. 2 is a cross-sectional view of essential parts of an embodiment of a method for mounting a capacitor according to the present invention.

【符号の説明】[Explanation of symbols]

1 アルミ基板若しくはプリント配線基板 2 フレキシブル基板 3 セラミックコンデンサ 4 電極ランド部 5 開口部 6 半田部分 7 銅箔パターン 8 半田部分 9 接続ランド部 10 電極部 1 Aluminum Board or Printed Wiring Board 2 Flexible Board 3 Ceramic Capacitor 4 Electrode Land 5 Opening 6 Solder Part 7 Copper Foil Pattern 8 Solder Part 9 Connection Land 10 Electrode

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 セラミックコンデンサをアルミ基板若し
くはプリント配線基板に半田付けにより実装するものに
おいて、開口部を形成し、この開口部を挟んだ両側に前
記セラミックコンデンサの電極部に対応する銅箔パター
ンを設けたフレキシブル基板に、前記セラミックコンデ
ンサを前記開口部を跨ぐように実装した後、このフレキ
シブル基板を前記アルミ基板若しくはプリント配線基板
に実装してなることを特徴とするコンデンサの実装方
法。
1. A ceramic capacitor mounted on an aluminum substrate or a printed wiring board by soldering, an opening is formed, and a copper foil pattern corresponding to an electrode portion of the ceramic capacitor is formed on both sides of the opening. A method for mounting a capacitor, comprising: mounting the ceramic capacitor on a provided flexible substrate so as to straddle the opening, and then mounting the flexible substrate on the aluminum substrate or a printed wiring board.
JP21992292A 1992-08-19 1992-08-19 Mounting method for capacitor Pending JPH0669625A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21992292A JPH0669625A (en) 1992-08-19 1992-08-19 Mounting method for capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21992292A JPH0669625A (en) 1992-08-19 1992-08-19 Mounting method for capacitor

Publications (1)

Publication Number Publication Date
JPH0669625A true JPH0669625A (en) 1994-03-11

Family

ID=16743127

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21992292A Pending JPH0669625A (en) 1992-08-19 1992-08-19 Mounting method for capacitor

Country Status (1)

Country Link
JP (1) JPH0669625A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011086197A1 (en) 2010-12-20 2012-06-21 Denso Corporation ARRANGEMENT STRUCTURE FOR A CHIP TYPE ELECTRICAL ELEMENT AND ELECTRICAL ELEMENT OF THE CHIP TYPE ON A FLEXIBLE PLATINE
DE10218071B4 (en) * 2001-04-25 2014-06-12 Mitsubishi Denki K.K. Capacitor module and this semiconductor device using

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10218071B4 (en) * 2001-04-25 2014-06-12 Mitsubishi Denki K.K. Capacitor module and this semiconductor device using
DE102011086197A1 (en) 2010-12-20 2012-06-21 Denso Corporation ARRANGEMENT STRUCTURE FOR A CHIP TYPE ELECTRICAL ELEMENT AND ELECTRICAL ELEMENT OF THE CHIP TYPE ON A FLEXIBLE PLATINE
US8901686B2 (en) 2010-12-20 2014-12-02 Denso Corporation Mounting structure of chip type electric element and electric apparatus having chip type electric element on flexible board

Similar Documents

Publication Publication Date Title
JPH0423485A (en) Printed wiring board and manufacture thereof
JPH0669625A (en) Mounting method for capacitor
JP2872715B2 (en) Solder dip mask
JPH05299802A (en) Mounting method of capacitor
JPH05299803A (en) Mounting method of capacitor
JPH07142821A (en) Printed wiring board
JPS5853890A (en) Method of soldering electronic part
JPH0955565A (en) Printed wiring board
JP2000244080A (en) Printed wiring board
JP3003062U (en) Printed board
JPS6221298A (en) Mounting of chip type electronic component
JPH01251788A (en) Printed board
JPS60175480A (en) Device for mounting part on printed board
JPH0634283U (en) Capacitor mounting structure
JPH069169U (en) Capacitor mounting structure
JPS631093A (en) Electronic parts mounting board device
JP2001332849A (en) Mounting method of surface mounting part in electronic apparatus
JPS635260Y2 (en)
JPS5844605Y2 (en) Structure to prevent solder bridging on printed circuit boards
JP2001119119A (en) Printed circuit board and method for mounting electronic component
JPH0799260A (en) Circuit device and mounting method thereof
JPH0497589A (en) Printed wiring board
JPH04269894A (en) Soldering method for surface mount component on printed circuit board
JPH04313294A (en) Soldering method for printed wiring board
JPH067273U (en) Printed board