JPH0667207A - Liquid crystal display device - Google Patents

Liquid crystal display device

Info

Publication number
JPH0667207A
JPH0667207A JP22166792A JP22166792A JPH0667207A JP H0667207 A JPH0667207 A JP H0667207A JP 22166792 A JP22166792 A JP 22166792A JP 22166792 A JP22166792 A JP 22166792A JP H0667207 A JPH0667207 A JP H0667207A
Authority
JP
Japan
Prior art keywords
additional capacitance
pixel
pixel additional
tft
liquid crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22166792A
Other languages
Japanese (ja)
Inventor
Katsumi Nagase
克己 長瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP22166792A priority Critical patent/JPH0667207A/en
Publication of JPH0667207A publication Critical patent/JPH0667207A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136213Storage capacitors associated with the pixel electrode

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Nonlinear Science (AREA)
  • Liquid Crystal (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Thin Film Transistor (AREA)

Abstract

PURPOSE:To improve the display quality of a screen by forming a pixel additional capacitance in a groove formed vertically in a substrate, and decreasing the occupancy area of the pixel additional capacitance and improving a numerical aperture while holding characteristics of a display voltage constant. CONSTITUTION:The pixel additional capacitance 1 is formed in a rectangular groove formed in the transparent substrate. The pixel additional capacitance 11 consists of a lower electrode 2, a dielectric film 15 and an upper electrode 3. The channel area and a source 7 and a drain of a TFT 10 are made of a polycrystalline silicon film. The gate insulating film 11, pixel additional capacitance 1 and dielectric film 15 of the TFT 10 made of silicon oxide are formed thereupon. Impurities are injected by ion injection into the lower electrode 2 of the pixel additional capacitance 1 formed with the end part of the drain 9 of the TFT 10. The upper electrode 3 of the pixel additional capacitance 11 made of the polycrystalline silicon doped with the impurities and the gate 8 of the TFT 10 are formed on the films 11 and 15.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ビデオカメラ用のビュ
ーファインダーやビデオプロジェクターなどに用いられ
るアクティブマトリクス方式液晶表示装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an active matrix type liquid crystal display device used for a viewfinder or a video projector for a video camera.

【0002】[0002]

【従来の技術】代表的なフラットパネル型ディスプレイ
である液晶表示装置は、共通電極が形成された一方側の
透明基板と、多数の画素領域を備えるマトリクスアレイ
が形成された他方側の透明基板との間に液晶が封入され
ており、共通電極と各画素領域の画素電極との間に印加
される電位を制御して、画素領域毎の液晶の配向状態を
変えるようになっている。その代表的なものが薄膜トラ
ンジスタ(以下、TFTと略す。)を利用して、所定の
信号電位を各画素電極に印加する方式であり、そのマト
リクスアレイの等価回路は、たとえば、図6に示すよう
に表される。
2. Description of the Related Art A typical flat panel type liquid crystal display device includes a transparent substrate on one side on which a common electrode is formed and a transparent substrate on the other side on which a matrix array having a large number of pixel regions is formed. A liquid crystal is sealed between the two, and the electric potential applied between the common electrode and the pixel electrode of each pixel region is controlled to change the alignment state of the liquid crystal for each pixel region. A typical example thereof is a method of applying a predetermined signal potential to each pixel electrode using a thin film transistor (hereinafter, abbreviated as TFT), and an equivalent circuit of the matrix array is, for example, as shown in FIG. Represented by.

【0003】このような構成の液晶表示装置に対して
は、表示の高精細化の要求があり、この要求に対応する
ために、各画素領域を微細化する傾向にある。そのため
に、画素領域における液晶容量13が減少し、オフ抵抗
の高いTFT10を構成してリーク電流を小さくして
も、表示電圧が低下し、表示の保持特性が低くなりやす
い傾向がある。そこで、画素付加容量1を液晶容量13
と並列に接続することにより、表示電圧の保持特性を向
上することが行われる。画素付加容量1は、たとえば、
図4(図5のI−I断面)および図5に示すように、T
FT10のドレイン9に導通接続される下電極2と、誘
電体膜15と、前段のゲート線6aに導通接続される上
電極3と、により構成される。ゲート線6bが非選択期
間時には、前段のゲート線6aも、ほとんどの時間が非
選択期間であり、基準電位が印加されている。このこと
を利用して、画素付加容量1に電荷を蓄積し、画素領域
の液晶印加電圧の保持特性を向上させている。
For the liquid crystal display device having such a structure, there is a demand for higher definition of display, and in order to meet this demand, each pixel region tends to be miniaturized. Therefore, the liquid crystal capacitance 13 in the pixel region decreases, and even if the TFT 10 having high off resistance is configured to reduce the leak current, the display voltage tends to decrease, and the display retention characteristics tend to deteriorate. Therefore, the pixel additional capacitance 1 is replaced with the liquid crystal capacitance 13
The display voltage holding characteristic is improved by connecting in parallel with. The pixel additional capacitance 1 is, for example,
As shown in FIG. 4 (I-I cross section of FIG. 5) and FIG.
It is composed of a lower electrode 2 that is conductively connected to the drain 9 of the FT 10, a dielectric film 15, and an upper electrode 3 that is conductively connected to the gate line 6a in the preceding stage. When the gate line 6b is in the non-selection period, most of the gate line 6a in the preceding stage is also in the non-selection period, and the reference potential is applied. By utilizing this fact, charges are accumulated in the pixel additional capacitance 1 to improve the holding characteristic of the liquid crystal applied voltage in the pixel region.

【0004】微細化が進むのにつれて液晶容量13は更
に減少するので、十分な保持特性を得るために必要とさ
れる画素付加容量1は増加する。電荷蓄積容量は、誘電
体膜の膜厚と誘電率および電極の重なり面積で決定され
る。画素付加容量1の誘電体膜15は、通常、TFT1
0のゲート絶縁膜11と同時に形成されるので、膜厚や
誘電率を自由に設定することはできない。そのため、画
素付加容量1を増加させるためには面積を拡大する必要
があるが、画素付加容量を形成した領域は透明でないた
めに開口率(表示可能な画素領域)の低下につながる。
開口率は最低限25%必要とされるため、画素付加容量
の面積を犠牲にすることになり、十分な保持特性を得ら
れない。そのため、画面のムラやちらつきが発生して表
示品質が低い。
As the miniaturization progresses, the liquid crystal capacitance 13 further decreases, so that the pixel additional capacitance 1 required to obtain sufficient holding characteristics increases. The charge storage capacity is determined by the film thickness and dielectric constant of the dielectric film and the overlapping area of the electrodes. The dielectric film 15 of the pixel additional capacitance 1 is usually the TFT 1
Since it is formed at the same time as the gate insulating film 11 of 0, the film thickness and dielectric constant cannot be freely set. Therefore, although it is necessary to increase the area in order to increase the pixel additional capacitance 1, the area where the pixel additional capacitance is formed is not transparent, which leads to a reduction in the aperture ratio (displayable pixel region).
Since the aperture ratio is required to be at least 25%, the area of the pixel additional capacitance is sacrificed and a sufficient holding characteristic cannot be obtained. Therefore, display unevenness and flicker occur and display quality is low.

【0005】[0005]

【発明が解決しようとする課題】上記従来技術では、画
素領域の微細化にともなって、表示品質が低下するとい
う課題がある。
The above-mentioned conventional technique has a problem that the display quality is deteriorated as the pixel area is miniaturized.

【0006】[0006]

【課題を解決するための手段】そこで、本発明の液晶表
示装置は、上記課題を解決するものであって、アクティ
ブマトリクス方式液晶表示装置において、画素付加容量
が基板の垂直方向に形成された溝内に形成されているこ
とを特徴とする。
Therefore, a liquid crystal display device of the present invention is to solve the above-mentioned problems. In the active matrix liquid crystal display device, a pixel additional capacitance is formed in a groove formed in the vertical direction of the substrate. It is characterized in that it is formed inside.

【0007】[0007]

【実施例】次に本発明の一実施例について添付図面を参
照して説明する。本発明の実施例の液晶表示装置におけ
るTFT10と画素付加容量1の断面図を図1(図2の
I−I断面)に、平面図を図2に示す。長方形の溝内に
画素付加容量1が形成されている場合を示しているが、
溝の形状や数には制限がなく、円形や三角形の穴が多数
個並んだところに画素付加容量を形成しても良い。ま
た、図2においては、画素付加容量1がTFT10のド
レインに導通接続される下電極2と、誘電体膜15と、
前段のゲート線6aに導通接続される上電極3から構成
される場合を示しているが、図3に示すように、上電極
3がゲート線6bと平行に作り込まれた容量線14に導
通接続する場合も挙げられる。
An embodiment of the present invention will now be described with reference to the accompanying drawings. A cross-sectional view of the TFT 10 and the pixel additional capacitance 1 in the liquid crystal display device of the embodiment of the present invention is shown in FIG. 1 (I-I cross section in FIG. 2), and a plan view is shown in FIG. The case where the pixel additional capacitance 1 is formed in the rectangular groove is shown.
The shape and number of the grooves are not limited, and the pixel additional capacitance may be formed where a large number of circular or triangular holes are arranged. Further, in FIG. 2, the pixel additional capacitance 1 is conductively connected to the drain of the TFT 10, the lower electrode 2, the dielectric film 15, and
Although a case is shown in which the upper electrode 3 is conductively connected to the gate line 6a at the previous stage, the upper electrode 3 is electrically connected to the capacitance line 14 formed in parallel with the gate line 6b as shown in FIG. An example is when connecting.

【0008】溝の形成方法には、以下の方法が挙げられ
る。透明基板を直接エッチングして、目的とする溝を
形成する。酸化シリコン膜をCVD法により堆積し
て、目的とする溝にパターニングする。透明基板上に
堆積された多結晶シリコン膜または非晶質シリコン膜
を、目的とする溝の形状に合わせてパターニングした
後、膜をすべて酸化して酸化シリコンとする。多結晶シ
リコン膜を酸化する場合、形成される酸化シリコンは約
2.2倍の厚さとなるため、予め酸化後の溝の深さを予
測して多結晶シリコン膜を成膜しておく必要がある。通
常、酸化方法には、ドライ酸化とウエット酸化の二通り
があるが、ここでは酸化速度が大きなウエット酸化を用
いるほうがよい。窒化シリコン膜をCVD法により堆
積して、目的とする溝にパターニングする。酸化シリコ
ンを形成するよりも簡便である。
The method of forming the groove includes the following methods. The transparent substrate is directly etched to form the target groove. A silicon oxide film is deposited by the CVD method and patterned into a target groove. The polycrystalline silicon film or the amorphous silicon film deposited on the transparent substrate is patterned according to the shape of the target groove, and then the entire film is oxidized to form silicon oxide. When oxidizing the polycrystalline silicon film, the thickness of the silicon oxide formed is about 2.2 times, so it is necessary to predict the depth of the groove after the oxidation to form the polycrystalline silicon film in advance. is there. Generally, there are two kinds of oxidation methods, dry oxidation and wet oxidation. Here, it is preferable to use wet oxidation, which has a high oxidation rate. A silicon nitride film is deposited by the CVD method and patterned into a target groove. It is easier than forming silicon oxide.

【0009】これ以降の工程は、通常の多結晶シリコン
TFTを用いた液晶表示装置の作製方法と同様である。
減圧CVD法により、TFTのチャネル領域およびソー
ス7、ドレイン9を形成する膜厚500〜2000Åの
多結晶シリコン膜が成膜される。多結晶シリコンをパタ
ーニング後、その上に酸化シリコンまたは窒化シリコン
からなるゲート絶縁膜11および画素付加容量の誘電体
膜15が500〜2000Å形成される。ゲート絶縁膜
11としては、高温熱酸化による酸化シリコンが最も信
頼性の高い膜である。通常は、工程の簡便化のためにゲ
ート絶縁膜11と誘電体膜15は同時に成膜されるが、
画素付加容量を特に大きくする必要があるときには誘電
体膜15のみを選択的に薄膜化する。TFT10のドレ
イン9の端部により形成される下電極2には、n型の不
純物としてイオン注入により選択的にリンが導入されて
いる。不純物がドープされた多結晶シリコンを堆積し
て、画素付加容量1の上電極2およびTFT10のゲー
ト8を1500〜5000Å形成する。多結晶シリコン
の代わりに、MoSix やWSix 等の低抵抗材料を用
いるとゲート信号の遅延にともなう表示異常の低減に効
果がある。TFT10には、真性の多結晶シリコンであ
るチャネル領域を除いて、n型の不純物としてリン(p
型を形成する場合はボロン)が導入されている。ここで
リンの導入は、ゲート8をマスクとするイオン注入を利
用することにより、ソース7およびドレイン9が自己整
合的に形成されている。この画素付加容量1とTFT1
0の上方には、層間絶縁膜として3000〜15000
Åの酸化シリコン膜があり、この膜の焼き締めとリンな
どの不純物の活性化のために800〜1000℃という
高温でのアニールが行われている。TFT10のソース
7とドレイン9には、それぞれ、アルミニウムなどの金
属膜からなるソース線5aとITOなどの透明電導膜か
らなる画素電極4が導通接続されている。この上に、耐
湿保護膜(図示せず)を成膜してTFTの基板工程が終
了する。
Subsequent steps are the same as in the method of manufacturing a liquid crystal display device using a normal polycrystalline silicon TFT.
By the low pressure CVD method, a polycrystalline silicon film having a film thickness of 500 to 2000 Å which forms the channel region of the TFT, the source 7 and the drain 9 is formed. After patterning the polycrystalline silicon, the gate insulating film 11 made of silicon oxide or silicon nitride and the dielectric film 15 of the pixel additional capacitance are formed thereon in a thickness of 500 to 2000Å. As the gate insulating film 11, silicon oxide by high temperature thermal oxidation is the most reliable film. Normally, the gate insulating film 11 and the dielectric film 15 are formed at the same time to simplify the process.
When it is necessary to particularly increase the pixel additional capacitance, only the dielectric film 15 is selectively thinned. To the lower electrode 2 formed by the end of the drain 9 of the TFT 10, phosphorus is selectively introduced as an n-type impurity by ion implantation. Polycrystalline silicon doped with impurities is deposited to form the upper electrode 2 of the pixel additional capacitor 1 and the gate 8 of the TFT 10 in the range of 1500 to 5000Å. If a low resistance material such as MoSi x or WSi x is used instead of polycrystalline silicon, it is effective in reducing display anomalies due to the delay of the gate signal. Except for the channel region which is intrinsic polycrystalline silicon, the TFT 10 has phosphorus (p) as an n-type impurity.
Boron is introduced when forming a mold. Here, phosphorus is introduced by utilizing ion implantation using the gate 8 as a mask, so that the source 7 and the drain 9 are formed in a self-aligned manner. This pixel additional capacitance 1 and TFT1
Above 0, as an interlayer insulating film, 3000 to 15000
There is a silicon oxide film of Å, and annealing is performed at a high temperature of 800 to 1000 ° C. for baking the film and activating impurities such as phosphorus. A source line 5a made of a metal film such as aluminum and a pixel electrode 4 made of a transparent conductive film such as ITO are electrically connected to the source 7 and the drain 9 of the TFT 10, respectively. A moisture resistant protective film (not shown) is formed on this, and the substrate process of the TFT is completed.

【0010】以上のようにして、画素付加容量を溝内に
形成することにより、同じ占有面積で、より大きな容量
を得ることができる。たとえば、従来のような平坦な基
板上に長方形の画素付加容量が形成されている場合、縦
30μm、横20μmであるとすると、その占有面積は
600μm2 である。そこに、縦20μm、横5μm、
深さ2μmの長方形の溝を2つ形成すると、溝の側壁の
面積200μm2 だけ表面積が増加する。つまり、従来
と同じ占有面積で容量を1/3増加させることができ
る。表示電圧の保持特性が低い場合には、画面のムラや
ちらつきが発生するという問題があるが、本発明によれ
ば、画素付加容量の占有面積を一定に保ちながら、保持
特性を向上することができる。また、逆に、保持特性が
十分に大きな場合には、保持特性を一定に保ちながら占
有面積を低下させて開口率を高くし、画面の明るさを増
すこともできる。
By forming the pixel additional capacitance in the groove as described above, a larger capacitance can be obtained with the same occupied area. For example, in the case where a rectangular pixel additional capacitor is formed on a flat substrate as in the conventional case, if the vertical length is 30 μm and the horizontal length is 20 μm, the occupied area is 600 μm 2 . There, vertical 20μm, horizontal 5μm,
When two rectangular grooves having a depth of 2 μm are formed, the surface area is increased by 200 μm 2 of the side wall area of the groove. That is, it is possible to increase the capacity by 1/3 with the same occupied area as the conventional one. When the holding characteristic of the display voltage is low, there is a problem that screen unevenness and flicker occur. However, according to the present invention, it is possible to improve the holding characteristic while keeping the area occupied by the pixel additional capacitance constant. it can. On the contrary, when the holding property is sufficiently large, the occupied area can be reduced to increase the aperture ratio and the screen brightness can be increased while keeping the holding property constant.

【0011】[0011]

【発明の効果】以上のとおり、本発明の液晶表示装置に
おいては、下記のような効果がある。 画素付加容量の占有面積を一定に保ちながら、表示電
圧の保持特性を向上させることができる。
As described above, the liquid crystal display device of the present invention has the following effects. It is possible to improve the holding characteristic of the display voltage while keeping the area occupied by the pixel additional capacitance constant.

【0012】表示電圧の保持特性を一定に保ちなが
ら、画素付加容量の占有面積を低下させることにより、
開口率を向上させることができる。
By keeping the display voltage holding characteristic constant and reducing the area occupied by the pixel additional capacitance,
The aperture ratio can be improved.

【0013】これらの効果により、画面の表示品質の向
上が得られる。
Due to these effects, the display quality of the screen can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例による液晶表示装置のTFTと
画素付加容量の断面図。(図2のI−I断面)
FIG. 1 is a cross-sectional view of a TFT and a pixel additional capacitance of a liquid crystal display device according to an embodiment of the present invention. (I-I cross section of FIG. 2)

【図2】本発明の実施例による画素領域の平面図。FIG. 2 is a plan view of a pixel area according to an embodiment of the present invention.

【図3】本発明の実施例による画素領域の平面図。FIG. 3 is a plan view of a pixel area according to an exemplary embodiment of the present invention.

【図4】従来の液晶表示装置のTFTと画素付加容量の
断面図。(図5のI−I断面)
FIG. 4 is a cross-sectional view of a TFT and a pixel additional capacitance of a conventional liquid crystal display device. (I-I cross section of FIG. 5)

【図5】従来の画素領域の平面図。FIG. 5 is a plan view of a conventional pixel area.

【図6】液晶表示装置のマトリクスアレイの等価回路
図。
FIG. 6 is an equivalent circuit diagram of a matrix array of a liquid crystal display device.

【符号の説明】[Explanation of symbols]

1・・・画素付加容量 2・・・下電極 3・・・上電極 4・・・画素電極 5a、5b・・・ソース線 6a、6b・・・ゲート線 7・・・ソース 8・・・ゲート 9・・・ドレイン 10・・・TFT 11・・・ゲート絶縁膜 12・・・層間絶縁膜 13・・・液晶容量 14・・・容量線 15・・・誘電体膜 1 ... Pixel additional capacitance 2 ... Lower electrode 3 ... Upper electrode 4 ... Pixel electrode 5a, 5b ... Source line 6a, 6b ... Gate line 7 ... Source 8 ... Gate 9 ... Drain 10 ... TFT 11 ... Gate insulating film 12 ... Interlayer insulating film 13 ... Liquid crystal capacitance 14 ... Capacitance line 15 ... Dielectric film

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 アクティブマトリクス方式液晶表示装置
において、画素電極を駆動する薄膜トランジスタのドレ
イン電極に接続された画素付加容量が基板に対して垂直
方向に形成された溝内に形成されていることを特徴とす
る液晶表示装置。
1. In an active matrix type liquid crystal display device, a pixel additional capacitance connected to a drain electrode of a thin film transistor driving a pixel electrode is formed in a groove formed in a direction vertical to a substrate. Liquid crystal display device.
JP22166792A 1992-08-20 1992-08-20 Liquid crystal display device Pending JPH0667207A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22166792A JPH0667207A (en) 1992-08-20 1992-08-20 Liquid crystal display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22166792A JPH0667207A (en) 1992-08-20 1992-08-20 Liquid crystal display device

Publications (1)

Publication Number Publication Date
JPH0667207A true JPH0667207A (en) 1994-03-11

Family

ID=16770383

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22166792A Pending JPH0667207A (en) 1992-08-20 1992-08-20 Liquid crystal display device

Country Status (1)

Country Link
JP (1) JPH0667207A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999028784A1 (en) * 1997-11-28 1999-06-10 Matsushita Electric Industrial Co., Ltd. Reflection-type display device and image device using reflection-type display device
US5971782A (en) * 1996-08-26 1999-10-26 Yazaki Corporation Connector with a steering angle sensor and column structure using the same
JP2000081636A (en) * 1998-09-03 2000-03-21 Seiko Epson Corp Electrooptical device and its manufacture and electronic instrument
KR20010048437A (en) * 1999-11-26 2001-06-15 박종섭 Silicon Light Valve
NL1012470C2 (en) * 1998-07-24 2005-02-07 Nec Lcd Technologies Liquid crystal display device of the active matrix type.
KR100487392B1 (en) * 1999-07-02 2005-05-03 샤프 가부시키가이샤 Liquid crystal display device and method for fabricating the same
JP2007311741A (en) * 2006-05-15 2007-11-29 Lg Philips Lcd Co Ltd Thin film transistor and its manufacturing method as well as display substrate
JP2011061212A (en) * 2006-05-15 2011-03-24 Lg Display Co Ltd Thin film transistor, method of manufacturing the same, and display substrate
CN105529334A (en) * 2014-10-16 2016-04-27 三星显示有限公司 Thin film transistor array substrate, method of manufacturing the same, and organic light-emitting diode (oled) display including the same
JP2021067766A (en) * 2019-10-21 2021-04-30 セイコーエプソン株式会社 Electro-optic device and electronic apparatus

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5971782A (en) * 1996-08-26 1999-10-26 Yazaki Corporation Connector with a steering angle sensor and column structure using the same
WO1999028784A1 (en) * 1997-11-28 1999-06-10 Matsushita Electric Industrial Co., Ltd. Reflection-type display device and image device using reflection-type display device
NL1012470C2 (en) * 1998-07-24 2005-02-07 Nec Lcd Technologies Liquid crystal display device of the active matrix type.
JP2000081636A (en) * 1998-09-03 2000-03-21 Seiko Epson Corp Electrooptical device and its manufacture and electronic instrument
KR100487392B1 (en) * 1999-07-02 2005-05-03 샤프 가부시키가이샤 Liquid crystal display device and method for fabricating the same
KR20010048437A (en) * 1999-11-26 2001-06-15 박종섭 Silicon Light Valve
JP2007311741A (en) * 2006-05-15 2007-11-29 Lg Philips Lcd Co Ltd Thin film transistor and its manufacturing method as well as display substrate
JP2011061212A (en) * 2006-05-15 2011-03-24 Lg Display Co Ltd Thin film transistor, method of manufacturing the same, and display substrate
JP4713433B2 (en) * 2006-05-15 2011-06-29 エルジー ディスプレイ カンパニー リミテッド Thin film transistor
US8927995B2 (en) 2006-05-15 2015-01-06 Lg Display Co., Ltd. Thin film transistor with anti-diffusion area that prevents metal atoms and/or ions from source/drain electrodes from shortening the channel length and display substrate having the thin film transistor
CN105529334A (en) * 2014-10-16 2016-04-27 三星显示有限公司 Thin film transistor array substrate, method of manufacturing the same, and organic light-emitting diode (oled) display including the same
CN105529334B (en) * 2014-10-16 2021-03-16 三星显示有限公司 Thin film transistor array substrate, method of manufacturing the same, and organic light emitting display device
JP2021067766A (en) * 2019-10-21 2021-04-30 セイコーエプソン株式会社 Electro-optic device and electronic apparatus
US11598997B2 (en) 2019-10-21 2023-03-07 Seiko Epson Corporation Electro-optical device and electronic apparatus

Similar Documents

Publication Publication Date Title
JP2622183B2 (en) Active matrix display device
US5532180A (en) Method of fabricating a TFT with reduced channel length
US5060036A (en) Thin film transistor of active matrix liquid crystal display
US6262438B1 (en) Active matrix type display circuit and method of manufacturing the same
US20050158926A1 (en) Methods of forming thin-film transistor display devices
KR0141774B1 (en) Liquid crystal display device and its manufacturing method
US7008830B2 (en) Poly-crystalline thin film transistor and fabrication method thereof
JP3454340B2 (en) Liquid crystal display
KR100604762B1 (en) Liquid crystal panel and manufacturing method thereof
US6894736B2 (en) Liquid crystal display having a polymer or spin-on glass as a capacitor dielectric and a method of manufacture
JPH0667207A (en) Liquid crystal display device
JPH10177163A (en) Liquid crystal display panel and its manufacture
JP3657371B2 (en) Active matrix display device
JP3043870B2 (en) Liquid crystal display
JP3139154B2 (en) Liquid crystal device and method of manufacturing the same
JP3463007B2 (en) Liquid crystal display
JPH10133233A (en) Active matrix type display circuit and its manufacture
JPH06175154A (en) Production of liquid crystal display device
JP3286843B2 (en) LCD panel
JP2898509B2 (en) Active matrix substrate and manufacturing method thereof
US6757033B2 (en) Liquid crystal display device and method for manufacturing the same
JP3092570B2 (en) Liquid crystal display panel manufacturing method
JP3647384B2 (en) Thin film semiconductor device, manufacturing method thereof, and display panel
JPH10135467A (en) Thin film transistor and its manufacture
JP2653572B2 (en) Active matrix substrate manufacturing method