JPH066493B2 - Method for producing low OH glass - Google Patents

Method for producing low OH glass

Info

Publication number
JPH066493B2
JPH066493B2 JP4273085A JP4273085A JPH066493B2 JP H066493 B2 JPH066493 B2 JP H066493B2 JP 4273085 A JP4273085 A JP 4273085A JP 4273085 A JP4273085 A JP 4273085A JP H066493 B2 JPH066493 B2 JP H066493B2
Authority
JP
Japan
Prior art keywords
glass
gel
chlorine
bromine
iodine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4273085A
Other languages
Japanese (ja)
Other versions
JPS61201627A (en
Inventor
伊知朗 ▲吉▼田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP4273085A priority Critical patent/JPH066493B2/en
Publication of JPS61201627A publication Critical patent/JPS61201627A/en
Publication of JPH066493B2 publication Critical patent/JPH066493B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/12Other methods of shaping glass by liquid-phase reaction processes
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/016Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD] by a liquid phase reaction process, e.g. through a gel phase
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C1/00Ingredients generally applicable to manufacture of glasses, glazes, or vitreous enamels
    • C03C1/006Ingredients generally applicable to manufacture of glasses, glazes, or vitreous enamels to produce glass through wet route
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/06Glass compositions containing silica with more than 90% silica by weight, e.g. quartz
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/20Doped silica-based glasses doped with non-metals other than boron or fluorine
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/80Non-oxide glasses or glass-type compositions
    • C03B2201/84Halide glasses other than fluoride glasses, i.e. Cl, Br or I glasses, e.g. AgCl-AgBr "glass"
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2201/00Glass compositions
    • C03C2201/06Doped silica-based glasses
    • C03C2201/20Doped silica-based glasses containing non-metals other than boron or halide
    • C03C2201/23Doped silica-based glasses containing non-metals other than boron or halide containing hydroxyl groups
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2203/00Production processes
    • C03C2203/20Wet processes, e.g. sol-gel process
    • C03C2203/26Wet processes, e.g. sol-gel process using alkoxides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Dispersion Chemistry (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)
  • Glass Melting And Manufacturing (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はガラスの製造方法に関するものであり、詳しく
はSiのアルコキシドを原料の1つとしてゾルゲル法によ
りガラスを製造する方法に関する。
TECHNICAL FIELD The present invention relates to a method for producing glass, and more particularly to a method for producing glass by a sol-gel method using Si alkoxide as one of the raw materials.

〔従来の技術〕 現在、光ファイバーのプリフオームを作製する方法とし
ては、VAD法をはじめとする、SiCl4等を火炎中に等しガ
ラス微粒子をターゲット上に堆積させ、得られたガラス
多孔質体を焼結しガラス塊を得る、という方法が主流に
なつている。これは高純度の多孔質ガラスを比較的安価
に得られる優れた方法である。しかしこの方法は気相反
応であるため、添加物として使える物質がガス化できる
ものに限られる、という欠点があつた。
[Prior Art] Currently, as a method for producing an optical fiber preform, a glass porous body obtained by depositing glass fine particles on a target by subjecting SiCl 4 or the like in a flame to a VAD method or the like is used. The method of sintering to obtain a glass gob has become the mainstream. This is an excellent method for obtaining highly pure porous glass at a relatively low cost. However, since this method is a gas phase reaction, there is a drawback in that substances usable as additives are limited to those which can be gasified.

そこで、近年、この欠点を補う方法として、Siを主体と
した金属アルコキシドを加水分解し、シリカゲルあるい
は添加元素を含むシリカゲルを得、該シリカゲルを乾燥
させた後無孔化処理等を行い透明ガラスを得る方法が盛
んに研究されている。
Therefore, in recent years, as a method of compensating for this drawback, a metal alkoxide mainly composed of Si is hydrolyzed to obtain silica gel or silica gel containing an additive element, and the silica gel is dried and then subjected to a non-porous treatment to obtain a transparent glass. The way to get is being actively researched.

一例を挙げれば、Si(OCH3)4等のSiのアルコキシドを、
エタノールと充分に撹拌混合した後、水を加え更に撹拌
して加水分解する。この時水にはアンモニア等pH調整剤
を加えておくことが好ましい。加水分解反応の開始と共
に粒子の析出が始まり、該反応溶液を内面にシリコーン
を塗つた容器に移し、乾燥時間を長くできるようにアル
ミ箔等で蓋をして例えば60℃程度の恒温槽中に保つこ
とにより、ゾル液のゲル化およびゲルの乾燥を行う。乾
燥するに従つてゲルは収縮し、通常数日を減るとほぼ乾
燥が終了する。このようにして得たゲルを取り出し、例
えば酸素を含むHe雰囲気中にて加熱する等により無孔化
処理を行い透明ガラス化する方法が既に知られている。
As an example, an alkoxide of Si such as Si (OCH 3 ) 4 is
After thoroughly stirring and mixing with ethanol, water is added and further stirred to hydrolyze. At this time, it is preferable to add a pH adjusting agent such as ammonia to the water. Precipitation of particles starts with the start of the hydrolysis reaction, the reaction solution is transferred to a container coated with silicone on the inner surface, and a lid is covered with an aluminum foil or the like so that the drying time can be extended, and the reaction solution is placed in a constant temperature bath at about 60 ° C. By keeping it, the sol liquid is gelated and the gel is dried. The gel shrinks as it dries, and usually finishes drying in less than a few days. There is already known a method in which the gel thus obtained is taken out and subjected to a non-porous treatment by heating in a He atmosphere containing oxygen, for example, to obtain a transparent glass.

また、本発明者らにより、前記ゾル液に、コロイドにな
る、あるいはならない大きさの粉末を混合することも提
案されており、(特願昭59−192581号及び同6
0−13538号明細書)、これによれば、より大型の
易焼結なガラスを容易に得ることができる。
In addition, the inventors of the present invention have proposed that the sol liquid is mixed with powder having a size that does or does not become a colloid (Japanese Patent Application Nos. 59-192581 and 6-62).
According to this specification, it is possible to easily obtain a larger and easily sintered glass.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

しかしながら上記の方法には、焼結時にガラスの光学特
性に悪影響を与える OHが抜けにくい、という欠点があつた。そのためOHの赤
外吸収が大きく、また、高温に加熱すると発泡してしま
うこともあつた。
However, the above method has a drawback in that it is difficult to remove OH which adversely affects the optical characteristics of glass during sintering. Therefore, the infrared absorption of OH is large, and when heated to a high temperature, it may foam.

本発明は、従来法のこのような問題点を解消すること、
すなわち、OHの少ないガラスを得る方法を提供すること
を目的とするものである。
The present invention solves such problems of the conventional method,
That is, it is an object of the present invention to provide a method for obtaining a glass containing less OH.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は出発原料の少なくとも1つを硅素のアルコキシ
ドとし、ゾルゲル法によりガラスを製造する方法におい
て、沃素、臭素及び塩素の化合物のうちの1以上をゲル
に含ませることを特徴とする低OHガラスの製造方法であ
つて、これにより上記の目的を達成するものである。
The present invention is a low OH glass characterized in that at least one of the starting materials is a silicon alkoxide, and in the method of producing glass by the sol-gel method, the gel contains at least one of iodine, bromine and chlorine compounds. And a method for producing the above-mentioned object.

本発明の特に好ましい実施態様としては該化合物が、ア
ルカリ金属の沃化物または臭化物である上記方法を挙げ
ることができる。
As a particularly preferred embodiment of the present invention, the above method in which the compound is an alkali metal iodide or bromide can be mentioned.

本発明はゲル中に沃素、臭素又は塩素の化合物を含ませ
ておき、これらの化合物の脱水作用を利用して低OH化す
るものである。
In the present invention, a compound of iodine, bromine or chlorine is contained in the gel, and the OH is lowered by utilizing the dehydrating action of these compounds.

本発明に用いることのできる沃素、臭素又は塩素の化合
物としては、例えばアルカリ金属の沃化物、臭化物又は
塩化物、アルミニウム・リン、アンチモン、鉛の妖化
物、臭化物又は塩化物等が挙げられるが、これ等に限定
されるものではなく、その他の沃素、臭素又は塩素の化
合物でもよい。特に好ましい化合物としては、アルカリ
金属の沃化物、臭化物を挙げることができ、またアルミ
ニウム・リン、アンチモン、鉛の沃化物、臭化物も好ま
しい。該化合物は1種類を用いてもよいし、また2種以
上例えばKIとKBr等を組合せて用いてもよい。
Examples of iodine, bromine or chlorine compounds that can be used in the present invention include alkali metal iodides, bromides or chlorides, aluminum phosphorus, antimony, lead arsenide, bromides or chlorides, and the like. The compounds are not limited to these, and other iodine, bromine or chlorine compounds may be used. Particularly preferable compounds include iodides and bromides of alkali metals, and aluminum iodide, antimony, lead iodides and bromides are also preferable. The compound may be used alone or in combination of two or more kinds such as KI and KBr.

本発明の方法は、少なくとも原料の1つを硅素のアルコ
キシドとして前記したように加水分解してシリカゲルあ
るいは添加元素を含むシリカゾルを得、その後ゾル液を
ゲル化する方法において、ゲルの段階で上記した沃素、
臭素又は塩素の化合物をゲル中に含ませておく。具体的
には例えば原料の水、アルコール中に溶解させる。ゲル
化後に分散媒を該化合物を含む液に置き換える。ゲル乾
燥後に該化合物を含む液をしみこませる。などがある
が、他の方法を用いても良い。
According to the method of the present invention, at least one of the raw materials is hydrolyzed as an alkoxide of silicon as described above to obtain silica gel or silica sol containing an additional element, and then the sol solution is gelled. iodine,
A compound of bromine or chlorine is included in the gel. Specifically, for example, the starting material is dissolved in water or alcohol. After gelation, the dispersion medium is replaced with a liquid containing the compound. After the gel is dried, the liquid containing the compound is soaked. However, other methods may be used.

このようにゲルに含まれた該化合物中の沃素、臭素又は
塩素はゲル中のOH基のHと結合し、HI・HBr、HCl等となり
焼結の初期に飛散し、これにより脱水されるものと思わ
れる。
Thus, iodine, bromine, or chlorine in the compound contained in the gel is bound to H of the OH group in the gel to become HI / HBr, HCl, etc., which scatters at the initial stage of sintering and is dehydrated by this. I think that the.

弗化物に比べると沃化物、臭化物、塩化物は、適当に分
解しやすく、沃素、臭素、塩素が、ガラス中に残りにく
く有利であると考えられる。
It is considered that iodide, bromide, and chloride are more likely to be appropriately decomposed than fluoride, and iodine, bromine, and chlorine are less likely to remain in the glass, which is advantageous.

特に沃化物、臭化物は有利と思われる。Especially, iodide and bromide seem to be advantageous.

ゲルのように気孔径の小さい多孔質体の脱水に際して
は、従来のように、焼結時の雰囲気に脱水性のものを用
いるだけでは、脱水性の気体がゲル中になかなか浸透せ
ず十分な脱水を行うことは難かしい。本発明の方法によ
れば、ゲル内部に脱水性の物質が存在するので極めて効
果的に脱水できる。
When dehydrating a porous body having a small pore size such as a gel, it is sufficient to use a dehydrating gas in the atmosphere during sintering as in the conventional case because the dehydrating gas does not easily penetrate into the gel. It is difficult to dehydrate. According to the method of the present invention, a dehydrating substance is present inside the gel, so that the gel can be dehydrated very effectively.

本発明方法において、上記の沃素、臭素又は塩素の化合
物の添加量はどんな少量でもそれに応じた効果を得るこ
とができるため、特に限定されるところはなく、要求さ
れる脱水の程度、焼結方法等により最適な量を選択すれ
ばよい。
In the method of the present invention, the amount of the above-mentioned iodine, bromine, or chlorine compound added is not particularly limited, as the effect can be obtained even if the amount is small, and there is no particular limitation. The optimum amount may be selected according to the above.

本発明の方法は単独に用いても効果があるが、他の脱水
方法及び例えば塩素雰囲気中で加熱する方法等と併用す
れば、さらに大きな効果が得られる。
The method of the present invention is effective when used alone, but when used in combination with other dehydration methods such as heating in a chlorine atmosphere, a greater effect can be obtained.

〔実施例〕〔Example〕

以下、実施例により、本発明の方法を具体的に説明す
る。
Hereinafter, the method of the present invention will be specifically described with reference to Examples.

実施例1 シリコンテトラメトキシド9.5gと、エタノール1
1.5gをマグネチツクスターラで混合し、その中に1
3%アンモニア水3滴を含む水9.0gに沃化カリウム
0.53gを溶かしたものを加え、さらに混合した。こ
れを内面にシリコーンを塗つた径12mmの試験管に8分
目に入れた。この試験管にアルミ箔で軽くフタをして、
温度60℃の恒温槽内に置いた。1週間後にはゲルは乾
燥していた。
Example 1 9.5 g of silicon tetramethoxide and ethanol 1
Mix 1.5g with magnetic stirrer and add 1 to it.
A solution prepared by dissolving 0.53 g of potassium iodide in 9.0 g of water containing 3 drops of 3% aqueous ammonia was added and further mixed. This was put into a test tube having a diameter of 12 mm, the inner surface of which was coated with silicone, at the 8th minute. Lightly cover this test tube with aluminum foil,
It was placed in a constant temperature bath at a temperature of 60 ° C. The gel was dry after one week.

これを、1%ずつの酸素と塩素を含むヘリウム雰囲気中
にて温度1300℃で焼結し、透明ガラスを得た。この
ガラスの赤外線透過率スペクトルを測定したところ、第
1図のようであり、OHの吸収は極めて少なかつた。
This was sintered at a temperature of 1300 ° C. in a helium atmosphere containing 1% each of oxygen and chlorine to obtain a transparent glass. When the infrared transmittance spectrum of this glass was measured, it was as shown in FIG. 1, and the absorption of OH was extremely small.

実施例2 シリコンテトラメトキシド9.5gと、エタノール1
1.5gをマグネチツクスターラで混合し、その中に1
3%アンモニア水3滴を含む水9.0gに臭化カリウム
0.53gを溶かしたものを加え、さらに混合した。こ
れを内面にシリコーンを塗つた径12mmの試験管に8分
目入れた。この試験管にアルミ箔で軽くフタをして、温
度60℃の恒温槽内に置いた。1週間後にはゲルは乾燥
していた。
Example 2 9.5 g of silicon tetramethoxide and ethanol 1
Mix 1.5g with magnetic stirrer and add 1 to it.
A solution prepared by dissolving 0.53 g of potassium bromide in 9.0 g of water containing 3 drops of 3% aqueous ammonia was added and further mixed. This was put into a test tube having a diameter of 12 mm, the inner surface of which was coated with silicone for 8 minutes. The test tube was lightly covered with aluminum foil and placed in a constant temperature bath at a temperature of 60 ° C. The gel was dry after one week.

これを、1%ずつの酸素と塩素を含むヘリウム雰囲気中
1300℃で焼結し透明ガラスを得た。このガラスの赤
外線透過率スペクトルを測定したところ、第2図のよう
であり、OHの吸収は極めて少なかつた。
This was sintered at 1300 ° C. in a helium atmosphere containing 1% each of oxygen and chlorine to obtain transparent glass. When the infrared transmittance spectrum of this glass was measured, it was as shown in FIG. 2, and the absorption of OH was extremely small.

比較例1 シリコンテトラメトキシド9.5gと、エタノール1
1.5gをマグネシウムスターラで混合し、その中に1
3%アンモニア水3滴を含む水9.0gを加え、さらに
混合した。これを内面にシリコーンを塗つた径12mmの
試験管に8分目に入れた。この試験管にアルミ箔で軽く
フタをして、60℃恒温槽内に置いた。1週間後にはゲ
ルは乾燥していた。
Comparative Example 1 Silicon tetramethoxide 9.5 g and ethanol 1
Mix 1.5g with magnesium stirrer, and add 1 to it.
9.0 g of water containing 3 drops of 3% aqueous ammonia was added and further mixed. This was put into a test tube having a diameter of 12 mm, the inner surface of which was coated with silicone, at the 8th minute. The test tube was lightly covered with aluminum foil and placed in a constant temperature bath at 60 ° C. The gel was dry after one week.

これを、1%ずつの酸素と塩素を含むヘリウム雰囲気中
1300℃で焼結し透明ガラスを得た。このガラスの赤
外透過率スペクトルを測定したところ、第3図のようで
あり、OHの吸収は極めて多かつた。
This was sintered at 1300 ° C. in a helium atmosphere containing 1% each of oxygen and chlorine to obtain transparent glass. When the infrared transmittance spectrum of this glass was measured, it was as shown in FIG. 3, and the absorption of OH was extremely large.

実施例3 シリコンテトラメトキシド9.5gと、エタノール1
1.5gをマグネチツクスターラで混合し、その中に1
3%アンモニア水3滴を含む水9.0gに臭化セシウム
0.66gを溶かしたものを加え、さらに混合した。こ
れを内面にシリコーンを塗つた径12mmの試験管に8分
目入れた。この試験管にアルミ箔で軽くフタをして、6
0℃恒温槽内に置いた。1週間後にゲルは乾燥してい
た。
Example 3 9.5 g of silicon tetramethoxide and ethanol 1
Mix 1.5g with magnetic stirrer and add 1 to it.
A solution prepared by dissolving 0.66 g of cesium bromide in 9.0 g of water containing 3 drops of 3% ammonia water was added and further mixed. This was put into a test tube having a diameter of 12 mm, the inner surface of which was coated with silicone for 8 minutes. Lightly cover the test tube with aluminum foil, and
It was placed in a 0 ° C. constant temperature bath. The gel was dry after one week.

これを、1%ずつの酸素と塩素を含むHe雰囲気中130
0℃で焼結し透明ガラスを得た。このガラスの赤外透過
率スペクトルを測定したところ、OHの吸収は少なかつ
た。
130 in a He atmosphere containing 1% oxygen and chlorine.
Sintering was performed at 0 ° C. to obtain transparent glass. When the infrared transmittance spectrum of this glass was measured, the absorption of OH was small.

実施例4 シリコンテトラメトキシド9.5gと、エタノール1
1.5gをマグネチツクスターラで混合し、その中に1
3%アンモニア水3滴を含む水9.0gに沃化セシウム
0.81gを溶かしたものを加え、さらに混合した。こ
れを内面にシリコーンを塗つた径12mmの試験管に8分
目に入れた。この試験官にアルミ箔で軽くフタをして、
60℃恒温槽内に置いた。1週間後にはゲルは乾燥して
いた。
Example 4 9.5 g of silicon tetramethoxide and ethanol 1
Mix 1.5g with magnetic stirrer and add 1 to it.
A solution prepared by dissolving 0.81 g of cesium iodide in 9.0 g of water containing 3 drops of 3% ammonia water was added and further mixed. This was put into a test tube having a diameter of 12 mm, the inner surface of which was coated with silicone, at the 8th minute. Lightly cover this examiner with aluminum foil,
It was placed in a constant temperature bath at 60 ° C. The gel was dry after one week.

これを、1%ずつの酸素と塩素を含むHe雰囲気中130
0℃で焼結し透明ガラスを得た。
130 in a He atmosphere containing 1% oxygen and chlorine.
Sintering was performed at 0 ° C. to obtain transparent glass.

このガラスの赤外透過率スペクトルを測定した。とこ
ろ、OHの吸収は少なかつた。
The infrared transmittance spectrum of this glass was measured. However, the absorption of OH was low.

参考例1 実施例1、及び実施例2と同じゲルを空気中500℃で
仮焼した後、He雰囲気中で1100℃に加熱したところ、臭
化カリウムを含まないゲルは発泡したが、臭化カリウム
を含むゲルは発泡しなかつた。
Reference Example 1 When the same gels as in Examples 1 and 2 were calcined in air at 500 ° C. and then heated to 1100 ° C. in He atmosphere, the gel containing no potassium bromide foamed, but brominated. The gel containing potassium did not foam.

なお実施例には挙げていないが、塩素の化合物を用いて
も同様に効果を得られる。
Although not mentioned in the examples, the same effect can be obtained by using a chlorine compound.

〔発明の効果〕〔The invention's effect〕

本発明によれば、ゾルゲル法により低OHのガラスを得る
ことのできる優れた効果を有する。
According to the present invention, there is an excellent effect that a glass having a low OH can be obtained by the sol-gel method.

【図面の簡単な説明】[Brief description of drawings]

第1図は沃化カリウムを含むシリカゲルを焼結して得た
ガラスの赤外線吸収スペクトルを示すグラフ、 第2図は臭化カリウムを含むシリカゲルを焼結して得た
ガラスの赤外線吸収スペクトルを示すグラフ、 第3図は純粋なシリカゲルを焼結して得たガラスの赤外
線吸収スペクトルを示すグラフであつて、いずれも横軸
は波数(cm-1)、縦軸は透過率(T%)である。
FIG. 1 is a graph showing an infrared absorption spectrum of glass obtained by sintering silica gel containing potassium iodide, and FIG. 2 is an infrared absorption spectrum of glass obtained by sintering silica gel containing potassium bromide. Fig. 3 is a graph showing the infrared absorption spectrum of glass obtained by sintering pure silica gel, in which the horizontal axis is the wave number (cm -1 ) and the vertical axis is the transmittance (T%). is there.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】出発原料の少なくとも1つを硅素のアルコ
キシドとし、ゾルゲル法によりガラスを製造する方法に
おいて、沃素、臭素及び塩素の化合物のうちの1以上を
ゲルに含ませることを特徴とする低OHガラスの製造方
法。
1. A method for producing glass by a sol-gel method, wherein at least one of the starting materials is a silicon alkoxide, and the gel contains at least one of iodine, bromine and chlorine compounds. OH glass manufacturing method.
【請求項2】沃素、臭素または塩素の化合物が、アルカ
リ金属の沃化物または臭化物である特許請求の範囲第
(1)項に記載される低OHガラスの製造方法。
2. The compound of iodine, bromine or chlorine is an alkali metal iodide or bromide.
The method for producing a low OH glass according to item (1).
JP4273085A 1985-03-06 1985-03-06 Method for producing low OH glass Expired - Lifetime JPH066493B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4273085A JPH066493B2 (en) 1985-03-06 1985-03-06 Method for producing low OH glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4273085A JPH066493B2 (en) 1985-03-06 1985-03-06 Method for producing low OH glass

Publications (2)

Publication Number Publication Date
JPS61201627A JPS61201627A (en) 1986-09-06
JPH066493B2 true JPH066493B2 (en) 1994-01-26

Family

ID=12644166

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4273085A Expired - Lifetime JPH066493B2 (en) 1985-03-06 1985-03-06 Method for producing low OH glass

Country Status (1)

Country Link
JP (1) JPH066493B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6360564B1 (en) * 2000-01-20 2002-03-26 Corning Incorporated Sol-gel method of preparing powder for use in forming glass
EP2174916B9 (en) * 2008-10-09 2017-11-22 Université Des Sciences Et Technologies De Lille Highly pure silica monoliths and method of synthesizing same

Also Published As

Publication number Publication date
JPS61201627A (en) 1986-09-06

Similar Documents

Publication Publication Date Title
WO1984002519A1 (en) Process for producing quartz glass
JPH0118007B2 (en)
JPH066493B2 (en) Method for producing low OH glass
JPS6027615A (en) Production of optical glass
JPH0466811B2 (en)
JPS6296339A (en) Production of optical fiber preform
JPH0549610B2 (en)
JPS61256928A (en) Production of glass
JPS63151623A (en) Production of organic substance-containing silica bulk material
JPS63215526A (en) Production of silica glass
JPS62246835A (en) Production of base material for quartz glass optical fiber
JPS61186237A (en) Production of parent material for optical fiber of quartz glass
JPS6197137A (en) Preparation of optical glass body
JPH0324416B2 (en)
JPS6317766B2 (en)
JPH02188431A (en) Production of quartz glass
JPS58167436A (en) Production of optical glass
JPS6054929A (en) Production of quartz glass
JPH08183610A (en) Production of colored spherical silica
JPS62197149A (en) Porous heterogenous catalyst and its preparation
JPS62187132A (en) Production of glass for optical fiber
JPS58223623A (en) Preparation of porous material
JPS63307139A (en) Cerium-conatining quartz type laser glass and production thereof
JPS63100032A (en) Glass tube and its production
JPH0328133A (en) Production of colored quartz glass