JPH0663365A - Method and device for electrodialysis - Google Patents

Method and device for electrodialysis

Info

Publication number
JPH0663365A
JPH0663365A JP4223999A JP22399992A JPH0663365A JP H0663365 A JPH0663365 A JP H0663365A JP 4223999 A JP4223999 A JP 4223999A JP 22399992 A JP22399992 A JP 22399992A JP H0663365 A JPH0663365 A JP H0663365A
Authority
JP
Japan
Prior art keywords
chamber
acid
cation
exchange membrane
salt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4223999A
Other languages
Japanese (ja)
Inventor
Takao Matsui
多嘉夫 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP4223999A priority Critical patent/JPH0663365A/en
Publication of JPH0663365A publication Critical patent/JPH0663365A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PURPOSE:To efficiently produce free acid from org. acid salt by providing a substitution chamber surrounded by a cation-exchange membrane and a cation- exchange membrane between an anode compartment and a cathode compartment and/or a desalting chamber enclosed by an anion-exchange membrane and a cation-exchange membrane to constitute an electrodialytic cell. CONSTITUTION:At least one substitution chamber 5 surrounded by a cation- exchange membrane 1 and a cation-exchange membrane 2 is provided between an anode compartment 7 and a cathode compartment 8, and the concentration chamber 6 and/or desalting chamber 4 enclosed by an anion-exchange membrane 3 and a cation-exchange membrane and adjacent to the chamber 5 are furnished to constitute an electrodialysis cell. Consequently, a free acid (e.g. lactic acid) is efficiently produced from org. salts of a weak or strong acid (e.g. sodium lactate), and further a cation constituting a salt (e.g. sodium benzenesulfonate) is replaced with an optional other cationic acid (e.g. benzenesulfonic acid).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は電気透析方法に関するも
のである。具体的には電気透析を用いた有機塩類、無機
塩類の陽イオン交換に関するものである。更に具体的に
は、有機塩類や無機塩類の陽イオンを水素イオンに置換
することによって遊離の酸を製造する方法、あるいは塩
を構成する陽イオンを他の陽イオンに置換する方法に関
する。
FIELD OF THE INVENTION The present invention relates to an electrodialysis method. Specifically, it relates to cation exchange of organic salts and inorganic salts using electrodialysis. More specifically, it relates to a method for producing a free acid by substituting hydrogen ion for a cation of an organic salt or an inorganic salt, or a method for substituting a cation constituting a salt with another cation.

【0002】[0002]

【従来の技術】従来、電気透析を用いて陽イオンの交換
を行なう方法として、例えば特公昭30−5613号公
報や、特公昭62−56953号公報には、陽極室と陰
極室の間に複数の陽イオン交換膜を配置し、膜によって
仕切られる室を交互に強酸室及び塩室とし、塩室中には
高分子酸の塩や有機酸の塩を、また、強酸室には鉱酸水
溶液を供給して直流電流を通電することで遊離の高分子
酸や有機酸を得る方法が提出されている。これらの方法
は直流の通電によって、塩室の陽イオンを塩室の陰極側
の陽イオン交換膜から排出し、代わりに強酸室の水素イ
オンを塩室の陽極側の陽イオン交換膜から取り入れるこ
とで塩室の有機酸塩を遊離の酸に変換する方法である。
これらはいずれも陽イオン交換膜が金属イオンよりも水
素イオンを透過しやすいという特性を応用した方法であ
る。
2. Description of the Related Art Conventionally, as a method for exchanging cations by using electrodialysis, for example, Japanese Patent Publication No. 30-5613 and Japanese Patent Publication No. 62-56953 have a plurality of methods between an anode chamber and a cathode chamber. Cation exchange membranes are arranged, and the chambers partitioned by the membranes are alternately set as a strong acid chamber and a salt chamber, and a salt of a high-molecular acid or an organic acid is placed in the salt chamber, and an aqueous solution of mineral acid is placed in the strong acid chamber. A method for obtaining a free polymeric acid or an organic acid by supplying and supplying a direct current is proposed. In these methods, the cations in the salt chamber are discharged from the cation exchange membrane on the cathode side of the salt chamber and the hydrogen ions in the strong acid chamber are taken in from the cation exchange membrane on the anode side of the salt chamber by applying a direct current. Is a method of converting the organic acid salt in the salt chamber into a free acid.
Each of these is a method that applies the property that the cation exchange membrane is more permeable to hydrogen ions than to metal ions.

【0003】[0003]

【発明が解決しようとする課題】しかるにこれら公知の
方法では、塩室から一旦排出された金属イオンは強酸室
に含まれることになるため、運転を継続するに従い強酸
室の金属イオン濃度が上昇する。従って、鉱酸溶液を適
度に更新しなければ鉱酸溶液中の金属イオンが再度塩室
に透過する現象が生じて生成する有機酸の純度が低下す
るという問題点がある。
However, in these known methods, since the metal ions once discharged from the salt chamber are contained in the strong acid chamber, the metal ion concentration in the strong acid chamber increases as the operation continues. . Therefore, unless the mineral acid solution is appropriately renewed, there is a problem that the metal ions in the mineral acid solution permeate into the salt chamber again and the purity of the generated organic acid decreases.

【0004】またこれらの方法は弱酸性の高分子酸や有
機酸の製造には有効な方法であるが、有機酸が強酸性の
場合には利用されない。なぜならば強酸性有機酸の場
合、塩室に遊離酸が生成するに伴い水素イオン濃度が大
きくなるため、塩室から陰極側に排出される全陽イオン
に占める水素イオンの割合が高くなって効率が著しく悪
くなるのである。したがって高純度の遊離酸を得るには
水素イオンのみを塩室に供給する目的で鉱酸の更新を繰
り返す必要があり、経済性が悪いのである。
Although these methods are effective for producing weakly acidic high molecular weight acids and organic acids, they are not used when the organic acids are strongly acidic. This is because in the case of a strongly acidic organic acid, the hydrogen ion concentration increases as free acid is generated in the salt chamber, so the ratio of hydrogen ions to the total cations discharged from the salt chamber to the cathode side becomes high and the efficiency increases. Is significantly worse. Therefore, in order to obtain a high-purity free acid, it is necessary to repeat the renewal of the mineral acid for the purpose of supplying only hydrogen ions to the salt chamber, which is not economical.

【0005】本発明は上記の方法における問題点を解決
し、弱酸性、強酸性に関わらず、有機酸塩からの遊離酸
の製造を効率良く実現する方法を提供するものである。
さらに遊離酸の製造のみならず、塩を構成する陽イオン
を任意の他の陽イオン酸に置換する方法をも提供するも
のである。
The present invention solves the problems in the above method and provides a method for efficiently producing a free acid from an organic acid salt regardless of weak acidity or strong acidity.
Further, the present invention not only provides a method for producing a free acid but also a method for substituting a cation constituting a salt with any other cationic acid.

【0006】[0006]

【課題を解決するための手段】本発明者は、電気透析に
よる陽イオンの交換方法について鋭意研究を重ねた結
果、陽極室と陰極室を有し、陽イオン交換膜と陽イオン
交換膜に挟まれた置換室を少なくとも1室以上備え、少
なくともその片側に位置する陰イオン交換膜と陽イオン
交換膜に挟まれた濃縮室及び/又は脱塩室を備えた電気
透析槽からなる電気透析装置が上記の目的を達成し得る
ことを見いだし、本発明をなすに至った。
Means for Solving the Problems As a result of intensive studies on a method of exchanging cations by electrodialysis, the present inventor has an anode chamber and a cathode chamber, and a cation exchange membrane and a cation exchange membrane sandwich it. An electrodialysis apparatus comprising at least one replacement chamber and an electrodialysis tank having a concentration chamber and / or a desalination chamber sandwiched between at least one side of the anion exchange membrane and the cation exchange membrane. The inventors have found that the above objects can be achieved, and have completed the present invention.

【0007】即ち、本発明の装置の中間室に塩の水溶液
を、脱塩室に強酸水溶液を供給し、直流電流を通電する
ことで中間室の塩から遊離の酸を得ることができるので
ある。又中間室に陰イオンAと陽イオンBとからなる塩
の水溶液を、脱塩室に陰イオンCと陽イオンDからなる
塩の水溶液を供給し、直流電流を通電することで中間室
の塩を構成する陽イオンBを陽イオンDに置換して陰イ
オンAと陽イオンDとからなる塩を生成せしめることが
できるのである。次に本発明の方法を図面に基づいて説
明する。但し、図面は本発明の方法により使用される装
置の単なる1例を示しているもので、これによって本発
明はなんら制限を受けるものではない。
That is, a free acid can be obtained from the salt in the intermediate chamber by supplying a salt aqueous solution to the intermediate chamber of the apparatus of the present invention and a strong acid aqueous solution to the desalting chamber and applying a direct current. . Further, an aqueous solution of a salt of anion A and a cation B is supplied to the intermediate chamber and an aqueous solution of a salt of anion C and a cation D is supplied to the desalting chamber, and a DC current is applied to supply the salt in the intermediate chamber. It is possible to substitute the cation B constituting the cation with the cation D to form a salt composed of the anion A and the cation D. Next, the method of the present invention will be described with reference to the drawings. However, the drawings show only one example of an apparatus used by the method of the present invention, and the present invention is not limited thereby.

【0008】まず最初に塩から遊離の酸を生成する方法
を説明する。電気透析槽は、図1に示した陽イオン交換
膜1及び2と陰イオン交換膜3によって脱塩室4、置換
室5及び濃縮室6に隔離される。脱塩室4にはタンク9
の強酸水溶液がポンプで循環供給される。置換室5には
例えば有機酸の金属塩がタンク10から循環供給され
る。濃縮室6にはタンク11から廃液が循環供給され
る。この廃液は初回の運転開始時は単なる水でも塩や強
酸の水溶液でもよいが、バッチ運転を繰り返す際にはバ
ッチ毎に更新する必要がなく、前のバッチのままの状態
で継続して使用してもよい。陽極室7及び陰極室8には
タンク12から強酸の水溶液が循環供給される。
First, a method for producing a free acid from a salt will be described. The electrodialysis tank is separated into a desalting chamber 4, a substitution chamber 5 and a concentrating chamber 6 by the cation exchange membranes 1 and 2 and the anion exchange membrane 3 shown in FIG. The deionization chamber 4 has a tank 9
The strong acid aqueous solution is circulated by a pump. A metal salt of an organic acid, for example, is circulated and supplied from the tank 10 to the substitution chamber 5. Waste liquid is circulated and supplied from the tank 11 to the concentration chamber 6. This waste liquid may be simple water or an aqueous solution of salt or strong acid at the start of the first operation, but it does not need to be updated for each batch when repeating the batch operation, and it can be used continuously in the state of the previous batch. May be. Aqueous solution of strong acid is circulated and supplied from the tank 12 to the anode chamber 7 and the cathode chamber 8.

【0009】直流電流を通電することによって、陽イオ
ンは陰極方向へ、陰イオンは陽極方向へ電気泳動する
が、陽イオン交換膜には陽イオンは透過するが陰イオン
の透過を阻止する働きが、また陰イオン交換膜には陰イ
オンは透過するが陽イオンの透過を阻止する働きがあ
る。したがって、脱塩室4の強酸は、水素イオンが陽イ
オン交換膜2を透過して置換室5に、また陰イオンは陰
イオン交換膜3を透過して濃縮室6に移動するために脱
塩液の濃度は低下する。そこでタンク9の強酸の濃度を
維持するためにタンク13から濃度の高い強酸が供給さ
れる。
When a direct current is applied, cations are electrophoresed toward the cathode and anions are electrophoresed toward the anode, but the cation exchange membrane allows the cations to pass but prevents the permeation of the anions. In addition, the anion exchange membrane has a function of blocking the permeation of cations while permeating anions. Therefore, the strong acid in the desalting chamber 4 is desalted because hydrogen ions move through the cation exchange membrane 2 to the substitution chamber 5 and anions pass through the anion exchange membrane 3 to the concentration chamber 6. The concentration of the liquid decreases. Therefore, in order to maintain the concentration of the strong acid in the tank 9, a strong acid having a high concentration is supplied from the tank 13.

【0010】置換室5では有機酸塩の金属イオンが陽イ
オン交換膜1から濃縮室6に排除されると同時に陽イオ
ン交換膜2から水素イオンが供給されるため、次第に目
的の遊離の有機酸が得られることになる。濃縮室6には
置換室5からの金属イオンと脱塩室4の強酸の陰イオン
による高濃度の廃液が生成する。
In the substitution chamber 5, metal ions of the organic acid salt are removed from the cation exchange membrane 1 to the concentration chamber 6, and at the same time hydrogen ions are supplied from the cation exchange membrane 2, so that the desired free organic acid is gradually added. Will be obtained. A high-concentration waste liquid is generated in the concentrating chamber 6 due to the metal ions from the substitution chamber 5 and the strong acid anions in the desalting chamber 4.

【0011】以上に述べたように、本発明の方法の特徴
は脱塩室4には長時間運転しても水素イオン以外の陽イ
オン濃度が増加しないのであるから、常に水素イオンの
みを置換室5に供給することができ、したがって置換室
5に純度の高い遊離の有機酸を生成することができるの
である。また、本発明の方法は強酸性の有機酸の塩から
遊離酸を液更新を要せずに経済的に製造できることに特
徴がある。強酸性の有機酸を製造する場合には、置換室
5に遊離酸が生成するに従い置換室5の水素イオン濃度
も上昇することになる。したがって陽イオン交換膜1を
透過して濃縮室6に移動する陽イオンとしては水素イオ
ンが次第に多くなることになる。そのため、遊離酸への
転化率を高くしようとした場合、脱塩室4には置換室5
に供給された有機塩の当量に対して数倍の当量の強酸を
必要とするはずであるが、驚くべきことに実際にははる
かに少ない当量の強酸で済むのである。この理由は次の
様に推定される。前述の通り、一般に陰イオン交換膜に
は陰イオンは透過するが陽イオンの透過を阻止する働き
があるが、例外的に水素イオンについては十分に透過を
阻止できないのである。したがって、一旦濃縮室6に移
動した水素イオンは陰イオン交換膜3を透過して脱塩室
4に移動し、ふたたび置換室5の有機塩を有機酸に転化
するため活用されるのである。即ち、電気透析槽の内部
で水素イオンがリサイクル利用されているといえよう。
As described above, the feature of the method of the present invention is that the deionization chamber 4 does not increase the concentration of cations other than hydrogen ions even after long-term operation. 5 can be supplied to the substitution chamber 5, and thus a high-purity free organic acid can be produced in the substitution chamber 5. Further, the method of the present invention is characterized in that a free acid can be economically produced from a salt of a strongly acidic organic acid without liquid renewal. When a strongly acidic organic acid is produced, the hydrogen ion concentration in the substitution chamber 5 also rises as the free acid is produced in the substitution chamber 5. Therefore, hydrogen ions gradually increase as cations that permeate the cation exchange membrane 1 and move to the concentrating chamber 6. Therefore, if an attempt is made to increase the conversion rate to free acid, the desalting chamber 4 will be replaced by the substitution chamber 5
It would require several times the equivalents of strong acid to the equivalents of the organic salt fed to, but surprisingly, much less equivalents of strong acids would actually be required. The reason for this is presumed as follows. As described above, generally, anions pass through the anion-exchange membrane, but they have a function of blocking the permeation of cations, but exceptionally, the permeation of hydrogen ions cannot be sufficiently blocked. Therefore, the hydrogen ions once moved to the concentrating chamber 6 permeate the anion exchange membrane 3 and move to the desalting chamber 4, and are utilized again to convert the organic salt in the substitution chamber 5 into an organic acid. That is, it can be said that hydrogen ions are recycled and used inside the electrodialysis tank.

【0012】以上、遊離酸の製造について述べてきた
が、本発明の装置を用いれば、これまで電気透析法では
困難とされてきた塩の陽イオン交換が可能となる。つま
り置換室に陰イオンAと陽イオンBとからなる塩の水溶
液を、また脱塩室に陰イオンCと陽イオンDからなる塩
の水溶液を供給し、直流電流を通電することにより置換
室に陰イオンAと陽イオンDからなる塩を生成せしめる
ことができるのである。その一例として有機酸のナトリ
ウム塩から有機酸のカリウム塩を得る場合等に用いるこ
とができる。この場合、有機酸のナトリウム塩の水溶液
を置換室5に、塩化カリウムなどカリウムイオンを持つ
無機塩の水溶液を脱塩室4に供給して直流電流を通電す
ることで、置換室5に目的とする有機酸のカリウム塩を
得られる。一般的に、ナトリウムイオンとカリウムイオ
ンでは陽イオン交換膜の透過特性には大差は無いのであ
るから転化率の上昇に伴って置換室5からカリウムイオ
ンも濃縮室6に透過するようになるが、脱塩室4に常に
カリウムイオンのみを供給する限りはやがては置換室5
の有機酸塩の殆どすべてをカリウム塩に転化することが
可能である。
Although the production of the free acid has been described above, the use of the apparatus of the present invention enables the cation exchange of salts, which has been difficult by the electrodialysis method. That is, the substitution chamber is supplied with an aqueous solution of a salt of an anion A and a cation B, and the desalting chamber is supplied with an aqueous solution of a salt of an anion C and a cation D. It is possible to form a salt composed of an anion A and a cation D. As an example thereof, it can be used when obtaining a potassium salt of an organic acid from a sodium salt of an organic acid. In this case, the aqueous solution of the sodium salt of an organic acid is supplied to the substitution chamber 5, and the aqueous solution of the inorganic salt having potassium ions such as potassium chloride is supplied to the desalination chamber 4, and a direct current is applied to the substitution chamber 5 for the purpose. A potassium salt of an organic acid can be obtained. Generally, there is no great difference in the permeation characteristics of the cation exchange membrane between sodium ion and potassium ion, and therefore potassium ions also permeate from the substitution chamber 5 to the concentration chamber 6 as the conversion rate increases. As long as only potassium ions are constantly supplied to the desalting chamber 4, the replacement chamber 5 will eventually be provided.
It is possible to convert almost all of the organic acid salts of to the potassium salt.

【0013】本発明に使用するイオン交換膜は特に限定
するものではなく、製塩工業や脱塩用途に使用されるも
のが任意に利用できる。また遊離酸の製造に用いるため
の強酸は硫酸や塩酸、硝酸などの無機酸が好ましいもの
であるが、特に制限を受けるものではない。塩の陽イオ
ンの交換においては、交換の対象となる陽イオンの種類
は何等制限を受けないもので、無機のイオン、有機のイ
オンのいずれにも利用可能である。また塩の陰イオン成
分についても同様に制限を受けない。
The ion exchange membrane used in the present invention is not particularly limited, and any one used in the salt industry or desalination can be used. The strong acid used for producing the free acid is preferably an inorganic acid such as sulfuric acid, hydrochloric acid or nitric acid, but is not particularly limited. In the exchange of salt cations, the type of cation to be exchanged is not limited in any way, and it can be used for both inorganic ions and organic ions. Similarly, the anion component of the salt is not limited.

【0014】また、本発明の説明において、脱塩室に供
給する強酸のタンク9には供給酸のタンク13から供給
酸を添加する方法で説明したが、予め一定量の強酸をタ
ンク9に供給する方法でもなんら差支えない。しかし、
装置を安定な条件で運転するには前者が好ましいもので
ある。
In the description of the present invention, the method of adding the supply acid from the supply acid tank 13 to the strong acid tank 9 to be supplied to the desalting chamber has been described. However, a constant amount of the strong acid is supplied to the tank 9 in advance. It doesn't matter how you do it. But,
The former is preferable for operating the device under stable conditions.

【0015】[0015]

【実施例】次に実施例によって本発明がいかに実施され
得るかを説明する。
The following examples will explain how the present invention can be implemented.

【0016】[0016]

【実施例1】本発明の方法で乳酸ナトリウムから乳酸を
得る試験を実施した。陽イオン交換膜として旭化成工業
(株)製、アシプレックス(商標登録)K−101を、
陰イオン交換膜として旭化成工業(株)製、アシプレッ
クス(商標登録)A−201を用いて、図1に示す構成
で、脱塩室、置換室、濃縮室の数がそれぞれ10室の透
析装置を作製した。この装置の通電面積は55cm2
あり、脱塩室、置換室、濃縮室の厚みはそれぞれ0.7
5mmである。
Example 1 A test for obtaining lactic acid from sodium lactate by the method of the present invention was conducted. Ashiplex (registered trademark) K-101 manufactured by Asahi Kasei Corporation as a cation exchange membrane,
Adiaplex (registered trademark) A-201 manufactured by Asahi Kasei Kogyo Co., Ltd. is used as an anion exchange membrane, and the configuration shown in FIG. 1 is used, and the number of desalting chambers, substitution chambers, and concentration chambers is 10 each. Was produced. The current-carrying area of this device is 55 cm 2 , and the thickness of the desalting chamber, the replacing chamber and the concentrating chamber are each 0.7.
It is 5 mm.

【0017】電極液として0.2Nの硫酸300ml
を、廃液として0.1Nの硫酸300mlを、脱塩液と
して0.2Nの硫酸300mlを、又供給酸液として5
Nの硫酸を準備し、脱塩液の電導度を検知して電導度が
50mS/cmを維持できるように定量ポンプで自動的
に供給酸液が脱塩液タンクに供給できるようにした。置
換室に循環供給する試料液として1Nの乳酸ナトリウム
水溶液500mlを用いて、電極液、脱塩液、廃液、試
料液(原液)をそれぞれ電気透析槽に循環し、2Aの直
流電流を50分間通電した。その結果試料液の液量は4
96mlで、ナトリウムイオンの濃度は0.002Nで
あった。即ち乳酸ナトリウムの約99.8%を乳酸に転
化できたことになる。また供給酸液の消費量は106m
lであった。この量は最初の試料液の乳酸ナトリウムの
1.06倍当量に相当する。
300 ml of 0.2N sulfuric acid as an electrode solution
As waste liquid, 300 ml of 0.1N sulfuric acid, 300 ml of 0.2N sulfuric acid as desalting liquid, and 5 ml as supplied acid liquid.
Sulfuric acid of N was prepared, and the supply acid solution was automatically supplied to the desalting solution tank by a metering pump so that the conductivity of the desalting solution could be detected and the conductivity could be maintained at 50 mS / cm. Using 500 ml of 1N sodium lactate aqueous solution as the sample solution to be circulated and supplied to the substitution chamber, the electrode solution, the desalting solution, the waste solution, and the sample solution (stock solution) are circulated in the electrodialysis tank respectively, and a direct current of 2 A is applied for 50 minutes. did. As a result, the volume of sample liquid is 4
In 96 ml, the concentration of sodium ion was 0.002N. That is, about 99.8% of sodium lactate could be converted to lactic acid. The consumption of the supplied acid solution is 106m.
It was l. This amount corresponds to 1.06 times the equivalent of sodium lactate in the first sample solution.

【0018】[0018]

【実施例2】本発明の方法で強酸性の有機酸の塩である
ベンゼンスルホン酸ナトリウムからベンゼンスルホン酸
を得る試験を実施した。装置、電極液、脱塩液、廃液、
供給酸液は実施例1と同じ条件とした。試料液(原液)
として1Nのベンゼンスルホン酸ナトリウム水溶液50
0mlを用いて、2Aの直流電流を150分間通電し
た。その結果試料液の液量は502mlで、ナトリウム
イオンの濃度は0.19Nであった。即ち、ベンゼンス
ルホン酸ナトリウムの約81%をベンゼンスルホン酸に
転化できたことになる。また供給酸液の消費量は214
mlであり、この量は最初の試料液のベンゼンスルホン
酸ナトリウムの2.14倍当量に相当する。
Example 2 A test for obtaining benzenesulfonic acid from sodium benzenesulfonate, which is a salt of a strongly acidic organic acid, was carried out by the method of the present invention. Equipment, electrode fluid, desalination fluid, waste fluid,
The acid solution supplied was under the same conditions as in Example 1. Sample solution (stock solution)
As a 1N aqueous solution of sodium benzenesulfonate 50
A direct current of 2 A was applied for 150 minutes using 0 ml. As a result, the volume of the sample liquid was 502 ml and the concentration of sodium ions was 0.19N. That is, about 81% of sodium benzenesulfonate could be converted to benzenesulfonic acid. The consumption of the supplied acid solution is 214
ml, which corresponds to 2.14 times equivalent of sodium benzenesulfonate in the original sample solution.

【0019】[0019]

【実施例3】本発明の方法で乳酸ナトリウムのナトリウ
ムをカリウムに置換して乳酸カリウムを得る試験を実施
した。装置は実施例1と同じものを用い、電極液として
0.5Nの硫酸カリウム水溶液300mlを、廃液とし
て0.1Nの硫酸カリウム水溶液300mlを、脱塩液
として0.5Nの硫酸カリウム水溶液300mlを用い
た。又脱塩液タンクに供給する液として4Nの硫酸カリ
ウム水溶液を準備し、脱塩液の電導度を検知して電導度
が50mS/cmを維持できるように定量ポンプで自動
的に供給液が脱塩液タンクに供給できるようにした。置
換室に供給する試料液として1Nの乳酸ナトリウム水溶
液を500mlを用い、2Aの電流で150分間、直流
電流を通電した。その結果、乳酸ナトリウムの94.4
%を乳酸カリウムに転化できた。なお、4Nの硫酸カリ
ウム水溶液の消費量は420mlであった。
Example 3 A test for obtaining potassium lactate by replacing sodium in sodium lactate with potassium by the method of the present invention was conducted. The same apparatus as in Example 1 was used, and 300 ml of 0.5 N potassium sulfate aqueous solution was used as the electrode solution, 300 ml of 0.1 N potassium sulfate aqueous solution was used as the waste liquid, and 300 ml of 0.5 N potassium sulfate aqueous solution was used as the desalting liquid. I was there. Also, prepare a 4N potassium sulfate aqueous solution as a solution to be supplied to the desalting solution tank, and automatically detect the conductivity of the desalting solution by a metering pump so that the conductivity can be maintained at 50 mS / cm. It was possible to supply to the salt solution tank. As a sample solution to be supplied to the substitution chamber, 500 ml of a 1N sodium lactate aqueous solution was used, and a direct current was applied at a current of 2 A for 150 minutes. As a result, sodium lactate 94.4
% Could be converted to potassium lactate. The amount of 4N potassium sulfate aqueous solution consumed was 420 ml.

【0020】[0020]

【発明の効果】本発明の電気透析方法は、塩からの高純
度遊離酸の製造、あるいは塩を構成する陽イオンの置換
に優れた方法である。
INDUSTRIAL APPLICABILITY The electrodialysis method of the present invention is an excellent method for producing a high-purity free acid from a salt or for substituting a cation constituting the salt.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の電気透析方法の1例を示す系統図であ
る。
FIG. 1 is a system diagram showing an example of an electrodialysis method of the present invention.

【符号の説明】[Explanation of symbols]

1、陽イオン交換膜 2、陽イオン交換膜 3、陰イオン交換膜 4、脱塩室 5、置換室 6、濃縮室 7、陽極室 8、陰極室 9、脱塩液タンク 10、原液(試料液)タンク 11、廃液タンク 12、電極液タンク 13、供給酸タンク 1, cation exchange membrane 2, cation exchange membrane 3, anion exchange membrane 4, deionization chamber 5, substitution chamber 6, concentration chamber 7, anode chamber 8, cathode chamber 9, desalination tank 10, stock solution (sample Liquid tank 11, waste liquid tank 12, electrode liquid tank 13, supply acid tank

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 陽極室と陰極室を有し、陽イオン交換膜
と陽イオン交換膜に挟まれた置換室を少なくとも1室以
上備え、少なくともその片側に位置する陰イオン交換膜
と陽イオン交換膜に挟まれた濃縮室及び/または脱塩室
を備えた電気透析槽からなることを特徴とする電気透析
装置。
1. A cation exchange having an anode chamber and a cathode chamber, at least one cation exchange membrane and at least one substitution chamber sandwiched between the cation exchange membranes, and at least one side of the anion exchange membrane and the cation exchange membrane. An electrodialysis device comprising an electrodialysis tank having a concentration chamber and / or a desalting chamber sandwiched between membranes.
【請求項2】 請求項1において、置換室に陰イオンA
と陽イオンBとからなる塩の水溶液を、また脱塩室に酸
Cの水溶液を供給し、直流電流を通電することにより中
間室にAの酸を生成せしめることを特徴とする電気透析
方法。
2. The anion A in the substitution chamber according to claim 1.
An electrodialysis method characterized in that an aqueous solution of a salt consisting of cation B and an aqueous solution of acid C is supplied to the desalting chamber and a DC current is applied to generate an acid of A in the intermediate chamber.
【請求項3】 請求項1において、置換室に陰イオンA
と陽イオンBとからなる塩の水溶液を、また脱塩室に陰
イオンCと陽イオンDからなる塩の水溶液を供給し、直
流電流を通電することにより置換室に陰イオンAと陽イ
オンDからなる塩を生成せしめることを特徴とする電気
透析方法。
3. The anion A in the substitution chamber according to claim 1.
An aqueous solution of a salt of cation B and a cation B, and an aqueous solution of a salt of anion C and a cation D are supplied to the desalting chamber, and a direct current is applied to the anion A and cation D to the displacement chamber. An electrodialysis method characterized in that a salt consisting of is produced.
JP4223999A 1992-08-24 1992-08-24 Method and device for electrodialysis Pending JPH0663365A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4223999A JPH0663365A (en) 1992-08-24 1992-08-24 Method and device for electrodialysis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4223999A JPH0663365A (en) 1992-08-24 1992-08-24 Method and device for electrodialysis

Publications (1)

Publication Number Publication Date
JPH0663365A true JPH0663365A (en) 1994-03-08

Family

ID=16807006

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4223999A Pending JPH0663365A (en) 1992-08-24 1992-08-24 Method and device for electrodialysis

Country Status (1)

Country Link
JP (1) JPH0663365A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001259645A (en) * 2000-03-23 2001-09-25 Japan Organo Co Ltd Deionized water production method
JP2001259646A (en) * 2000-03-23 2001-09-25 Japan Organo Co Ltd Electric deionized water producer
US7704361B2 (en) 2000-12-12 2010-04-27 Jurag Separation A/S Method and apparatus for isolation of ionic species from a liquid
JP2010193866A (en) * 2009-02-27 2010-09-09 San Akuteisu:Kk Method for reducing sodium concentration in plum juice

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001259645A (en) * 2000-03-23 2001-09-25 Japan Organo Co Ltd Deionized water production method
JP2001259646A (en) * 2000-03-23 2001-09-25 Japan Organo Co Ltd Electric deionized water producer
JP4481418B2 (en) * 2000-03-23 2010-06-16 オルガノ株式会社 Electric deionized water production equipment
JP4481417B2 (en) * 2000-03-23 2010-06-16 オルガノ株式会社 Deionized water production method
US7704361B2 (en) 2000-12-12 2010-04-27 Jurag Separation A/S Method and apparatus for isolation of ionic species from a liquid
JP2010193866A (en) * 2009-02-27 2010-09-09 San Akuteisu:Kk Method for reducing sodium concentration in plum juice

Similar Documents

Publication Publication Date Title
US7666288B2 (en) Apparatus for electrodeionization of water
US6733646B2 (en) Method and apparatus for electrodeionization of water
US4707240A (en) Method and apparatus for improving the life of an electrode
JP4855068B2 (en) Electric deionized water production apparatus and deionized water production method
JPH10128338A (en) Method and device for preventing scale from being deposited in electric regeneration type continuous desalting apparatus
WO2008016055A1 (en) Electrodeionizer
US20150329384A1 (en) Rechargeable electrochemical cells
EP0604968A2 (en) A method of producing water having a reduced salt content
JP4710176B2 (en) Ultrapure water production equipment
JP2002143854A (en) Electrochemical water treating device
JP5114307B2 (en) Electric deionized water production equipment
JP3952127B2 (en) Electrodeionization treatment method
JP2704629B2 (en) Electrodialysis machine
JPH0924374A (en) Electrically regenerative pure water producing method and device therefor
JPH0663365A (en) Method and device for electrodialysis
JP4831765B2 (en) Method for separating iodine ions
JP2003001258A (en) Electrolytic deionizing apparatus
JP2775992B2 (en) Method for producing hydroxylamine
JP2824537B2 (en) Method for producing hydroxylamine
JPH05285347A (en) Production of acid and alkali
JP2006026488A (en) Electric desalter
JPH06254356A (en) Ph adjusting method of salt water incorporating hardly soluble salt group
JP4631148B2 (en) Pure water production method
JP2002220220A (en) Method for manufacturing dealkalized water glass
KR100692698B1 (en) Electric deionizing apparatus and electric deionizing treatment method using the same

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20020108