JP4481417B2 - Deionized water production method - Google Patents

Deionized water production method Download PDF

Info

Publication number
JP4481417B2
JP4481417B2 JP2000082073A JP2000082073A JP4481417B2 JP 4481417 B2 JP4481417 B2 JP 4481417B2 JP 2000082073 A JP2000082073 A JP 2000082073A JP 2000082073 A JP2000082073 A JP 2000082073A JP 4481417 B2 JP4481417 B2 JP 4481417B2
Authority
JP
Japan
Prior art keywords
chamber
water
exchange membrane
deionized water
anode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000082073A
Other languages
Japanese (ja)
Other versions
JP2001259645A (en
JP2001259645A5 (en
Inventor
真生 日高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp filed Critical Organo Corp
Priority to JP2000082073A priority Critical patent/JP4481417B2/en
Publication of JP2001259645A publication Critical patent/JP2001259645A/en
Publication of JP2001259645A5 publication Critical patent/JP2001259645A5/ja
Application granted granted Critical
Publication of JP4481417B2 publication Critical patent/JP4481417B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、半導体製造分野、医薬製造分野、原子力や火力などの発電分野、食品工業などの各種の産業又は研究所施設において使用される省電力型電気式脱イオン水製造装置の電気抵抗を低減する脱イオン水製造方法に関するものである。
【0002】
【従来の技術】
脱イオン水を製造する方法として、従来からイオン交換樹脂に被処理水を通して脱イオンを行う方法が知られているが、この方法ではイオン交換樹脂がイオンで飽和されたときに薬剤によって再生を行う必要があり、このような処理操作上の不利な点を解消するため、近年、薬剤による再生が全く不要な電気式脱イオン法による脱イオン水製造方法が確立され、実用化に至っている。
【0003】
図2は、その従来の典型的な電気式脱イオン水製造装置の模式断面図を示す。図2に示すように、カチオン交換膜101及びアニオン交換膜102を離間して交互に配置し、カチオン交換膜101とアニオン交換膜102で形成される空間内に一つおきにイオン交換体103を充填して脱塩室とする。脱塩室の被処理水流入側(前段)にはアニオン交換樹脂103aが充填され、脱塩室の被処理水流出側(後段)にはカチオン交換樹脂とアニオン交換樹脂の混合イオン交換樹脂103bが充填されている。また、脱塩室104のそれぞれ隣に位置するアニオン交換膜102とカチオン交換膜101で形成されるイオン交換体103を充填していない部分は濃縮水を流すための濃縮室105とする。
【0004】
また、カチオン交換膜101とアニオン交換膜102と、その内部に充填するイオン交換体103とで脱イオンモジュールを形成する。すなわち、図では省略する内部がくり抜かれた枠体の一方の側にカチオン交換膜を封着し、枠体のくり抜かれた部分の上方部(前段)にアニオン交換樹脂を、下方部(後段)に混合イオン交換樹脂をそれぞれ充填し、次いで、枠体の他方の部分にアニオン交換膜を封着する。なお、イオン交換膜は比較的柔らかいものであり、枠体内部にイオン交換体を充填してその両面をイオン交換膜で封着した時、イオン交換膜が湾曲してイオン交換体の充填層が不均一となるのを防止するため、枠体の空間部に複数のリブを縦設するのが一般的である。
【0005】
このような脱イオンモジュールの複数個をその間に図では省略するスペーサーを挟んで、並設した状態が図2に示されたものであり、並設した脱イオンモジュールの一側に陰極109を配設すると共に、他端側に陽極110を配設する。なお、前述したスペーサーを挟んだ位置が濃縮室105であり、また両端の濃縮室105の両外側に必要に応じカチオン交換膜101、アニオン交換膜102、あるいはイオン交換性のない単なる隔膜等の仕切り膜を配設し、仕切り膜で仕切られた両電極109、110が接触する部分をそれぞれ陰極室112及び陽極室113とする。このように、従来の電気式脱イオン水製造装置においては、濃縮室の数は脱塩室の数より1つ多い形態のものであるか、あるいは両端の濃縮室を仕切り膜無しで電極室とした場合1つ少ないものであった。
【0006】
このような電気式脱イオン水製造装置によって脱イオン水を製造する場合を図2を参照して説明する。すなわち、陰極109と陽極110間に直流電流を通じ、また、被処理水流入ライン111から被処理水が流入すると共に、濃縮水流入ライン115から濃縮水が流入し、且つ電極水流入ライン117、117からそれぞれ電極水が流入する。被処理水流入ライン111から流入した被処理水は脱塩室104を流下し、先ず、前段のアニオン交換樹脂103a、次いで混合イオン交換樹脂103bを通過する際、塩酸イオンや硫酸イオン、MgとCaなどのカチオン成分などが除去される。濃縮水流入ライン115から流入した濃縮水は各濃縮室105を上昇し、カチオン交換膜101及びアニオン交換膜102を介して移動してくる不純物イオンを受け取り、不純物イオンを濃縮した濃縮水として濃縮水流出ライン116から流出され、さらに電極水流入ライン117、117から流入した電極水は電極水流出ライン118、118から流出される。従って、脱イオン水流出ライン114から脱塩水が得られる。
【0007】
一方、このような電気式脱イオン水製造装置を使用して被処理水中の不純物イオンを省電力で除去するために、電気式脱イオン水製造装置の電気抵抗を低減する種々の試みがなされている。この場合、脱塩室においては、脱塩室に使用されるイオン交換体の充填方法や充填量が要求される処理水の水質によって決定されるため、脱塩室の電気抵抗を低減させるには限界がある。そこで、濃縮水の循環によって導電率の上昇を促進し、濃縮室の電気抵抗を低減する方法が採られることが多い。この方法は濃縮室の電気抵抗を低減するという点では極めて効果的である。
【0008】
【発明の解決しようとする課題】
しかしながら、例えば、被処理水である逆浸透膜装置の透過水の一部を濃縮水として使用する場合、濃縮水中に当初は微量に存在するCa、Mgなどの硬度成分が、長期間の循環使用により濃縮されて濃縮室内にスケールとして析出しやすくなる。スケールが発生すると、その部分での電気抵抗が上昇し、電流が流れにくくなる。すなわち、スケール発生が無い場合と同一の電流値を流すためには電圧を上昇させる必要があり、消費電力が増加する。また、スケール付着量場所次第では濃縮室内で電流密度が異なり、脱塩室内において電流の不均一化が生じる。また、スケール付着量が更に増加すると通水差圧が生じると共に、電圧が更に上昇し、装置の最大電圧値を越えた場合は電流値が低下することとなる。この場合、イオン除去に必要な電流値が流せなくなり、処理水質の低下を招く。
【0009】
従って、本発明の目的は、電気式脱イオン水製造装置の構造面からの抜本的な改善に加えて、電極水や濃縮水の導電率の向上により、電気抵抗を低減すると共に、濃縮室内でのスケール発生防止を抑制することのできる脱イオン水製造方法を提供することにある。
【0010】
【課題を解決するための手段】
かかる実情において、本発明者らは鋭意検討を行った結果、(1)一側のカチオン交換膜、他側のアニオン交換膜及び当該両膜の間に位置する中間イオン交換膜で区画される2つの小脱塩室にイオン交換体を充填して脱塩室を構成し、前記カチオン交換膜、アニオン交換膜を介して脱塩室の両側に濃縮室を設け、これらの脱塩室及び濃縮室を陽極を備えた陽極室と陰極を備えた陰極室の間に配置する構造の電気式脱イオン水製造装置を使用すれば、2つの小脱塩室のうち、少なくとも1つの脱塩室に充填されるイオン交換体を例えばアニオン交換体のみ、又はカチオン交換体のみ等の単一イオン交換体もしくはアニオン交換体とカチオン交換体の混合交換体とすることができ、イオン交換体の種類毎に電気抵抗を低減し、且つ高い性能を得るための最適な厚さに設定することができること、(2)上記構造の電気式脱イオン水製造装置を使用して脱イオン水を製造する際、濃縮水や電極水に電解質溶液を添加供給してやれば、脱塩室の入口側から出口側の全体に渡り電流密度を均一化でき、消費電力を更に低減できること、(3)電解質として無機酸を使用すれば、付着したスケールを酸洗浄できること、などを見出し、本発明を完成するに至った。
【0011】
すなわち、請求項1の発明(1)は、一側のカチオン交換膜、他側のアニオン交換膜及び当該カチオン交換膜と当該アニオン交換膜の間に位置する単一膜又は複式膜である中間イオン交換膜で区画される2つの小脱塩室にイオン交換体を充填して脱塩室を構成し、前記カチオン交換膜、アニオン交換膜を介して脱塩室の両側に濃縮室を設け、これらの脱塩室及び濃縮室を陽極を備えた陽極室と陰極を備えた陰極室の間に配置し、電圧を印加しながら一方の小脱塩室に被処理水を流入し、次いで、該小脱塩室の流出水を他方の小脱塩室に流入すると共に、濃縮室に濃縮水を流入して被処理水中の不純物イオンを除去し、脱イオン水を製造する方法において、前記濃縮室に供給される濃縮水、前記陽極室に供給される陽極水及び前記陰極室に供給される陰極水のうち、少なくとも1つに電解質溶液を添加供給することを特徴とする脱イオン水製造方法を提供するものである。かかる構成をとることにより、2つの小脱塩室のうち、少なくとも1つの脱塩室に充填されるイオン交換体を例えばアニオン交換体のみ、又はカチオン交換体のみ等の単一イオン交換体もしくはアニオン交換体とカチオン交換体の混合交換体とすることができ、イオン交換体の種類毎に電気抵抗を低減し、且つ高性能を得るための最適な厚さに設定することができる。また、濃縮水や電極水はより電解質濃度が高まり、脱塩室の入口側から出口側の全体に渡り電流密度を均一化でき、消費電力を更に低減できる。また、電解質として酸を使用すれば、付着したスケールを酸洗浄できる。この電解質溶液の添加は、ひとつの脱塩室が2つの小脱塩室からなる当該電気式脱イオン水製造装置においては特に有効である。すなわち、当該装置においては2つの小脱塩室、濃縮室などで水の流れがそれぞれに存在し、電流の流れやすい箇所、流れ難い箇所もそれぞれに存在するので電流の偏りが生じ易く、処理水の水質を低下させる場合があるが、電解質溶液の添加によりこれらの問題を解決できる。
【0012】
請求項2の発明(2)は、一側のカチオン交換膜、他側のアニオン交換膜及び当該カチオン交換膜と当該アニオン交換膜の間に位置する単一膜又は複式膜である中間イオン交換膜で区画される2つの小脱塩室にイオン交換体を充填して脱塩室を構成し、前記カチオン交換膜、アニオン交換膜を介して脱塩室の両側に濃縮室を設け、これらの脱塩室及び濃縮室を陽極を備えた陽極室と陰極を備えた陰極室の間に配置し、電圧を印加しながら一方の小脱塩室に被処理水を流入し、次いで、該小脱塩室の流出水を他方の小脱塩室に流入すると共に、濃縮室に濃縮水を流入して被処理水中の不純物イオンを除去し、脱イオン水を製造する方法において、前記濃縮室に供給される濃縮水、前記陽極室に供給される陽極水又は前記陰極室に供給される陰極水は、その導電率が100〜1000μS/cmであることを特徴とする脱イオン水製造方法を提供するものである。かかる構成を採ることにより、前記発明と同様の効果を奏するほか、濃縮水や電解水の管理を比較的簡易な装置である導電率計で行え、運転管理がし易い。また、濃縮水中の電解質濃度が高くなると、浸透圧の関係で処理水の水質の低下が懸念されるが、その心配がなくなる。
【0013】
請求項3の発明(3)は、前記電解質溶液が、硬度イオンを含まない溶液であることを特徴とする前記(1)記載の脱イオン水製造方法を提供するものである。かかる構成を採ることにより、濃縮水や電解水中の硬度成分を極力排除して電解質濃度を高めることができ、スケールの発生を防止できる。
【0014】
請求項4の発明(4)は、前記電解質が、無機酸であることを特徴とする前記(1)記載の脱イオン水製造方法を提供するものである。かかる構成を採ることにより、無機酸の洗浄作用により、濃縮室内のスケールが除去され、且つさらにスケールが発生し難くなる。
【0015】
請求項5の発明(5)は、一側のカチオン交換膜、他側のアニオン交換膜及び当該カチオン交換膜と当該アニオン交換膜の間に位置する単一膜又は複式膜である中間イオン交換膜で区画される2つの小脱塩室にイオン交換体を充填して脱塩室を構成し、前記カチオン交換膜、アニオン交換膜を介して脱塩室の両側に濃縮室を設け、これらの脱塩室及び濃縮室を陽極を備えた陽極室と陰極を備えた陰極室の間に配置し、電圧を印加しながら一方の小脱塩室に被処理水を流入し、次いで、該小脱塩室の流出水を他方の小脱塩室に流入すると共に、濃縮室に濃縮水を流入して被処理水中の不純物イオンを除去し、脱イオン水を製造する方法において、前記濃縮室に供給される濃縮水、前記陽極室に供給される陽極水又は前記陰極室に供給される陰極水は、そのpHが1〜5であることを特徴とする脱イオン水製造方法を提供するものである。かかる構成を採ることにより、前記発明と同様の効果を奏するほか、濃縮水や電極水の管理を比較的簡易な装置であるpH計で行えばよく、運転管理がし易い。
【0016】
【発明の実施の形態】
本発明の脱イオン水製造方法において使用される電気式脱イオン水製造装置について図1を参照して説明する。図1は電気式脱イオン水製造装置の1例を示す模式図である。図1に示すように、カチオン交換膜3、中間イオン交換膜5及びアニオン交換膜4を離間して交互に配置し、カチオン交換膜3と中間イオン交換膜5で形成される空間内にイオン交換体8を充填して第1小脱塩室d1 、d3 、d5 、d7 を形成し、中間イオン交換膜5とアニオン交換膜4で形成される空間内にイオン交換体8を充填して第2小脱塩室d2 、d4 、d6 、d8 を形成し、第1小脱塩室d1 と第2小脱塩室d2 で脱塩室D1 、第1小脱塩室d3 と第2小脱塩室d4 で脱塩室D2 、第1小脱塩室d5 と第2小脱塩室d6 で脱塩室D3 、第1小脱塩室d7 と第2小脱塩室d8 で脱塩室D4 とする。また、脱塩室D2 、D3 のそれぞれ隣に位置するアニオン交換膜4とカチオン交換膜3で形成されるイオン交換体8を充填していない部分は濃縮水を流すための濃縮室1とする。これを順次併設して図中、左より脱塩室D1 ,濃縮室1、脱塩室D2 ,濃縮室1、脱塩室D3 、濃縮室1、脱塩室D4 を形成する。また、脱塩室D1 の左にカチオン交換膜3を経て陰極室2aを、脱塩室D4 の右にアニオン交換膜4を経て陽極室2bをそれぞれ設ける。また、中間膜5を介して隣合う2つの小脱塩室において、第2小脱塩室の被処理水の処理水流出ライン12は第1小脱塩室の被処理水流入ライン13に連接されている。
【0017】
このような脱塩室は2つの内部がくり抜かれた枠体と3つのイオン交換膜によって形成される脱イオンモジュールからなる。すなわち、図では省略する第1枠体の一側にカチオン交換膜を封着し、第1枠体のくり抜かれた部分にイオン交換体を充填し、次いで、第1枠体の他方の部分に中間イオン交換膜を封着して第1小脱塩室を形成する。次に中間イオン交換膜を挟み込むように第2枠体を封着し、第2枠体のくり抜かれた部分にイオン交換体を充填し、次いで、第2枠体の他方の部分にアニオン交換膜を封着して第2小脱塩質を形成する。
【0018】
前記電気式脱イオン水製造装置は、通常、以下のように運転される。すなわち、陰極6と陽極7間に直流電流を通じ、また被処理水流入ライン11から被処理水が流入すると共に、濃縮水流入ラインから濃縮水が流入し、かつ陰極水流入ライン17a、陽極水流入ライン17bからそれぞれ陰極水、陽極水が流入する。被処理水流入ライン11から流入した被処理水は第2小脱塩室d2 、d4 、d6 、d8 を流下し、イオン交換体8の充填層を通過する際に不純物イオンが除去される。更に、第2小脱塩室の処理水流出ライン12を通った流出水は、第1小脱塩室の被処理水流入ライン13を通って第1小脱塩室d1 、d3 、d5 、d7 を流下し、ここでもイオン交換体8の充填層を通過する際に不純物イオンが除去され脱イオン水が脱イオン水流出ライン14から得られる。また、濃縮水流入ライン15から流入した濃縮水は各濃縮室1を上昇し、カチオン交換膜3及びアニオン交換膜4を介して移動してくる不純物イオンを受け取り、不純物イオンを濃縮した濃縮水として濃縮室流出ライン16から流出され、さらに陰極水流入ライン17aから流入した陰極水は陰極水流出ライン18aから流出され、陽極水流入ライン17bから流入した陽極水は、陽極水流出ライン18bから流出される。上述の操作によって、被処理水中の不純物イオンは電気的に除去される。被処理水の第1小脱塩室及び第2小脱塩室での流れ方向は、特に制限されず、上記実施の形態の他、第1小脱塩室と第2小脱塩室での流れ方向が異なっていてもよい。また、被処理水が流入する小脱塩室は、上記実施の形態例の他、先ず、被処理水を第1小脱塩室に流入させ、流下した後、第1小脱塩室の流出水を第2小脱塩室に流入させてもよい。また、濃縮水の流れ方向も適宜決定される。
【0019】
本発明の脱イオン水製造方法は、上記の電気式脱イオン水製造装置を使用する際、前記濃縮室に供給される濃縮水、前記陽極室に供給される陽極水及び前記陰極室に供給される陰極水から選ばれる少なくとも1つに電解質溶液を添加供給する。電解質溶液の添加供給方法は、例えば、定量ポンプにより、電解質溶液を注入管を経て、濃縮室に供給される濃縮水や電極室に供給される電極水に、連続的又は間欠的に添加供給して行われる。電解質溶液の添加は、濃縮水、陽極水及び陰極水のうち、1つ又は2つ以上に電解質溶液を添加供給すればよいが、濃縮水、陽極水及び陰極水全てに電解質溶液を添加供給する方法が、脱塩室の有効面積全体に渡り電流密度を均一化でき電気抵抗を低減する観点から好ましい。また、濃縮水、陽極水又は陰極水に、電解質溶液を添加供給して運転を行う場合、該濃縮水、陽極水又は陰極水は再循環する方法を採れば、電解質溶液の添加供給量を低減することもできる。
【0020】
本発明の脱イオン水製造方法に用いる電解質は、特に制限されず、無機電解質でも有機電解質でもよい。無機電解質としては、硝酸、硫酸、及びH3 PO4 、H4 2 7 などのリン酸など無機酸、NaOH、KOH、CuOH等の金属水酸化物、K2 SO4 、NaNO3 等の金属塩などが挙げられる。前記無機電解質には、スケールとして析出する恐れのあるCa、Mgなど硬度成分の金属種を含まないほうがよい。また、陽極で塩素が発生する恐れがあるため、HCl、NaCl等の塩化物は用いないほうがよい。前記無機電解質として、スケールに対する洗浄作用を有する硝酸、硫酸などの無機酸を用いることが特に好ましい。有機電解質としては、蟻酸、酢酸、シュウ酸等カルボン酸など水溶性の有機酸、エチルアミン、エチレンジアミンなどのアミン類、並びにEDTA(エチレンジアミン四酢酸)等ポリアミノカルボン酸類、及びグリセリン酸、グリコール酸等オキシカルボン酸類のキレート剤などが挙げられる。前記有機電解質として、EDTAを用いることが特に好ましい。これらの電解質は、1種単独又は2種を組み合わせて混合状態で用いてもよい。
【0021】
また、本発明の脱イオン水製造方法において、濃縮水、陽極水及び陰極水の導電率は、通常100〜1000μS/cm、好ましくは300〜800μS/cmである。導電率が100μS/cm未満であると、電気抵抗を低減する効果が小さくなり、また、1000μS/cmを越えると、浸透圧の関係で濃縮水がイオン交換膜を通って脱塩室に漏洩し処理水の水質を低下させる点で好ましくない。
【0022】
また、本発明の脱イオン水製造方法において、電解質に酸を使用した場合、濃縮水、陽極水及び陰極水のpHは1〜5、好ましくは1.5〜3.0である。pHが1未満では硫酸イオンや硝酸イオン等の陰イオン成分が脱塩室側に逆拡散する可能性が高くなり、また、pHが5を越えると、電極室内に付着したスケールを溶解し難くなり、酸洗浄能力が低下する。
【0023】
本発明の脱イオン水製造方法に用いる被処理水としては、特に制限されず、例えば井水、水道水、下水、工業用水、河川水、半導体製造工場の半導体デバイスなどの洗浄排水又は濃縮室からの回収水などを逆浸透膜処理した透過水が挙げられる。このように前処理として逆浸透膜処理を行い、透過水の一部を濃縮水としても使用する場合、脱塩室に供給される被処理水及び濃縮に供給される濃縮水を軟化後、使用することがスケール発生を抑制できる点で好ましい。軟化の方法は、特に限定されないが、ナトリウム形のイオン交換樹脂等を用いた軟化器が好適である。
【0024】
本発明で使用する電気式脱イオン水製造装置において、中間イオン交換膜としては、カチオン交換膜又はアニオン交換膜の単一膜、あるいはアニオン交換膜、カチオン交換膜の両方を配置した複式膜のいずれであってもよい。装置上部又は装置下部にアニオン交換膜、カチオン交換膜の両方を配置した複式膜とする場合、アニオン交換膜及びカチオン交換膜のそれぞれの高さ(面積)は被処理水の水質又は処理目的などによって適宜決定される。また、単一膜を使用する場合、被処理水中から除去したいイオン種に応じてイオン膜が決定される。
【0025】
脱塩室に充填されるイオン交換体は、特に制限されず、アニオン交換体単床、カチオン交換体単床及びアニオン交換体とカチオン交換体の混床又はこれらの組み合わせのものが挙げられる。また、イオン交換体としては、イオン交換樹脂、イオン交換繊維などイオン交換機能を有する物質であればいずれでもよく、また、それらを組み合わせたものであってもよい。また、前記両イオン交換体に導電性物質を添加することにより、さらに脱塩室の導電性を高めることができる。添加する導電生物質の形状としては、特に制限されず、繊維でも粒状のものでもよい。導電性繊維としては、例えば、炭素繊維あるいはナイロン系、アクリル系、ポリエステル系などの合成繊維を単独で又は練りこんで複合繊維として、表面をカーボンブラックでコーティングしたものが挙げられる。また、粒状の導電性物質としては、小粒の黒鉛、小粒の活性炭などが挙げられる。
【0026】
【実施例】
実施例1
下記装置仕様及び運転条件において、図1と同様の構成で3個の脱イオンモジュール(6個の小脱塩室)を並設して構成される電気式脱イオン水製造装置を使用した。被処理水は、工業用水の逆浸透膜透過水を用い、その導電率は、3.0μS/cmであった。また、被処理水の一部を濃縮水及び電極水として使用した。濃縮室に流入する濃縮水及び電極室(陰極室及び陽極室)に流入する電極水に約5%のNa2 SO4 溶液を定量ポンプで添加供給した。この場合、濃縮水又は電極水は以後の運転に渡り、濃縮室及び電極室の流入水の導電率がほぼ600μS/cmとなるように定量ポンプを運転した。運転時間は5000時間であった。5000時間後、抵抗率17.9MΩ-cm の処理水を得るための運転条件を表1に示す。
【0027】
(運転の条件)
・電気式脱イオン水製造装置;試作EDI
・第1小脱塩室;幅300mm、高さ600mm、厚さ3mm
・第1小脱塩室に充填したイオン交換樹脂;アニオン交換樹脂(A)とカチオン
交換樹脂(K)の混合イオン交換樹脂(混合は体積比でA:K=1:1)
・第2小脱塩室;幅300mm、高さ600mm、厚さ8mm
・第2小脱塩室充填イオン交換樹脂;アニオン交換樹脂
・装置全体の流量;1m3
【0028】
実施例2
濃縮水及び電極水に添加する約5%のNa2 SO4 溶液に代えて、約3%のH2 SO4 溶液を添加供給し、以後の運転に渡り、濃縮室及び電極室の流入水のpHをほぼ2となるように時々追加添加した以外は、実施例1と同様の方法で行った。また、この実験では5000時間後の濃縮室の通水差圧も同様に計測した。結果を表1に示す。
【0029】
比較例1
下記装置仕様及び運転条件において、図2と同様の構成で、6個の脱イオンモジュールを並設して構成される電気式脱イオン水製造装置を使用した。但し、濃縮水及び電極水は被処理水の一部を分岐して使用し、濃縮水は逆浸透膜装置の被処理水側に返送した。また、被処理水は、実施例1と同様のものを使用した。運転時間は5000時間であった。5000時間後の濃縮室の通水差圧も同様に計測した。また、同時間における抵抗率17.9MΩ-cm の処理水を得るための運転条件を表1に示す。
【0030】
(運転の条件)
・電気式脱イオン水製造装置;EDI(オルガノ社製)
・脱塩室;幅300mm、高さ600mm、厚さ8mm
・脱塩室の下流側に充填したイオン交換樹脂;アニオン交換樹脂(A)とカチオ
ン交換樹脂(K)の混合物(混合は体積比でA:K=1:1)
・装置全体の流量;1m3
【0031】
【表1】

Figure 0004481417
【0032】
【発明の効果】
本発明によれば、濃縮水や電極水はより電解質濃度が高まり、脱塩室の入口側から出口側の全体に渡り電流密度を均一化でき、消費電力を低減できる。また、電解質として酸を使用すれば、付着したスケールを酸洗浄できる。この電解質溶液の添加は、ひとつの脱塩室が2つの小脱塩室からなる当該電気式脱イオン水製造装置においては特に有効である。すなわち、当該装置においては2つの小脱塩室、濃縮室などで水の流れがそれぞれに存在し、電流の流れやすい箇所、流れ難い箇所もそれぞれに存在するので電流の偏りが生じ易く、処理水の水質を低下させる場合があるが、電解質溶液の添加によりこれらの問題を解決できる。
【図面の簡単な説明】
【図1】本発明で使用する電気式脱イオン水製造装置の1例を示す模式図である。
【図2】従来の電気式脱イオン水製造装置の模式図である。
【符号の説明】
D、D1 〜D4 、104 脱塩室
1 、d3 、d5 、d7 第1小脱塩室
2 、d4 、d6 、d8 第2小脱塩室
1、105 濃縮室
2、112、113 電極室
3、101 カチオン膜
4、102 アニオン膜
5 中間イオン交換膜
6、109 陰極
7、110 陽極
8、103 イオン交換体
10、100 電気式脱イオン水製造装置
11、111 被処理水流入ライン
12 第2小脱塩室の処理水流入ライン
13 第1小脱塩室の処理水流入ライン
14、114 脱イオン水流出ライン
15、115 濃縮水流入ライン
16、116 濃縮水流出ライン
17a、17b、117 電極水流入ライン
18a、18b、118 電極水流出ライン[0001]
BACKGROUND OF THE INVENTION
The present invention reduces the electrical resistance of power-saving electrical deionized water production equipment used in various industries such as semiconductor manufacturing field, pharmaceutical manufacturing field, power generation field such as nuclear power and thermal power, food industry, and laboratory facilities. The present invention relates to a method for producing deionized water.
[0002]
[Prior art]
As a method for producing deionized water, there is conventionally known a method in which deionized water is passed through an ion exchange resin to be treated. In this method, regeneration is performed with a drug when the ion exchange resin is saturated with ions. In order to eliminate such disadvantages in processing operations, recently, a method for producing deionized water by an electric deionization method which does not require any regeneration by a chemical agent has been established and has been put into practical use.
[0003]
FIG. 2 is a schematic sectional view of the conventional typical electric deionized water production apparatus. As shown in FIG. 2, the cation exchange membrane 101 and the anion exchange membrane 102 are alternately arranged apart from each other, and every other ion exchanger 103 is placed in the space formed by the cation exchange membrane 101 and the anion exchange membrane 102. Fill with desalination chamber. The treated water inflow side (front stage) of the desalting chamber is filled with anion exchange resin 103a, and the treated water outflow side (rear stage) of the desalting chamber is filled with a mixed ion exchange resin 103b of a cation exchange resin and an anion exchange resin. Filled. Further, a portion not filled with the ion exchanger 103 formed by the anion exchange membrane 102 and the cation exchange membrane 101 located adjacent to each of the desalting chambers 104 is a concentration chamber 105 for flowing concentrated water.
[0004]
Further, a deionization module is formed by the cation exchange membrane 101, the anion exchange membrane 102, and the ion exchanger 103 filled therein. That is, a cation exchange membrane is sealed on one side of a frame body whose interior is omitted in the figure, an anion exchange resin is placed on the upper part (front stage) of the hollowed part of the frame body, and the lower part (rear stage). Each is mixed with a mixed ion exchange resin, and then an anion exchange membrane is sealed to the other part of the frame. The ion exchange membrane is relatively soft, and when the ion exchanger is filled inside the frame and sealed on both sides with the ion exchange membrane, the ion exchange membrane is curved and the packed layer of the ion exchanger becomes In order to prevent non-uniformity, a plurality of ribs are generally provided vertically in the space of the frame.
[0005]
FIG. 2 shows a state in which a plurality of such deionization modules are sandwiched between them with a spacer not shown in the figure interposed therebetween. A cathode 109 is arranged on one side of the deionization modules arranged side by side. And an anode 110 is disposed on the other end side. In addition, the position where the above-mentioned spacer is sandwiched is the concentrating chamber 105, and on both outer sides of the concentrating chamber 105 at both ends, if necessary, a partition such as a cation exchange membrane 101, an anion exchange membrane 102, or a simple membrane having no ion exchange properties. The portions where the membranes are arranged and the electrodes 109 and 110 that are partitioned by the partition membrane are in contact with each other are referred to as a cathode chamber 112 and an anode chamber 113, respectively. Thus, in the conventional electric deionized water production apparatus, the number of concentration chambers is one more than the number of demineralization chambers, or the concentration chambers at both ends are separated from the electrode chamber without a partition membrane. In that case, it was one less.
[0006]
The case where deionized water is manufactured by such an electric deionized water manufacturing apparatus will be described with reference to FIG. That is, a direct current is passed between the cathode 109 and the anode 110, water to be treated flows from the water to be treated inflow line 111, concentrated water from the concentrated water inflow line 115, and electrode water inflow lines 117 and 117. Electrode water flows from each. To-be-treated water flowing from the to-be-treated water inflow line 111 flows down the desalting chamber 104, and first passes through the anion exchange resin 103a in the previous stage and then the mixed ion exchange resin 103b, and then, hydrochloric acid ions, sulfate ions, Mg and Ca. Cation components such as are removed. Concentrated water flowing in from the concentrated water inflow line 115 rises in each concentration chamber 105, receives impurity ions moving through the cation exchange membrane 101 and the anion exchange membrane 102, and concentrates as concentrated water in which impurity ions are concentrated. The electrode water flowing out from the outflow line 116 and further flowing in from the electrode water inflow lines 117 and 117 flows out from the electrode water outflow lines 118 and 118. Accordingly, demineralized water is obtained from the deionized water outflow line 114.
[0007]
On the other hand, various attempts have been made to reduce the electrical resistance of the electrical deionized water production apparatus in order to remove the impurity ions in the water to be treated with power saving using such an electrical deionized water production apparatus. Yes. In this case, in the desalting chamber, since the filling method of the ion exchanger used in the desalting chamber and the quality of the treated water required are determined, the electric resistance of the desalting chamber can be reduced. There is a limit. Therefore, in many cases, a method is adopted in which the increase in the conductivity is promoted by the circulation of the concentrated water and the electric resistance of the concentration chamber is reduced. This method is extremely effective in reducing the electric resistance of the concentrating chamber.
[0008]
[Problem to be Solved by the Invention]
However, for example, when a part of the permeated water of the reverse osmosis membrane device which is the treated water is used as concentrated water, hardness components such as Ca and Mg which are initially present in a minute amount in the concentrated water are used for a long period of circulation. It becomes easy to precipitate as a scale in the concentration chamber. When the scale occurs, the electrical resistance at that portion increases, and current does not flow easily. That is, in order to pass the same current value as when no scale is generated, it is necessary to increase the voltage, which increases power consumption. In addition, the current density differs in the concentration chamber depending on the place where the scale is deposited, and current non-uniformity occurs in the desalting chamber. Further, when the scale adhesion amount further increases, a water flow differential pressure is generated and the voltage further increases. When the maximum voltage value of the apparatus is exceeded, the current value decreases. In this case, the current value necessary for ion removal cannot flow, and the quality of the treated water is deteriorated.
[0009]
Therefore, the object of the present invention is to improve the electrical conductivity of electrode water and concentrated water in addition to drastic improvement from the structural aspect of the electric deionized water production apparatus, and reduce the electrical resistance and An object of the present invention is to provide a method for producing deionized water that can prevent the generation of scale.
[0010]
[Means for Solving the Problems]
In this situation, the present inventors have conducted intensive studies, and as a result, (1) partitioned by a cation exchange membrane on one side, an anion exchange membrane on the other side, and an intermediate ion exchange membrane located between the two membranes 2 A small desalting chamber is filled with an ion exchanger to form a desalting chamber, and a concentration chamber is provided on both sides of the desalting chamber via the cation exchange membrane and anion exchange membrane. If an electric deionized water production apparatus having a structure in which an anode chamber having an anode and a cathode chamber having a cathode are used is used, at least one of the two small desalting chambers is filled. The ion exchanger can be a single ion exchanger such as only an anion exchanger, or only a cation exchanger, or a mixed exchanger of an anion exchanger and a cation exchanger. Reduce resistance and get high performance (2) When deionized water is produced using the electric deionized water production apparatus having the above structure, an electrolyte solution may be added and supplied to the concentrated water or electrode water. For example, the current density can be made uniform from the inlet side to the outlet side of the desalting chamber, and the power consumption can be further reduced. (3) If an inorganic acid is used as the electrolyte, the attached scale can be acid-washed, etc. As a result, the present invention has been completed.
[0011]
That is, the invention (1) of claim 1 is directed to a cation exchange membrane on one side, an anion exchange membrane on the other side, and an intermediate ion that is a single membrane or a dual membrane located between the cation exchange membrane and the anion exchange membrane. Two small desalting chambers partitioned by an exchange membrane are filled with ion exchangers to form a desalting chamber, and concentration chambers are provided on both sides of the desalting chamber via the cation exchange membrane and anion exchange membrane. The desalting chamber and the concentrating chamber are disposed between an anode chamber equipped with an anode and a cathode chamber equipped with a cathode, and water to be treated flows into one small desalting chamber while applying a voltage. In the method of producing deionized water by flowing the effluent from the demineralization chamber into the other small desalination chamber and removing the impurity ions in the water to be treated by flowing the concentrated water into the concentration chamber, Concentrated water supplied, anode water supplied to the anode chamber and supplied to the cathode chamber Of the cathode water that is intended to provide a deionized water producing method characterized by the addition supplying the electrolyte solution in at least one. By adopting such a configuration, the ion exchanger filled in at least one of the two small desalting chambers is, for example, only an anion exchanger, or a single ion exchanger or anion such as only a cation exchanger. It can be a mixed exchanger of an exchanger and a cation exchanger, and can be set to an optimum thickness for reducing the electric resistance and obtaining high performance for each type of ion exchanger. Concentrated water and electrode water have a higher electrolyte concentration, and the current density can be made uniform from the inlet side to the outlet side of the desalting chamber, thereby further reducing power consumption. Further, if an acid is used as the electrolyte, the attached scale can be washed with an acid. The addition of the electrolyte solution is particularly effective in the electric deionized water production apparatus in which one desalting chamber is composed of two small desalting chambers. That is, in this apparatus, water flows in two small desalination chambers, concentration chambers, etc., and there are locations where current easily flows and locations where current does not flow easily. However, these problems can be solved by adding an electrolyte solution.
[0012]
The invention (2) of claim 2 is a cation exchange membrane on one side, an anion exchange membrane on the other side, and an intermediate ion exchange membrane which is a single membrane or a multiple membrane located between the cation exchange membrane and the anion exchange membrane. The two small desalting chambers are filled with ion exchangers to form a desalting chamber, and concentration chambers are provided on both sides of the desalting chamber via the cation exchange membrane and anion exchange membrane. A salt chamber and a concentrating chamber are disposed between an anode chamber having an anode and a cathode chamber having a cathode, and water to be treated flows into one small desalting chamber while applying a voltage, and then the small desalting chamber In the method for producing deionized water by flowing out the effluent of the chamber into the other small desalination chamber and removing the impurity ions in the water to be treated by flowing the concentrated water into the concentration chamber, the deionized water is supplied to the concentration chamber. Concentrated water, anode water supplied to the anode chamber, or cathode supplied to the cathode chamber Is to provide a deionized water producing method thereof conductivity, characterized in that a 100~1000μS / cm. By adopting such a configuration, the same effects as those of the above-described invention can be obtained, and concentrated water and electrolyzed water can be managed with a conductivity meter, which is a relatively simple device, and operation management is easy. Further, when the concentration of the electrolyte in the concentrated water is high, there is a concern that the quality of the treated water is deteriorated due to the osmotic pressure, but this worry is eliminated.
[0013]
Invention (3) of claim 3 provides the method for producing deionized water according to (1), wherein the electrolyte solution is a solution containing no hardness ions. By adopting such a configuration, it is possible to eliminate the hardness component in the concentrated water and electrolytic water as much as possible to increase the electrolyte concentration, and to prevent the generation of scale.
[0014]
Invention (4) of claim 4 provides the method for producing deionized water according to item (1), wherein the electrolyte is an inorganic acid. By adopting such a configuration, the scale in the concentrating chamber is removed by the cleaning action of the inorganic acid, and the scale is hardly generated.
[0015]
The invention (5) of claim 5 is a cation exchange membrane on one side, an anion exchange membrane on the other side, and an intermediate ion exchange membrane which is a single membrane or a multiple membrane located between the cation exchange membrane and the anion exchange membrane. The two small desalting chambers are filled with ion exchangers to form a desalting chamber, and concentration chambers are provided on both sides of the desalting chamber via the cation exchange membrane and anion exchange membrane. A salt chamber and a concentrating chamber are disposed between an anode chamber having an anode and a cathode chamber having a cathode, and water to be treated flows into one small desalting chamber while applying a voltage, and then the small desalting chamber In the method for producing deionized water by flowing out the effluent of the chamber into the other small desalination chamber and removing the impurity ions in the water to be treated by flowing the concentrated water into the concentration chamber, the deionized water is supplied to the concentration chamber. Concentrated water, anode water supplied to the anode chamber, or cathode supplied to the cathode chamber Is to provide a deionized water producing method characterized by its pH is 1-5. By adopting such a configuration, the same effects as those of the above-described invention can be obtained, and concentrated water and electrode water can be managed with a pH meter which is a relatively simple device, and operation management is easy.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
An electric deionized water production apparatus used in the deionized water production method of the present invention will be described with reference to FIG. FIG. 1 is a schematic view showing an example of an electric deionized water production apparatus. As shown in FIG. 1, the cation exchange membrane 3, the intermediate ion exchange membrane 5 and the anion exchange membrane 4 are alternately arranged apart from each other, and ion exchange is performed in the space formed by the cation exchange membrane 3 and the intermediate ion exchange membrane 5. The body 8 is filled to form the first small desalting chambers d 1 , d 3 , d 5 , d 7 and the space formed by the intermediate ion exchange membrane 5 and the anion exchange membrane 4 is filled with the ion exchanger 8. The second small desalting chambers d 2 , d 4 , d 6 , and d 8 are formed, and the first small desalting chamber d 1 and the second small desalting chamber d 2 form the desalting chamber D 1 and the first small desalting chamber d 2. The desalting chamber D 3 and the second small desalting chamber d 4 are the desalting chamber D 2 , and the first small desalting chamber d 5 and the second small desalting chamber d 6 are the desalting chamber D 3 and the first small desalting chamber. The chamber d 7 and the second small desalting chamber d 8 are referred to as a desalting chamber D 4 . A portion not filled with the ion exchanger 8 formed by the anion exchange membrane 4 and the cation exchange membrane 3 located next to each of the desalting chambers D 2 and D 3 is a concentration chamber 1 for flowing concentrated water. To do. Drawing sequentially features this depletion chamber D 1 from the left, concentrating chamber 1, desalting D 2, concentrating chamber 1, depletion chamber D 3, concentrating chamber 1, to form a depletion chamber D 4. Further, the cathode chamber 2a through the cation exchange membrane 3 to the left of the depletion chamber D 1, provided respectively anode chamber 2b through the anion exchange membrane 4 to the right of the depletion chamber D 4. Further, in two small desalination chambers adjacent via the intermediate membrane 5, the treated water outflow line 12 of the treated water in the second small desalting chamber is connected to the treated water inflow line 13 of the first small desalting chamber. Has been.
[0017]
Such a desalting chamber is composed of a deionization module formed by two framed hollow bodies and three ion exchange membranes. That is, a cation exchange membrane is sealed on one side of the first frame that is not shown in the figure, the hollowed portion of the first frame is filled with the ion exchanger, and then the other portion of the first frame is filled. An intermediate ion exchange membrane is sealed to form a first small desalting chamber. Next, the second frame is sealed so as to sandwich the intermediate ion exchange membrane, and the hollowed portion of the second frame is filled with the ion exchanger, and then the other portion of the second frame is filled with the anion exchange membrane. To form a second small desalted material.
[0018]
The electric deionized water production apparatus is usually operated as follows. That is, a direct current is passed between the cathode 6 and the anode 7, and water to be treated flows from the treated water inflow line 11, concentrated water flows from the concentrated water inflow line, and the cathode water inflow line 17 a and the anode water flow in. Cathode water and anode water flow in from the line 17b, respectively. To-be-treated water flowing from the to-be-treated water inflow line 11 flows down the second small desalination chambers d 2 , d 4 , d 6 , and d 8 , and impurity ions are removed when passing through the packed bed of the ion exchanger 8. Is done. Furthermore, the effluent that has passed through the treated water outflow line 12 of the second small desalination chamber passes through the treated water inflow line 13 of the first small desalination chamber, and the first small desalination chambers d 1 , d 3 , d. 5 and d 7 flow down, and again, when passing through the packed bed of the ion exchanger 8, impurity ions are removed and deionized water is obtained from the deionized water outflow line 14. Further, the concentrated water flowing in from the concentrated water inflow line 15 rises in each concentration chamber 1, receives impurity ions moving through the cation exchange membrane 3 and the anion exchange membrane 4, and concentrates the impurity ions as concentrated water. Cathode water flowing out from the concentrating chamber outflow line 16 and further flowing in from the cathode water inflow line 17a flows out from the cathode water outflow line 18a, and anode water flowing in from the anode water inflow line 17b flows out from the anode water outflow line 18b. The By the above operation, impurity ions in the water to be treated are electrically removed. The flow direction in the first small desalination chamber and the second small desalination chamber of the water to be treated is not particularly limited, and in addition to the above embodiment, in the first small desalination chamber and the second small desalination chamber. The flow direction may be different. In addition to the above embodiment, the small desalination chamber into which the water to be treated flows first flows the water to be treated into the first small desalination chamber and then flows down, and then flows out of the first small desalination chamber. Water may flow into the second small desalting chamber. Further, the flow direction of the concentrated water is also appropriately determined.
[0019]
In the deionized water production method of the present invention, when using the electric deionized water production apparatus, the concentrated water supplied to the concentration chamber, the anode water supplied to the anode chamber, and the cathode chamber are supplied. An electrolyte solution is added and supplied to at least one selected from the cathode water. The electrolyte solution is added and supplied, for example, by a metering pump, continuously or intermittently added to the concentrated water supplied to the concentration chamber or the electrode water supplied to the electrode chamber via the injection tube. Done. The electrolyte solution may be added to one or more of concentrated water, anode water, and cathode water, and the electrolyte solution may be added to all concentrated water, anode water, and cathode water. The method is preferable from the viewpoint of making the current density uniform over the entire effective area of the desalting chamber and reducing the electrical resistance. In addition, when an electrolyte solution is added and supplied to concentrated water, anode water, or cathode water, if the method of recirculating the concentrated water, anode water, or cathode water is employed, the supply amount of electrolyte solution is reduced. You can also
[0020]
The electrolyte used in the deionized water production method of the present invention is not particularly limited, and may be an inorganic electrolyte or an organic electrolyte. Examples of inorganic electrolytes include nitric acid, sulfuric acid, inorganic acids such as phosphoric acid such as H 3 PO 4 and H 4 P 2 O 7 , metal hydroxides such as NaOH, KOH, and CuOH, K 2 SO 4 , NaNO 3 and the like. Examples thereof include metal salts. It is preferable that the inorganic electrolyte does not contain a metal species of a hardness component such as Ca or Mg that may be deposited as a scale. Further, since chlorine may be generated at the anode, it is better not to use chlorides such as HCl and NaCl. As the inorganic electrolyte, it is particularly preferable to use an inorganic acid such as nitric acid or sulfuric acid having a cleaning action on the scale. Organic electrolytes include water-soluble organic acids such as carboxylic acids such as formic acid, acetic acid and oxalic acid, amines such as ethylamine and ethylenediamine, polyaminocarboxylic acids such as EDTA (ethylenediaminetetraacetic acid), and oxycarboxylic acids such as glyceric acid and glycolic acid. Examples include chelating agents for acids. It is particularly preferable to use EDTA as the organic electrolyte. These electrolytes may be used alone or in a combination of two types.
[0021]
Moreover, in the deionized water manufacturing method of this invention, the electrical conductivity of concentrated water, anode water, and cathode water is 100-1000 microsiemens / cm normally, Preferably it is 300-800 microsiemens / cm. If the electrical conductivity is less than 100 μS / cm, the effect of reducing the electric resistance is reduced, and if it exceeds 1000 μS / cm, the concentrated water leaks through the ion exchange membrane to the desalting chamber due to the osmotic pressure. It is not preferable at the point which reduces the quality of treated water.
[0022]
Moreover, in the deionized water manufacturing method of this invention, when an acid is used for electrolyte, pH of concentrated water, anode water, and cathode water is 1-5, Preferably it is 1.5-3.0. If the pH is less than 1, there is a high possibility that anion components such as sulfate ions and nitrate ions will diffuse back to the desalting chamber side, and if the pH exceeds 5, it becomes difficult to dissolve the scale attached to the electrode chamber. The acid cleaning ability is reduced.
[0023]
The treated water used in the deionized water production method of the present invention is not particularly limited. For example, from well water, tap water, sewage, industrial water, river water, washing waste water or concentration chambers such as semiconductor devices in semiconductor manufacturing plants. Permeated water obtained by treating the recovered water with a reverse osmosis membrane. In this way, the reverse osmosis membrane treatment is performed as a pretreatment, and when using a part of the permeated water as the concentrated water, the treated water supplied to the desalting chamber and the concentrated water supplied to the concentration chamber are softened, It is preferable to use it in that scale generation can be suppressed. The softening method is not particularly limited, but a softener using a sodium ion exchange resin or the like is suitable.
[0024]
In the electric deionized water production apparatus used in the present invention, as the intermediate ion exchange membrane, any of a single membrane of a cation exchange membrane or an anion exchange membrane, or a multiple membrane in which both an anion exchange membrane and a cation exchange membrane are arranged It may be. In case of a dual membrane in which both an anion exchange membrane and a cation exchange membrane are arranged in the upper part or lower part of the device, the height (area) of each of the anion exchange membrane and the cation exchange membrane depends on the quality of the water to be treated or the purpose of treatment. It is determined appropriately. Moreover, when using a single membrane, an ion membrane is determined according to the ion species to be removed from the water to be treated.
[0025]
The ion exchanger filled in the desalting chamber is not particularly limited, and examples thereof include an anion exchanger single bed, a cation exchanger single bed, a mixed bed of an anion exchanger and a cation exchanger, or a combination thereof. The ion exchanger may be any substance having an ion exchange function, such as an ion exchange resin or an ion exchange fiber, or may be a combination thereof. In addition, the conductivity of the desalting chamber can be further increased by adding a conductive substance to both the ion exchangers. The shape of the conductive biomaterial to be added is not particularly limited, and may be fiber or granular. Examples of the conductive fiber include carbon fiber or synthetic fiber such as nylon-based, acrylic-based, polyester-based or the like alone or kneaded to form a composite fiber whose surface is coated with carbon black. Examples of the granular conductive material include small graphite and small activated carbon.
[0026]
【Example】
Example 1
In the following apparatus specifications and operating conditions, an electric deionized water production apparatus constituted by arranging three deionization modules (six small demineralization chambers) in parallel with the same configuration as in FIG. 1 was used. As the water to be treated, reverse osmosis membrane permeated water for industrial water was used, and its conductivity was 3.0 μS / cm. Moreover, some treated water was used as concentrated water and electrode water. About 5% Na 2 SO 4 solution was added and supplied to the concentrated water flowing into the concentration chamber and the electrode water flowing into the electrode chamber (cathode chamber and anode chamber) with a metering pump. In this case, the concentrated water or the electrode water was operated in the subsequent operation, and the metering pump was operated so that the conductivity of the influent water in the concentration chamber and the electrode chamber was approximately 600 μS / cm. The operation time was 5000 hours. Table 1 shows operating conditions for obtaining treated water having a resistivity of 17.9 MΩ-cm after 5000 hours.
[0027]
(Operating conditions)
・ Electric deionized water production equipment; prototype EDI
・ First small desalination chamber: width 300mm, height 600mm, thickness 3mm
-Ion exchange resin filled in the first small desalting chamber; mixed ion exchange resin of anion exchange resin (A) and cation exchange resin (K) (mixing ratio is A: K = 1: 1 by volume)
・ Second small desalination chamber; width 300mm, height 600mm, thickness 8mm
・ Second ion exchange resin filled in small desalting chamber; anion exchange resin ・ Flow rate of the entire apparatus: 1 m 3 / h
[0028]
Example 2
Instead of the approximately 5% Na 2 SO 4 solution added to the concentrated water and the electrode water, an approximately 3% H 2 SO 4 solution is added and supplied. The procedure was the same as in Example 1 except that the pH was sometimes added so that the pH was approximately 2. In this experiment, the water flow differential pressure in the concentrating chamber after 5000 hours was also measured. The results are shown in Table 1.
[0029]
Comparative Example 1
In the following apparatus specifications and operating conditions, an electric deionized water production apparatus configured by arranging six deionization modules in parallel with the same configuration as in FIG. 2 was used. However, the concentrated water and the electrode water were used by branching a part of the treated water, and the concentrated water was returned to the treated water side of the reverse osmosis membrane device. Moreover, the thing similar to Example 1 was used for to-be-processed water. The operation time was 5000 hours. The water flow differential pressure in the concentration chamber after 5000 hours was measured in the same manner. Table 1 shows the operating conditions for obtaining treated water having a resistivity of 17.9 MΩ-cm at the same time.
[0030]
(Operating conditions)
-Electric deionized water production equipment; EDI (manufactured by Organo)
・ Desalination chamber: width 300mm, height 600mm, thickness 8mm
・ Ion exchange resin packed downstream of the desalting chamber; mixture of anion exchange resin (A) and cation exchange resin (K) (mixing ratio is A: K = 1: 1 by volume)
・ Flow rate of the entire device: 1m 3 / h
[0031]
[Table 1]
Figure 0004481417
[0032]
【The invention's effect】
According to the present invention, the concentration of electrolyte in concentrated water and electrode water is further increased, the current density can be made uniform from the inlet side to the outlet side of the desalting chamber, and the power consumption can be reduced. Further, if an acid is used as the electrolyte, the attached scale can be washed with an acid. The addition of the electrolyte solution is particularly effective in the electric deionized water production apparatus in which one desalting chamber is composed of two small desalting chambers. That is, in this apparatus, water flows in two small desalination chambers, concentration chambers, etc., and there are locations where current easily flows and locations where current does not flow easily. However, these problems can be solved by adding an electrolyte solution.
[Brief description of the drawings]
FIG. 1 is a schematic view showing an example of an electrical deionized water production apparatus used in the present invention.
FIG. 2 is a schematic view of a conventional electric deionized water production apparatus.
[Explanation of symbols]
D, D 1 to D 4 , 104 Desalination chamber d 1 , d 3 , d 5 , d 7 First small desalination chamber d 2 , d 4 , d 6 , d 8 Second small desalination chamber 1 , 105 Concentration Chamber 2, 112, 113 Electrode chamber 3, 101 Cationic membrane 4, 102 Anion membrane 5 Intermediate ion exchange membrane 6, 109 Cathode 7, 110 Anode 8, 103 Ion exchanger 10, 100 Electric deionized water production apparatus 11, 111 Processed water inflow line 12 Processed water inflow line 13 in the second small desalination chamber Processed water inflow line 14, 114 in the first small desalination chamber Deionized water outflow line 15, 115 Concentrated water inflow line 16, 116 Concentrated water outflow Lines 17a, 17b, 117 Electrode water inflow lines 18a, 18b, 118 Electrode water outflow lines

Claims (5)

一側のカチオン交換膜、他側のアニオン交換膜及び当該カチオン交換膜と当該アニオン交換膜の間に位置する単一膜又は複式膜である中間イオン交換膜で区画される2つの小脱塩室にイオン交換体を充填して脱塩室を構成し、前記カチオン交換膜、アニオン交換膜を介して脱塩室の両側に濃縮室を設け、これらの脱塩室及び濃縮室を陽極を備えた陽極室と陰極を備えた陰極室の間に配置し、電圧を印加しながら一方の小脱塩室に被処理水を流入し、次いで、該小脱塩室の流出水を他方の小脱塩室に流入すると共に、濃縮室に濃縮水を流入して被処理水中の不純物イオンを除去し、脱イオン水を製造する方法において、前記濃縮室に供給される濃縮水、前記陽極室に供給される陽極水及び前記陰極室に供給される陰極水のうち、少なくとも1つに電解質溶液を添加供給することを特徴とする脱イオン水製造方法。Two small desalting chambers defined by a cation exchange membrane on one side, an anion exchange membrane on the other side, and an intermediate ion exchange membrane that is a single membrane or a dual membrane located between the cation exchange membrane and the anion exchange membrane An ion exchanger is filled to form a desalting chamber. Concentration chambers are provided on both sides of the desalting chamber via the cation exchange membrane and anion exchange membrane, and the desalting chamber and the concentration chamber are provided with an anode. Arranged between the anode chamber and the cathode chamber provided with the cathode, the water to be treated flows into one small desalination chamber while applying a voltage, and then the effluent from the small desalination chamber flows into the other In the method for producing deionized water by flowing concentrated water into the concentrating chamber to remove impurity ions in the water to be treated and supplying deionized water, the concentrated water supplied to the concentrating chamber is supplied to the anode chamber. At least one of anode water supplied to the cathode chamber Deionized water production method is characterized by adding supplying an electrolyte solution. 一側のカチオン交換膜、他側のアニオン交換膜及び当該カチオン交換膜と当該アニオン交換膜の間に位置する単一膜又は複式膜である中間イオン交換膜で区画される2つの小脱塩室にイオン交換体を充填して脱塩室を構成し、前記カチオン交換膜、アニオン交換膜を介して脱塩室の両側に濃縮室を設け、これらの脱塩室及び濃縮室を陽極を備えた陽極室と陰極を備えた陰極室の間に配置し、電圧を印加しながら一方の小脱塩室に被処理水を流入し、次いで、該小脱塩室の流出水を他方の小脱塩室に流入すると共に、濃縮室に濃縮水を流入して被処理水中の不純物イオンを除去し、脱イオン水を製造する方法において、前記濃縮室に供給される濃縮水、前記陽極室に供給される陽極水又は前記陰極室に供給される陰極水は、その導電率が100〜1000μS/cmであることを特徴とする脱イオン水製造方法。Two small desalting chambers defined by a cation exchange membrane on one side, an anion exchange membrane on the other side, and an intermediate ion exchange membrane that is a single membrane or a dual membrane located between the cation exchange membrane and the anion exchange membrane An ion exchanger is filled to form a desalting chamber. Concentration chambers are provided on both sides of the desalting chamber via the cation exchange membrane and anion exchange membrane, and the desalting chamber and the concentration chamber are provided with an anode. Arranged between the anode chamber and the cathode chamber provided with the cathode, the water to be treated flows into one small desalination chamber while applying a voltage, and then the effluent from the small desalination chamber flows into the other In the method for producing deionized water by flowing concentrated water into the concentrating chamber to remove impurity ions in the water to be treated and supplying deionized water, the concentrated water supplied to the concentrating chamber is supplied to the anode chamber The anode water supplied to the cathode chamber or the cathode chamber has a conductivity of 100. Deionized water production method which is a 1000 .mu.s / cm. 前記電解質溶液が、硬度イオンを含まない溶液であることを特徴とする請求項1記載の脱イオン水製造方法。  The method for producing deionized water according to claim 1, wherein the electrolyte solution is a solution containing no hardness ions. 前記電解質が、無機酸であることを特徴とする請求項1記載の脱イオン水製造方法。  The method for producing deionized water according to claim 1, wherein the electrolyte is an inorganic acid. 一側のカチオン交換膜、他側のアニオン交換膜及び当該カチオン交換膜と当該アニオン交換膜の間に位置する単一膜又は複式膜である中間イオン交換膜で区画される2つの小脱塩室にイオン交換体を充填して脱塩室を構成し、前記カチオン交換膜、アニオン交換膜を介して脱塩室の両側に濃縮室を設け、これらの脱塩室及び濃縮室を陽極を備えた陽極室と陰極を備えた陰極室の間に配置し、電圧を印加しながら一方の小脱塩室に被処理水を流入し、次いで、該小脱塩室の流出水を他方の小脱塩室に流入すると共に、濃縮室に濃縮水を流入して被処理水中の不純物イオンを除去し、脱イオン水を製造する方法において、前記濃縮室に供給される濃縮水、前記陽極室に供給される陽極水又は前記陰極室に供給される陰極水は、そのpHが1〜5であることを特徴とする脱イオン水製造方法。Two small desalting chambers defined by a cation exchange membrane on one side, an anion exchange membrane on the other side, and an intermediate ion exchange membrane that is a single membrane or a dual membrane located between the cation exchange membrane and the anion exchange membrane An ion exchanger is filled to form a desalting chamber. Concentration chambers are provided on both sides of the desalting chamber via the cation exchange membrane and anion exchange membrane. Arranged between the anode chamber and the cathode chamber provided with the cathode, the water to be treated flows into one small desalination chamber while applying a voltage, and then the effluent from the small desalination chamber flows into the other small desalination chamber. In the method for producing deionized water by flowing concentrated water into the concentrating chamber to remove impurity ions in the water to be treated and supplying deionized water, the concentrated water supplied to the concentrating chamber is supplied to the anode chamber The anode water supplied to the cathode chamber or the cathode chamber has a pH of 1 to 5. Deionized water producing method comprising Rukoto.
JP2000082073A 2000-03-23 2000-03-23 Deionized water production method Expired - Fee Related JP4481417B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000082073A JP4481417B2 (en) 2000-03-23 2000-03-23 Deionized water production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000082073A JP4481417B2 (en) 2000-03-23 2000-03-23 Deionized water production method

Publications (3)

Publication Number Publication Date
JP2001259645A JP2001259645A (en) 2001-09-25
JP2001259645A5 JP2001259645A5 (en) 2007-05-10
JP4481417B2 true JP4481417B2 (en) 2010-06-16

Family

ID=18598921

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000082073A Expired - Fee Related JP4481417B2 (en) 2000-03-23 2000-03-23 Deionized water production method

Country Status (1)

Country Link
JP (1) JP4481417B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4597388B2 (en) * 2001-01-10 2010-12-15 オルガノ株式会社 Electric deionized water production apparatus and deionized water production method
JP3729347B2 (en) * 2002-05-13 2005-12-21 株式会社荏原製作所 Electric regenerative desalination equipment
JP2007268331A (en) * 2006-03-30 2007-10-18 Japan Organo Co Ltd Apparatus for manufacturing electrically deionized water
KR101688530B1 (en) 2009-12-21 2016-12-21 삼성전자주식회사 Capacitive deionization device
CN104310543B (en) * 2014-10-17 2015-12-30 山东奥美环境股份有限公司 Electroosmose process is separated the method for complex state DTPA and hardness ions

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01151911A (en) * 1987-12-10 1989-06-14 Tokuyama Soda Co Ltd Electrodialysis tank
JPH0663365A (en) * 1992-08-24 1994-03-08 Asahi Chem Ind Co Ltd Method and device for electrodialysis
JPH08155272A (en) * 1994-11-30 1996-06-18 Asahi Glass Co Ltd Pure water making apparatus
JPH0924374A (en) * 1995-05-10 1997-01-28 Nippon Rensui Kk Electrically regenerative pure water producing method and device therefor
JPH10323673A (en) * 1997-03-28 1998-12-08 Asahi Glass Co Ltd Deionized water-producing method
JPH1190428A (en) * 1997-09-18 1999-04-06 Japan Organo Co Ltd Method for operating electric desalting apparatus and electric desalting apparatus used for implementing method
JPH11165177A (en) * 1997-12-05 1999-06-22 Japan Organo Co Ltd Electric deionized water generator
JP2000005763A (en) * 1998-06-26 2000-01-11 Japan Organo Co Ltd Electric deionized water production device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01151911A (en) * 1987-12-10 1989-06-14 Tokuyama Soda Co Ltd Electrodialysis tank
JPH0663365A (en) * 1992-08-24 1994-03-08 Asahi Chem Ind Co Ltd Method and device for electrodialysis
JPH08155272A (en) * 1994-11-30 1996-06-18 Asahi Glass Co Ltd Pure water making apparatus
JPH0924374A (en) * 1995-05-10 1997-01-28 Nippon Rensui Kk Electrically regenerative pure water producing method and device therefor
JPH10323673A (en) * 1997-03-28 1998-12-08 Asahi Glass Co Ltd Deionized water-producing method
JPH1190428A (en) * 1997-09-18 1999-04-06 Japan Organo Co Ltd Method for operating electric desalting apparatus and electric desalting apparatus used for implementing method
JPH11165177A (en) * 1997-12-05 1999-06-22 Japan Organo Co Ltd Electric deionized water generator
JP2000005763A (en) * 1998-06-26 2000-01-11 Japan Organo Co Ltd Electric deionized water production device

Also Published As

Publication number Publication date
JP2001259645A (en) 2001-09-25

Similar Documents

Publication Publication Date Title
JP3385553B2 (en) Electric deionized water production apparatus and deionized water production method
US6274019B1 (en) Electrodeionization apparatus
JP2001113281A (en) Electro-deionizing apparatus and pure water making apparatus
JP4960288B2 (en) Electric deionized water production apparatus and deionized water production method
JP4481418B2 (en) Electric deionized water production equipment
JP4250922B2 (en) Ultrapure water production system
JP3951642B2 (en) Method for operating electrodeionization apparatus, electrodeionization apparatus and electrodeionization system
JP4481417B2 (en) Deionized water production method
JP2011000576A (en) Electric deionized water producing apparatus and method for producing deionized water
JP4597388B2 (en) Electric deionized water production apparatus and deionized water production method
JP3781352B2 (en) Electric deionized water production apparatus and deionized water production method
JP2010042324A (en) Pure water producing apparatus and pure water producing method
JP3788318B2 (en) Electrodeionization apparatus and electrodeionization method
JP2007268331A (en) Apparatus for manufacturing electrically deionized water
JP4152544B2 (en) Deionized water production method and apparatus
JP3695338B2 (en) Method for producing deionized water
JP2004033977A (en) Operation method of electrically deionizing apparatus
JP5098216B2 (en) Electric regenerative pure water production apparatus and pure water production method
JP4497388B2 (en) Electric deionized water production apparatus and deionized water production method
JP4505965B2 (en) Pure water production method
JP4397089B2 (en) Operation method of electric deionized water production equipment
JP3480661B2 (en) Water treatment method for electric deionized water production equipment
KR100698580B1 (en) Device for circulation the electrode water for electrodeionization apparatus
JP3729347B2 (en) Electric regenerative desalination equipment
JP5186605B2 (en) Electric deionized water production apparatus and deionized water production method

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070315

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070315

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100316

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100318

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130326

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130326

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140326

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees