JPH10323673A - Deionized water-producing method - Google Patents

Deionized water-producing method

Info

Publication number
JPH10323673A
JPH10323673A JP10100485A JP10048598A JPH10323673A JP H10323673 A JPH10323673 A JP H10323673A JP 10100485 A JP10100485 A JP 10100485A JP 10048598 A JP10048598 A JP 10048598A JP H10323673 A JPH10323673 A JP H10323673A
Authority
JP
Japan
Prior art keywords
chamber
water
treated
linear velocity
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10100485A
Other languages
Japanese (ja)
Other versions
JP3900666B2 (en
Inventor
Hiroshi Toda
洋 戸田
Toru Hoshi
徹 星
Florian Teseale David
フローリアン テッシール デービット
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP10048598A priority Critical patent/JP3900666B2/en
Publication of JPH10323673A publication Critical patent/JPH10323673A/en
Application granted granted Critical
Publication of JP3900666B2 publication Critical patent/JP3900666B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination

Abstract

PROBLEM TO BE SOLVED: To drive a deionized water-producing apparatus at low voltage while suppressing scale formation in a concentration chamber by specifying the flow ratio of the flow rate of water to be treated and flowing into a desalination chamber and the flow rate of the concentrated water flowing in the concentration chamber and respectively specifying the linear velocity of the water to be treated in the desalination chamber and the linear velocity of the concentrated water flowing in the concentration chamber. SOLUTION: In a self-reproducing type electrodialyzing deionizing apparatus, an anode chamber 2, concentration chambers S1 -Sn+1 , deionization chambers R1 -Rn , and a cathode chamber 3 are constituted by installing anion exchange membranes A and cation exchange membrane K in an electrodialysis tank 1 at prescribed intervals and the desalination chamber R1 -Rn are filled and house anion exchange resin and cation exchange resin. In this case, the flow rate ratio of the concentrated water to the water to be treated is controlled to be (2:1) to (5.5:1). Moreover, the linear velocity of the water to be treated in the desalination chambers is set to be within 0.5-7.0 cm/sec and at the same time the linear velocity of the concentrated water in the concentration chambers is controlled to be 1.2-20 times as high as the linear velocity in the desalination chambers. Consequently, high conductivity in the concentration chambers is retained and the production cost per unit amount of produced water is lowered.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、自己再生型電気透
析脱イオン法により、医薬品製造工業、半導体製造工
業、食料工業、或いはボイラー水や研究施設などで用い
られる純水もしくは超純水を効率的に製造する方法に関
する。
BACKGROUND OF THE INVENTION The present invention relates to a self-regenerating electrodialysis deionization method for efficiently purifying pure water or ultrapure water used in the pharmaceutical manufacturing industry, semiconductor manufacturing industry, food industry, boiler water or research facilities. The present invention relates to a method for manufacturing a semiconductor device.

【0002】[0002]

【従来の技術】従来、脱イオン水の製造方法としてはイ
オン交換樹脂の充填床に被処理水を流し、不純物イオン
をイオン交換樹脂に吸着させて除去することにより脱イ
オン水を得る方法が一般的である。そしてこの方法で
は、交換・吸着能力の低下したイオン交換樹脂の再生
は、通常、酸やアルカリを用いて行われる。しかしこの
方法においては、そのような再生が必要であることか
ら、面倒な再生操作とともに、それら酸やアルカリに起
因する廃液が排出されるという問題がある。
2. Description of the Related Art Conventionally, as a method for producing deionized water, generally, a method of obtaining deionized water by flowing treated water through a packed bed of ion exchange resin and adsorbing and removing impurity ions on the ion exchange resin is generally used. It is a target. In this method, regeneration of the ion-exchange resin having reduced exchange / adsorption capacity is usually performed using an acid or an alkali. However, in this method, since such regeneration is necessary, there is a problem that waste liquid caused by the acid or alkali is discharged together with troublesome regeneration operation.

【0003】このため再生の必要のない脱イオン水製造
方法が望まれており、近年、薬液による再生操作の必要
のない自己再生型電気透析脱イオン法が開発され、実用
化されてきている。この方法は、陰イオン交換膜と陽イ
オン交換膜とを交互に配置した電気透析槽の脱塩室に陰
イオン交換樹脂と陽イオン交換樹脂の混合物を入れ、該
脱塩室に被処理水を流すとともに、脱塩室と交互に形
成、配置された濃縮室に濃縮水を流しながら電圧を印加
して電気透析を行うことにより脱イオン水を製造する方
法である。
For this reason, a method for producing deionized water that does not require regeneration is desired. In recent years, a self-regenerating electrodialysis deionization method that does not require a regeneration operation using a chemical solution has been developed and put into practical use. In this method, a mixture of an anion exchange resin and a cation exchange resin is placed in a desalting chamber of an electrodialysis tank in which an anion exchange membrane and a cation exchange membrane are alternately arranged, and the water to be treated is placed in the desalting chamber. This is a method of producing deionized water by applying a voltage and performing electrodialysis while flowing concentrated water into a concentrating chamber formed and arranged alternately with a demineralizing chamber while flowing the same.

【0004】すなわち、従来の自己再生型電気透析脱イ
オン水製造方法においては、陽極を備える陽極室と、陰
極を備える陰極室との間に陽イオン交換膜と陰イオン交
換膜を交互に配列させ陽極側がアニオン交換膜で区画さ
れ陰極側がカチオン交換膜で区画された脱塩室と陽極側
がカチオン交換膜で区画され陰極側がアニオン交換膜で
区画された濃縮室とを形成させた電気透析槽の脱塩室に
陰イオン交換樹脂及び陽イオン交換樹脂を収容してなる
脱イオン水製造装置を使用し、電圧を印加しながら脱塩
室に被処理水を流入させるとともに、濃縮室に被処理水
又は処理水の一部を濃縮水として流入させることによ
り、被処理水中の不純物イオンを除去するものである。
That is, in the conventional method for producing self-regenerating electrodialysis deionized water, a cation exchange membrane and an anion exchange membrane are alternately arranged between an anode chamber having an anode and a cathode chamber having a cathode. Dehydration of an electrodialysis tank having a desalination chamber in which the anode side is partitioned by an anion exchange membrane and the cathode side is partitioned by a cation exchange membrane, and a concentration chamber in which the anode side is partitioned by a cation exchange membrane and the cathode side is partitioned by an anion exchange membrane. Using a deionized water producing apparatus containing an anion exchange resin and a cation exchange resin in the salt chamber, the water to be treated flows into the desalination chamber while applying voltage, and the water or By flowing a part of the treated water as concentrated water, impurity ions in the treated water are removed.

【0005】この方法によれば、イオン交換体が連続的
に再生されるため、酸やアルカリ等の薬液による再生が
不要であるという利点を有する。ところが、一般的に高
い電圧を印加するため、電力原単位や付属整流器による
コスト上昇といった問題がある。このため如何にして電
圧を低減させるかが重要な課題であり、また排水の量は
イオン交換樹脂の充填床による場合に比べて大幅に低減
したが、昨今の環境問題などの観点から濃縮液等の排水
量をさらに低減させるため、積極的に原水利用率をあげ
ることが強く望まれている。
According to this method, since the ion exchanger is continuously regenerated, there is an advantage that regeneration with a chemical such as acid or alkali is not required. However, since a high voltage is generally applied, there is a problem in that the cost is increased due to the power consumption and the attached rectifier. For this reason, how to reduce the voltage is an important issue, and the amount of wastewater has been greatly reduced as compared with the case of using a packed bed of ion exchange resin. It is strongly desired to actively increase the raw water utilization rate in order to further reduce the amount of wastewater.

【0006】上記の課題のうち、電圧を低減させるとい
うことは、すなわち脱塩室及び/又は濃縮室の電気抵抗
をいかに低減させるかということであるが、このうち脱
塩室については、その中に収容される陰及び陽イオン交
換樹脂が既に電導体であることから、電気抵抗の低減を
図る上での重要な因子はむしろ濃縮室にあると考えられ
る。
[0006] Among the above-mentioned problems, reducing the voltage means how to reduce the electric resistance of the desalting chamber and / or the concentrating chamber. Since the anion and cation exchange resins accommodated in the container are already conductors, it is considered that an important factor in reducing the electric resistance is in the concentration chamber.

【0007】そこで、濃縮室での電気低抗を減じる手法
として考えられるのは、濃縮室の厚みを薄くし低減させ
る方法である。ところが電気透析槽は通常複数の対から
なるため、濃縮室の厚みを極端に薄くすると、各対間に
おける流動液についてその流量分布の差異が著しくな
り、ひいては局部的な電圧上昇を招くおそれがあり、ま
た濃縮室を製作する上での精度の観点からも制約があっ
て、実際に許容される濃縮室の厚みは制限される。
Therefore, as a method of reducing the electric resistance in the concentrating chamber, a method of reducing the thickness of the concentrating chamber to reduce it is considered. However, since the electrodialysis tank is usually composed of a plurality of pairs, if the thickness of the concentrating chamber is made extremely thin, the difference in the flow rate distribution of the fluid between each pair becomes remarkable, which may lead to a local voltage increase. Also, there is a restriction from the viewpoint of accuracy in manufacturing the concentrating chamber, and the thickness of the concentrating chamber that is actually allowed is limited.

【0008】他方、濃縮室側の液流動システムが循環方
式でない場合についてみると、従来の電気透析槽におけ
る実用的な被処理水と濃縮水との流量比は3:1〜5:
1であり、被処理水が純水にまで脱塩された場合、濃縮
水中の不純物イオンの濃縮倍率は4〜6倍となってい
た。しかし、この程度の濃縮倍率では、たとえ室枠の厚
みを極力薄くしても、満足な電気抵抗の低減には至ら
ず、逆に液流動の分布等に問題を生じて印加電圧の上昇
を招くこともあり得る。
On the other hand, considering the case where the liquid flow system on the side of the concentrating chamber is not of the circulation type, the practical flow rate ratio of the water to be treated and the concentrated water in the conventional electrodialysis tank is 3: 1 to 5:
When the water to be treated was desalinated to pure water, the concentration ratio of impurity ions in the concentrated water was 4 to 6 times. However, at such a concentration ratio, even if the thickness of the chamber frame is made as thin as possible, a satisfactory reduction in electric resistance is not achieved, and on the contrary, a problem arises in the distribution of liquid flow and the applied voltage is increased. It is possible.

【0009】濃縮室での電気抵抗を減じる別の手法とし
て考えられるのは、濃縮液の濃度を高める方法である。
この方法としては濃縮水の流量を減少させる態様が考え
られる。すなわち濃縮水の流量減少により濃縮倍率を高
め、それにより導電率を高めて印加電圧を低減させると
いう方法である。ところが、濃縮室においてイオンの濃
度勾配の発生を抑制し、CaイオンやMgイオン等の硬
度成分によるスケール析出を防止するためには、濃縮水
をある程度以上の流量で流して乱流を起こさせる必要が
ある。このため上記のように濃縮水の流量を低減させる
ことは、必要な乱流の発生を減らし、或いは不可能にす
るという問題が残る。
Another method for reducing the electric resistance in the concentration chamber is to increase the concentration of the concentrate.
As this method, a mode of reducing the flow rate of the concentrated water can be considered. That is, a method of increasing the concentration magnification by reducing the flow rate of the concentrated water, thereby increasing the conductivity and reducing the applied voltage. However, in order to suppress the generation of ion concentration gradients in the concentration chamber and to prevent scale precipitation due to hardness components such as Ca ions and Mg ions, it is necessary to cause concentrated water to flow at a flow rate of a certain level or more to cause turbulence. There is. For this reason, reducing the flow rate of the concentrated water as described above has a problem that the necessary turbulence is reduced or made impossible.

【0010】そこで、被処理水と濃縮水との流量比(処
理水/濃縮水比)を上げ且つ濃縮室における液の線速度
を高くすることが考えられる。ところが、濃縮室側の液
流動システムが循環方式でない場合には、前述のとお
り、枠厚みの問題があるのに加え、濃縮液として供給す
る被処理水或いは処理水の量が増加して被処理水の利用
率が低減し、廃液量が増えるという欠点がある。
Therefore, it is conceivable to increase the flow rate ratio between the water to be treated and the concentrated water (the ratio of treated water / concentrated water) and increase the linear velocity of the liquid in the concentration chamber. However, when the liquid flow system on the enrichment chamber side is not a circulation system, as described above, in addition to the problem of the frame thickness, the amount of water to be treated or the amount of treated water to be supplied as a concentrate increases, There is a drawback that the water utilization rate decreases and the amount of waste liquid increases.

【0011】さらに、濃縮室の電気抵抗を減じる手法と
して、濃縮室にもイオン交換樹脂を充填する手法も考え
られる。しかし濃縮室の厚みはもともと薄いため、そこ
にイオン交換樹脂を充填することは困難であり、現状で
は実現性に乏しい。また仮りに室枠を厚くして充填した
としても圧力損失が高くなり、濃縮室と脱塩室の圧力バ
ランスをとることが困難になるのに加え、その厚みに対
応して電気透析槽の寸法も大きくなる。以上のように濃
縮室の電気抵抗を低減させる手法としては幾つか考えら
れるが、濃縮室側の液流動システムが循環方式でない場
合には、上述のようにそれぞれ欠点を内包し、これまで
根本的な解決には至っていない。
Further, as a method of reducing the electric resistance of the concentration chamber, a method of filling the concentration chamber with an ion exchange resin is also conceivable. However, since the thickness of the concentrating chamber is originally thin, it is difficult to fill it with an ion exchange resin, and the feasibility is poor at present. Also, even if the chamber frame is thickened and filled, the pressure loss increases, making it difficult to balance the pressure between the concentrating chamber and the desalting chamber. Also increases. As described above, there are several methods for reducing the electric resistance of the concentrating chamber. However, when the liquid flow system on the concentrating chamber side is not a circulation system, each of the methods includes the disadvantages as described above and has been fundamentally performed. No solution has been reached.

【0012】[0012]

【発明が解決しようとする課題】本発明は、上記の諸問
題点を解決すべくなされたものであり、陰極と陽極の間
に陽イオン交換膜と陰イオン交換膜を交互に配列させて
脱塩室と濃縮室とを形成してなる電気透析槽における該
脱塩室にイオン交換体を収容してなる脱イオン水製造装
置において、その操作条件に細密な工夫を加えることに
より、従来技術が有する上述の諸欠点を解消してなる自
己再生型電気透析脱イオン法による脱イオン水製造方法
を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and has a cation exchange membrane and an anion exchange membrane which are alternately arranged between a cathode and an anode. In a deionized water production apparatus in which an ion exchanger is accommodated in the desalination chamber in an electrodialysis tank formed by forming a salt chamber and a concentration chamber, the prior art has been improved by adding fine measures to its operating conditions. It is an object of the present invention to provide a method for producing deionized water by a self-regeneration type electrodialysis deionization method, which solves the above-mentioned disadvantages.

【0013】[0013]

【課題を解決するための手段】本発明は、陽極を備える
陽極室と、陰極を備える陰極室との間に陽イオン交換膜
と陰イオン交換膜を交互に配列させ、陽極側がアニオン
交換膜で区画され陰極側がカチオン交換膜で区画された
脱塩室と陽極側がカチオン交換膜で区画され陰極側がア
ニオン交換膜で区画された濃縮室とを形成させた電気透
析槽の脱塩室にイオン交換体を収容してなる脱イオン水
製造装置を使用し、電圧を印加しながら脱塩室に被処理
水を流入するとともに、被処理水又は処理水の少なくと
も一部を濃縮水として循環することによって被処理水中
の不純物イオンを除去する自己再生型電気透析脱イオン
水製造方法において、脱塩室に流入する被処理水と濃縮
室に流入する濃縮水の流量比を2:1〜5.5:1と
し、且つ脱塩室における被処理水の線速度を0.5〜
7.0cm/secとし、濃縮室における濃縮水の線速
度を脱塩室内線速度に対して1.2〜20倍とすること
を特徴とする自己再生型電気透析脱イオン法による脱イ
オン水製造方法である。
According to the present invention, a cation exchange membrane and an anion exchange membrane are alternately arranged between an anode chamber having an anode and a cathode chamber having a cathode, and the anion exchange membrane is provided on the anode side. An ion exchanger is provided in a desalination chamber of an electrodialysis tank in which a deionization chamber is defined and a cathode side is partitioned by a cation exchange membrane, and a concentration chamber is defined on the anode side by a cation exchange membrane and the cathode side is partitioned by an anion exchange membrane. Using a deionized water production apparatus containing water, the water to be treated flows into the desalination chamber while applying a voltage, and at least part of the water to be treated or the treated water is circulated as concentrated water. In the self-regeneration type electrodialysis deionized water producing method for removing impurity ions in the treated water, the flow ratio of the water to be treated flowing into the desalting chamber to the concentrated water flowing into the concentrating chamber is 2: 1 to 5.5: 1. And in the desalination room 0.5 to the linear velocity of the water to be treated that
Producing deionized water by a self-regeneration type electrodialysis deionization method, wherein the linear velocity of the concentrated water in the concentration chamber is set to be 1.2 to 20 times the linear velocity of the deionization chamber at 7.0 cm / sec. Is the way.

【0014】[0014]

【発明の実施の形態】本発明においては、陽極を備える
陽極室と、陰極を備える陰極室との間にカチオン交換膜
とアニオン交換膜を交互に配列させ、陽極側がアニオン
交換膜で区画され陰極側がカチオン交換膜で区画された
脱塩室と陽極側がカチオン交換膜で区画され陰極側がア
ニオン交換膜で区画された濃縮室とを形成させた電気透
析槽の脱塩室にイオン交換体を収容してなる脱イオン水
製造装置を使用する。そして濃縮室に流入する濃縮液
は、好ましくは濃縮室とは別のタンクとの間で循環再利
用し、一定量の被処理水又処理水の一部を循環系に添加
することによって濃縮液の濃度が一定に保たれる。こう
して添加する被処理水又処理水の量には、特に制限はな
いが、実用的には全被処理水に対して好ましくは0.2
〜9.5重量%の範囲として運転する。ここで処理水と
は、脱塩水から流出する水である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In the present invention, a cation exchange membrane and an anion exchange membrane are alternately arranged between an anode chamber provided with an anode and a cathode chamber provided with a cathode, and the anode side is partitioned by an anion exchange membrane and the cathode is separated. An ion exchanger is accommodated in a desalting chamber of an electrodialysis tank which forms a desalting chamber whose side is partitioned by a cation exchange membrane and a concentrating chamber whose anode side is partitioned by a cation exchange membrane and whose cathode side is partitioned by an anion exchange membrane. Deionized water production equipment. The concentrated liquid flowing into the concentrating chamber is preferably circulated and reused between another tank and the concentrated chamber, and a certain amount of the water to be treated or a part of the treated water is added to the circulating system to thereby concentrate the concentrated liquid. Is kept constant. The amount of water to be treated or treated water added in this manner is not particularly limited, but is practically preferably 0.2% with respect to all the water to be treated.
Operate in the range of 99.5% by weight. Here, the treated water is water flowing out of the desalinated water.

【0015】図1は、本発明で使用し得る自己再生型電
気透析脱イオン装置の一態様例を模式的に示す図であ
る。図1中Aはアニオン交換膜、Kはカチオン交換膜で
あり、図示のとおり、これらアニオン交換膜A及びカチ
オン交換膜Kは電気透析槽1中に脱塩室枠D1、D2、D
3・・・Dn及び濃縮室枠C1、C2、C3・・・Cn+1
介して所定間隔を置いて配置され、これにより陽極室
2、濃縮室S1、S2・・・Sn+1、脱塩室R1、R2・・
・Rn及び陰極室3が構成される。そして脱塩室R1
2・・・Rnには陰陽のイオン交換樹脂が収容、充填
される。濃縮室にはメッシュ状等の構造体すなわちスペ
ーサーが挿入配置される。
FIG. 1 is a view schematically showing one embodiment of a self-regenerating type electrodialysis deionization apparatus which can be used in the present invention. In FIG. 1, A is an anion exchange membrane and K is a cation exchange membrane. As shown, these anion exchange membrane A and cation exchange membrane K are installed in the electrodialysis tank 1 in the desalting chamber frames D 1 , D 2 , D
3 ... Dn and the enrichment chamber frames C 1 , C 2 , C 3 ... Cn +1 are arranged at predetermined intervals, whereby the anode chamber 2 and the enrichment chambers S 1 , S 2. Sn +1 , desalination chamber R 1 , R 2 ...
Rn and the cathode chamber 3 are configured. And the desalination chamber R 1 ,
R 2 ... Rn are filled and filled with a positive and negative ion exchange resin. A structure such as a mesh, that is, a spacer is inserted and arranged in the concentration chamber.

【0016】図1中符号4は陽極、5は陰極であり、操
作中両極間に所定の電圧がかけられる。これにより導管
6から脱塩室R1、R2・・・Rnへ導入される被処理液
中の陰イオン成分はアニオン交換膜Aを通して陽極側の
濃縮室へ透過移行する一方、被処理液中の陽イオン成分
はカチオン交換膜Kを通して陰極側の濃縮室へ透過移行
し、被処理液自体は脱イオン化され、導管7を通して排
出される。また濃縮液は導入管8を通して各濃縮室
1、S2・・・Sn+1及び陽極室2、陰極室3へ導入さ
れ、ここで上記のように透過移行した陰陽両イオンが集
められ濃縮液として導管8から排出される。陽極室2お
よび陰極室3からは、それぞれ陽極液導出管13および
陰極液導出管14を通して、極液が排出される。なお、
図1には被処理液流の方向と濃縮液流の方向とが同方向
(並流)の場合を示しているが、両者を逆方向(逆流)
としてもよいことは勿論である。
In FIG. 1, reference numeral 4 denotes an anode, and 5 denotes a cathode, and a predetermined voltage is applied between both electrodes during operation. Thereby, the anion component in the liquid to be treated, which is introduced from the conduit 6 into the desalting chambers R 1 , R 2, ..., Rn, permeates and transfers to the concentration chamber on the anode side through the anion exchange membrane A. The cation component passes through the cation exchange membrane K to the concentration chamber on the cathode side, and the liquid to be treated is deionized and discharged through the conduit 7. The concentrated liquid is introduced into each of the concentrating chambers S 1 , S 2 ... Sn + 1 and the anode chamber 2 and the cathode chamber 3 through the introduction pipe 8, where the permeated and transferred anions and cations are collected and concentrated. The liquid is discharged from the conduit 8 as a liquid. The anolyte is discharged from the anolyte chamber 2 and the catholyte chamber 3 through an anolyte outlet pipe 13 and a catholyte outlet pipe 14, respectively. In addition,
FIG. 1 shows a case where the direction of the liquid flow to be treated and the direction of the concentrated liquid flow are the same direction (cocurrent), but both directions are opposite (backflow).
Needless to say, it may be.

【0017】各脱塩室R1、R2・・・Rn内において陽
イオン交換体に捕捉された被処理水中の陽イオンは、電
場により駆動力が与えられ、捕捉した陽イオン交換体に
接触している陽イオン交換体を経由してカチオン交換膜
に達し、さらに膜を通過して各濃縮室S1、S2・・・S
+1に移動する。同様に、陰イオン交換体に捕捉された
被処理水中の陰イオンは陰イオン交換体、これに接触し
ているアニオン交換膜を経由して各濃縮室S1、S2・・
・Sn+1に移動する。
The cations in the water to be treated captured by the cation exchanger in each of the desalting chambers R 1 , R 2 ... Rn are given a driving force by an electric field and come into contact with the captured cation exchanger. Through the cation exchanger, and reaches the cation exchange membrane, and further passes through the membrane to each of the concentration chambers S 1 , S 2 ... S
Move to n + 1 . Similarly, the anions in the water to be treated captured by the anion exchanger are passed through the anion exchanger and the anion exchange membrane in contact with the anion exchanger to form the respective enrichment chambers S 1 , S 2.
Move to Sn + 1 .

【0018】前述のとおり、本発明においては、各濃縮
室から流出する濃縮液は好ましくは各濃縮室とは別のタ
ンクとの間で循環再利用され、またその循環系に一定量
の被処理水又処理水の一部を添加することにより濃度が
一定に保たれる。図1中10はタンクであり、各濃縮室
1、S2・・・Sn+1からの濃縮液は導出管8からタン
ク10へ導入された後、導管9を経て循環再利用され
る。P1 はその循環用のポンプであり、その吐出口は濃
縮液導入管9へ連なっている。本発明では、濃縮液循環
系に新たに加える被処理水をコントロールすることで被
処理水と濃縮水を所定の液流量比とするが、必要量の被
処理水は導管6から分流導管12で分流されて調整弁
(図示せず)を経てタンク10へ導入され、循環濃縮液へ
添加される。本発明においては被処理水に代えて処理水
を用いてもよいが、この場合には処理水導管7から分流
される。
As described above, in the present invention, the concentrated liquid flowing out of each enrichment chamber is preferably circulated and reused between each enrichment chamber and another tank. The concentration is kept constant by adding a part of water or treated water. In FIG. 1, reference numeral 10 denotes a tank. The concentrate from each of the concentration chambers S 1 , S 2, ..., Sn +1 is introduced into the tank 10 from the outlet pipe 8, and then circulated and reused through the conduit 9. P1 is a circulation pump whose discharge port is connected to the concentrated liquid introduction pipe 9. In the present invention, the water to be treated and the concentrated water are controlled to a predetermined liquid flow ratio by controlling the water to be newly added to the concentrated liquid circulation system. Shunted regulating valve
(Not shown) and introduced into the tank 10 and added to the circulating concentrate. In the present invention, treated water may be used in place of the water to be treated, but in this case, the water is separated from the treated water conduit 7.

【0019】次に、本発明については、まず被処理水に
対する濃縮水の流量比(=被処理水/濃縮水)を2:1
〜5.5:1の範囲とする。この理由は被処理水の流量
が濃縮水の流量の2倍を下回ると濃縮液を循環再利用し
ても充分な電気伝導度を得ることが難しく、逆に被処理
水の流量が濃縮水の流量の5.5倍を超えると脱イオン
の効率が低下して脱イオン水の水質を低下させることと
なるからである。なかでも、その範囲は3:1〜5:1
であるのが好ましい。
Next, in the present invention, first, the flow rate ratio of concentrated water to treated water (= treated water / concentrated water) is 2: 1.
To 5.5: 1. The reason is that if the flow rate of the water to be treated is less than twice the flow rate of the concentrated water, it is difficult to obtain sufficient electric conductivity even if the concentrated liquid is circulated and reused. If the flow rate exceeds 5.5 times, the efficiency of deionization is reduced and the quality of deionized water is reduced. In particular, the range is 3: 1 to 5: 1
It is preferred that

【0020】ところが、上記被処理水に対する濃縮水の
流量比だけを満たしていても、脱塩室と濃縮室における
各流動液の線速度について所定の条件を満足していない
と充分な成果を得ることはできない。脱塩を目的とした
場合においては、仮りに内部リークが発生しても被処理
水が濃縮液に汚染されることのないよう脱塩室側を過圧
にした運転をするのが普通であるが、被処理水について
は、その線速度が0.5cm/secよりも低いと適正
な圧力損失を得ることが難しく、濃縮室の絶対圧力の方
が高くなる。これとは逆に被処理液の線速度が7.0c
m/secより高いと圧力損失が高くなり過ぎ、また樹
脂との接触時間も短くなるため、脱イオンの効率が低下
して脱イオン水の水質が低下する可能性がある。このた
め脱塩室における被処理水の線速度は0.5〜7.0c
m/sec、好ましくは1.0〜5.5cm/secの
範囲に設定される。
However, even if only the flow rate ratio of the concentrated water to the water to be treated is satisfied, sufficient results can be obtained if the linear velocities of the respective fluids in the desalting chamber and the concentrating chamber do not satisfy predetermined conditions. It is not possible. In the case of desalination, it is usual to operate the desalination chamber with an overpressure so that the water to be treated is not contaminated by the concentrated liquid even if an internal leak occurs. However, for the water to be treated, if the linear velocity is lower than 0.5 cm / sec, it is difficult to obtain an appropriate pressure loss, and the absolute pressure in the concentrating chamber becomes higher. Conversely, the linear velocity of the liquid to be treated is 7.0 c.
If the pressure is higher than m / sec, the pressure loss becomes too high and the contact time with the resin becomes short, so that the efficiency of deionization may be reduced and the quality of deionized water may be reduced. Therefore, the linear velocity of the water to be treated in the desalting chamber is 0.5 to 7.0 c.
m / sec, preferably in the range of 1.0 to 5.5 cm / sec.

【0021】一方、濃縮液については、濃縮室における
液の線速度は脱塩室の液の線速度より少なくとも1.2
倍より高い値をとる必要がある。濃縮室内では変形防止
及び流路確保のために通常構造体が用いられ、メッシュ
状のものが多いが、この構造体は脱塩室内のイオン交換
充填物よりも圧力損失が小さい。このため、濃縮室の流
液の線速度が脱塩室の流液の線速度の1.2倍を下回る
と、脱塩室に対する濃縮室の圧力が低すぎて、該構造
体、例えばメッシュの開口部にイオン交換膜が食い込
み、適正な流量の確保が困難になる。
On the other hand, for the concentrated liquid, the linear velocity of the liquid in the concentrating chamber is at least 1.2 times higher than the linear velocity of the liquid in the desalting chamber.
It is necessary to take a value higher than double. In the concentration chamber, a structure is usually used to prevent deformation and secure a flow path, and the structure is often a mesh. However, this structure has a smaller pressure loss than the ion exchange packing in the desalting chamber. For this reason, when the linear velocity of the liquid flowing through the concentrating chamber is less than 1.2 times the linear velocity of the liquid flowing through the desalting chamber, the pressure of the concentrating chamber with respect to the desalting chamber is too low, and the structure, for example, the mesh The ion exchange membrane bites into the opening, making it difficult to secure an appropriate flow rate.

【0022】また、そのように低い線速度では濃縮室内
での効果的な乱流を発生させることが著しく困難であ
り、さらにはCaイオンやMgイオン等の硬度成分によ
るスケール発生の可能性も高くなる。一方、濃縮室の流
液の線速度が脱塩室の流液の線速度の20倍を越える
と、脱塩室を濃縮室より過圧とする運転の条件がくずれ
て処理水の水質が低下する。このため濃縮室における濃
縮水の線速度を脱塩室内線速度に対して1.2〜20
倍、好ましくは1.5〜15倍とする必要がある。
At such a low linear velocity, it is extremely difficult to generate an effective turbulent flow in the enrichment chamber, and furthermore, there is a high possibility of scale generation due to hardness components such as Ca ions and Mg ions. Become. On the other hand, if the linear velocity of the liquid flowing through the condensing chamber exceeds 20 times the linear velocity of the liquid flowing through the desalting chamber, the operation conditions for setting the pressure of the desalting chamber higher than that of the concentrating chamber will be disrupted, and the quality of the treated water will decrease. I do. For this reason, the linear velocity of the concentrated water in the enrichment chamber is 1.2 to 20 with respect to the linear velocity of the desalination chamber.
Times, preferably 1.5 to 15 times.

【0023】本発明において、上記特定の流量比及び線
速度を与えるためには、脱塩室の厚みを0.3〜30c
m、また濃縮室の厚みを0.01〜3.7cmの範囲と
することが好ましい。すなわち、脱塩室の厚みが0.3
cmを下回ると、一定負荷量に対する構成部品の数が多
くなり、コストが高くなる。また、30cmを超えると
陽イオン交換樹脂と陰イオン交換樹脂が、脱塩室を隔て
るカチオン交換膜とアニオン交換膜の間で連続してつな
がる確率が極端に低くなり、そのため脱塩効率が低くな
るので望ましくない。一方、濃縮室の厚みが0.01c
mを下回ると、各室枠への液分散を抑制することが非常
に困難となるため望ましくなく、逆に脱塩室の厚みが
3.7cmを超えると電気透析槽がそれ自体大きくな
り、コスト的にも不利となる。なかでも、脱塩室の厚み
は0.7〜15cm、濃縮室の厚みは0.04〜2cm
が特に好ましい。
In the present invention, in order to provide the above specific flow rate ratio and linear velocity, the thickness of the desalting chamber is set to 0.3 to 30 c.
m and the thickness of the concentration chamber are preferably in the range of 0.01 to 3.7 cm. That is, the thickness of the desalination chamber is 0.3
cm, the number of components for a given load increases, and the cost increases. On the other hand, if it exceeds 30 cm, the probability that the cation exchange resin and the anion exchange resin are continuously connected between the cation exchange membrane and the anion exchange membrane separating the desalting chamber becomes extremely low, so that the desalination efficiency becomes low. Not so desirable. On the other hand, the thickness of the concentration chamber is 0.01 c
When the thickness is less than m, it is very difficult to suppress the liquid dispersion in each chamber frame. Also disadvantageous. Above all, the thickness of the desalination chamber is 0.7 to 15 cm, and the thickness of the concentration chamber is 0.04 to 2 cm.
Is particularly preferred.

【0024】また、濃縮水の濃度は、循環再利用される
濃縮液に対し塩又は酸を添加して高めることも可能であ
る。特に該循環系での塩又は酸の添加は、別に供給され
る被処理水や処理水の添加量と組み合わせることによっ
て、濃縮水の濃度とpHを任意にコントロールでき、電
圧を低減させ得るのに加えて、濃縮室内の硬度成分、特
にCaの塩が析出するのを防止する上で効果がある。実
際に運転する場合は、被処理水や処理水及び塩又は酸の
原単位を考えると、濃縮水の電気伝導度は50〜300
0μS/cmの範囲であるのが望ましい。
The concentration of the concentrated water can be increased by adding a salt or an acid to the concentrated liquid to be recycled. In particular, the addition of a salt or an acid in the circulation system can be arbitrarily controlled in concentration and pH of the concentrated water by combining it with the amount of the water to be treated or the amount of the treated water supplied separately. In addition, it is effective in preventing the precipitation of hardness components, particularly Ca salts, in the concentration chamber. In actual operation, the electric conductivity of the concentrated water is 50 to 300 in consideration of the water to be treated, the treated water, and the basic unit of salt or acid.
It is desirable to be in the range of 0 μS / cm.

【0025】[0025]

【実施例】以下、実施例に基づき本発明をさらに詳しく
説明するが、本発明がこれら実施例に限定されないこと
は勿論である。使用装置としては図1に示すような自己
再生型電気透析装置を使用したが、被処理水と濃縮水と
は上方向の並流として使用した。また比較例1は濃縮室
側の液流を循環せず、ワンパスとした場合である。図1
で云えば導管8をカットし、被処理水を導管9から導入
して導管8から排出する態様としたものである。さらに
比較例2では濃縮室厚みを、他の例とは変えて、0.3
8cmとし、また実施例2と比較例2では濃縮室にスケ
ール発生の加速因子として1ppm相当のMg2+イオン
を添加した。
EXAMPLES Hereinafter, the present invention will be described in more detail with reference to Examples, but it is a matter of course that the present invention is not limited to these Examples. A self-regenerating type electrodialysis device as shown in FIG. 1 was used as the device to be used, but the water to be treated and the concentrated water were used as cocurrent flows in the upward direction. Comparative Example 1 is a case in which the liquid flow on the side of the enrichment chamber is not circulated and one pass is performed. FIG.
In other words, the conduit 8 is cut, water to be treated is introduced from the conduit 9, and discharged from the conduit 8. Further, in Comparative Example 2, the thickness of the concentrating chamber was changed from that of the other examples to 0.3.
In Example 2 and Comparative Example 2, Mg 2+ ions equivalent to 1 ppm were added to the concentration chamber as a scale generation acceleration factor.

【0026】《実施例1〜2及び比較例1〜2》陽イオ
ン交換膜(強酸性不均一膜、厚み500μm、イオン交
換容量4.5ミリ当量/グラム乾燥樹脂)及び陰イオン
交換膜(強塩基性不均一膜、厚み500μm、イオン交
換容量3.5ミリ当量/グラム乾燥樹脂)を脱塩室枠
(ポリプロピレン製)及び濃縮室枠(ポリプロピレン
製)を介して配列して締め付けたフィルタープレス型透
析槽(濃縮室にはポリプロピレン製ネットを挿入)から
なる有効面積507cm2 〔横(=室枠幅)13cm、
縦(=脱塩長)39cm〕×3対の電気透析槽を構成し
た。ここで実施例1〜2及び比較例1の場合には脱塩室
厚みを0.8cm、濃縮室厚みを0.19cmとした
が、比較例2では濃縮室厚みを0.38cmとした。
Examples 1-2 and Comparative Examples 1-2 Cation exchange membranes (strongly acidic heterogeneous membrane, thickness 500 μm, ion exchange capacity 4.5 meq / g dry resin) and anion exchange membranes (strong A filter press type in which a basic heterogeneous membrane, a thickness of 500 μm, and an ion exchange capacity of 3.5 meq / g dry resin) are arranged and fastened through a desalting chamber frame (made of polypropylene) and a concentrating chamber frame (made of polypropylene). An effective area of 507 cm 2 [diameter (width of the chamber frame) 13 cm, comprising a dialysis tank (a polypropylene net is inserted in the concentration chamber)
Vertical (= desalting length) 39 cm] × 3 pairs of electrodialysis tanks were configured. Here, in Examples 1 and 2 and Comparative Example 1, the thickness of the desalting chamber was 0.8 cm and the thickness of the concentrating chamber was 0.19 cm. In Comparative Example 2, the thickness of the concentrating chamber was 0.38 cm.

【0027】また脱塩室にはカチオン交換樹脂、アニオ
ン交換樹脂及びバインダーを混合して板状に成型加工し
たものを乾燥状態で充填し、濃縮室には流路を確保する
ための合成樹脂製のスペーサーを充填した。上記両イオ
ン交換樹脂は、粒径が400〜600μm、イオン交換
容量が4.5ミリ当量/g乾燥樹脂のスルホン酸酸型
(H型)陽イオン交換樹脂(三菱化学社製、商品名:ダ
イヤイオンSKー1B)及び粒径が400〜600μ
m、イオン交換容量が3.5ミリ当量/g乾燥樹脂の4
級アンモニウム塩型(OH型)陰イオン交換樹脂(三菱
化学社製、商品名:ダイヤイオンSAー10A)を用
い、イオン交換容量比が50/50となるようにしたも
のである。
The desalting chamber is filled with a mixture of a cation exchange resin, an anion exchange resin and a binder and molded into a plate and dried, and the enrichment chamber is made of a synthetic resin for securing a flow path. Was filled. The above both ion exchange resins have a particle diameter of 400 to 600 μm and an ion exchange capacity of 4.5 meq / g dry resin sulfonic acid type (H type) cation exchange resin (manufactured by Mitsubishi Chemical Corporation, trade name: Diamond Ion SK-1B) and particle size of 400 to 600 μm
m, ion exchange capacity is 3.5 meq / g 4 of dry resin
A grade ammonium salt type (OH type) anion exchange resin (manufactured by Mitsubishi Chemical Corporation, trade name: Diaion SA-10A) is used, and the ion exchange capacity ratio is 50/50.

【0028】この電気透析槽を用いて以下のようにして
脱イオン水の製造試験を行った。工業用水を濾過し、逆
浸透膜装置で処理して被処理水としたが、これら工業用
水及び被処理水の電気伝導度、pH値、含有成分の組成
は表1に示すとおりである。この被処理水を被処理液及
び濃縮液として、ともに上昇流で通水し、所定の電気再
生条件で再生した後、表2に示す流量条件で実施した。
Using this electrodialysis tank, a production test of deionized water was performed as follows. The industrial water was filtered and treated with a reverse osmosis membrane device to be treated water. The electric conductivity, pH value, and composition of the components of the industrial water and the treated water are as shown in Table 1. The water to be treated was used as a liquid to be treated and a concentrated liquid, both of which were passed through an upward flow, regenerated under predetermined electric regeneration conditions, and then carried out under the flow conditions shown in Table 2.

【0029】このときの印加電圧、直流電流の条件は表
3に示している。表3に示す印加電圧は、脱イオン水の
比抵抗値が少なくとも10MΩ・cm以上の良好な脱イ
オン水を得るのに必要な電圧である。比較例1は濃縮室
側の液流を循環せず、ワンパスとした場合である。各実
施例1〜2及び比較例1〜2においては、表2及び表3
に示す条件で連続750時間運転した。また運転終了
後、使用電気透析槽を解体し、濃縮室側のスケール発生
状況を確認した。表2〜表3にこれらの結果を示してい
る。
Table 3 shows the conditions of the applied voltage and the direct current at this time. The applied voltage shown in Table 3 is a voltage necessary to obtain good deionized water having a specific resistance of at least 10 MΩ · cm or more. Comparative Example 1 is a case in which the liquid flow on the side of the enrichment chamber is not circulated and one pass is performed. In Examples 1 and 2 and Comparative Examples 1 and 2, Tables 2 and 3
It was operated continuously for 750 hours under the conditions shown in (1). After the operation was completed, the electrodialysis tank used was dismantled, and the scale generation status on the enrichment room side was confirmed. Tables 2 and 3 show these results.

【0030】[0030]

【表 1】 [Table 1]

【0031】[0031]

【表 2】 [Table 2]

【0032】[0032]

【表 3】 [Table 3]

【0033】表2〜表3から明らかなとおり、比較例1
すなわち濃縮室側の液流をワンパスとした場合は、流量
比及び流速が同じ条件である実施例1に比べて濃縮水伝
導率が格段に低く(すなわち濃度が低い)、しかも印加
電圧が高い。また原水利用率についても、比較例1は実
施例1に比べて20%も低い値にとどまっている。さら
に濃縮室にスケール発生の加速因子として1ppm相当
のMg2+イオンを添加した実施例2と比較例2を比べる
と、実施例2ではスケールの発生がないのに対し、比較
例2では明白なスケール発生が認められた。被処理液と
濃縮液の流量比が同じであるのに、濃縮室側の液線速度
が低いと硬度成分のスケールが発生することが分かる。
As is clear from Tables 2 and 3, Comparative Example 1
That is, when the liquid flow on the concentration chamber side is one-pass, the conductivity of the concentrated water is much lower (that is, the concentration is lower) and the applied voltage is higher than in Example 1 in which the flow ratio and the flow velocity are the same. In addition, the raw water utilization rate of Comparative Example 1 is 20% lower than that of Example 1. Furthermore, comparing Example 2 with Comparative Example 2 in which Mg 2+ ions equivalent to 1 ppm were added to the concentration chamber as an acceleration factor of scale generation, no scale was generated in Example 2, whereas Comparative Example 2 was evident. Scale generation was observed. It can be seen that the hardness component scale occurs when the liquid linear velocity on the concentration chamber side is low even though the flow ratio of the liquid to be treated and the concentrated liquid is the same.

【0034】[0034]

【発明の効果】本発明によれば、濃縮液循環系に新たに
加える被処理水又は処理水量をコントロールすることで
被処理水と濃縮水を所定の液流量比とし、かつ各々の液
線速度を所定の範囲とすることにより、高い濃縮室伝導
度を確保するとともに、高い線速度による効果的な乱流
を発生させることにより、濃縮室内のスケールの発生を
抑えつつ低い印加電圧で運転できる。このため電力原単
位を低減させることができる。また簡単に高い原水利用
率を得ることができるため、系外への廃液量が低減して
処理費低減を図ることができ、生産水量当りのコストを
さらに低減することができる。
According to the present invention, by controlling the water to be treated or the amount of treated water to be newly added to the concentrated liquid circulation system, the treated water and the concentrated water are set to a predetermined liquid flow rate ratio, and each liquid linear velocity is controlled. Is within a predetermined range, high conductivity in the enrichment chamber is ensured, and effective turbulence is generated by a high linear velocity, so that operation at a low applied voltage can be performed while suppressing generation of scale in the enrichment chamber. For this reason, the power consumption can be reduced. Further, since a high raw water utilization rate can be easily obtained, the amount of waste liquid to the outside of the system can be reduced, thereby reducing the processing cost, and the cost per production water amount can be further reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明で使用し得る自己再生型電気透析脱イオ
ン装置の一態様例を模式的に示す図。
FIG. 1 is a view schematically showing one embodiment of a self-regeneration type electrodialysis deionization apparatus that can be used in the present invention.

【符号の説明】[Explanation of symbols]

A アニオン交換膜 K カチオン交換膜 1 容器(電気透析槽) 2 陽極室 3 陰極室 4 陽極 5 陰極 S1、S2・・・Sn+1 濃縮室 R1、R2・・・Rn 脱塩室 D1、D2、D3 ・・・Dn 脱塩室枠 C1、C2、C3 ・・・Cn+1 濃縮室枠 6 被処理液導入管 7 脱イオン水導管 8 濃縮液導入管 9 濃縮液導出管 10 タンク 11 濃縮液循環用導管 12 被処理液分流導管 13 陽極液導出管 14 陰極液導出管 P1 ポンプA anion exchange membrane K cation exchange membrane 1 vessel (electrodialyser) 2 anode chamber 3 the cathode chamber 4 anode 5 cathode S 1, S 2 ··· Sn +1 concentrating compartments R 1, R 2 ··· Rn desalting D 1 , D 2 , D 3 ... Dn Deionization chamber frame C 1 , C 2 , C 3 ... Cn + 1 Concentration chamber frame 6 Liquid inlet pipe 7 Deionized water conduit 8 Concentrate inlet pipe 9 Concentrated liquid outlet pipe 10 Tank 11 Concentrated liquid circulation pipe 12 Liquid to be treated branch pipe 13 Anolyte outlet pipe 14 Catholyte outlet pipe P1 pump

───────────────────────────────────────────────────── フロントページの続き (72)発明者 デービット フローリアン テッシール カナダ国オンタリオ州 グエルフ ローヤ ルロード 29 グレッグ ウォーター コ ンディショニング インコーポレイティド 内 ──────────────────────────────────────────────────の Continuing on the front page (72) Inventor David Florian Tessir Guelph Royal Road, Ontario, Canada 29 Inside Greg Water Conditioning, Inc.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】陽極を備える陽極室と、陰極を備える陰極
室との間に陽イオン交換膜と陰イオン交換膜を交互に配
列させ、陽極側がアニオン交換膜で区画され陰極側がカ
チオン交換膜で区画された脱塩室と陽極側がカチオン交
換膜で区画され陰極側がアニオン交換膜で区画された濃
縮室とを形成させた電気透析槽の脱塩室にイオン交換体
を収容してなる脱イオン水製造装置を使用し、電圧を印
加しながら脱塩室に被処理水を流入するとともに、被処
理水又は処理水の少なくとも一部を濃縮水として循環す
ることによって被処理水中の不純物イオンを除去する自
己再生型電気透析脱イオン水製造方法において、脱塩室
に流入する被処理水と濃縮室に流入する濃縮水の流量比
を2:1〜5.5:1とし、且つ脱塩室における被処理
水の線速度を0.5〜7.0cm/secとし、濃縮室
における濃縮水の線速度を脱塩室内線速度に対して1.
2〜20倍とすることを特徴とする自己再生型電気透析
脱イオン法による脱イオン水製造方法。
A cation exchange membrane and an anion exchange membrane are alternately arranged between an anode chamber having an anode and a cathode chamber having a cathode, and the anode side is partitioned by an anion exchange membrane and the cathode side is a cation exchange membrane. Deionized water containing an ion exchanger in a desalination chamber of an electrodialysis tank in which a partitioned desalination chamber and a concentration chamber partitioned on the anode side with a cation exchange membrane and the cathode side with an anion exchange membrane are formed. Using the manufacturing apparatus, the water to be treated flows into the desalination chamber while applying a voltage, and at least a part of the water to be treated or the treated water is circulated as concentrated water to remove impurity ions in the water to be treated. In the self-regenerating type electrodialysis deionized water production method, the flow ratio of the water to be treated flowing into the desalting chamber to the concentrated water flowing into the concentration chamber is 2: 1 to 5.5: 1, and Set the linear velocity of the treated water to 0. And ~7.0cm / sec, 1 the linear velocity of the concentrated water in the concentrating compartments against desalting compartment linear velocity.
A method for producing deionized water by a self-regenerating electrodialysis deionization method, wherein the amount is 2 to 20 times.
【請求項2】上記脱塩室の厚みが0.3〜30cmであ
り、上記濃縮室の厚みが0.01〜3.7cmである請
求項1記載の自己再生型電気透析脱イオン法による脱イ
オン水製造方法。
2. The deionization method according to claim 1, wherein the thickness of the desalting chamber is 0.3 to 30 cm, and the thickness of the concentrating chamber is 0.01 to 3.7 cm. Ion water production method.
【請求項3】上記流量比、線速度及び線速度比を循環再
生利用される濃縮液に対して塩又は酸を添加することに
より調整する請求項1又は2記載の自己再生型電気透析
脱イオン法による脱イオン水製造方法。
3. The self-regenerating electrodialysis deionization according to claim 1, wherein the flow rate ratio, the linear velocity and the linear velocity ratio are adjusted by adding a salt or an acid to the concentrated solution to be recycled. Deionized water production method by the method.
JP10048598A 1997-03-28 1998-03-28 Deionized water production method Expired - Fee Related JP3900666B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10048598A JP3900666B2 (en) 1997-03-28 1998-03-28 Deionized water production method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP9-94907 1997-03-28
JP9490797 1997-03-28
JP10048598A JP3900666B2 (en) 1997-03-28 1998-03-28 Deionized water production method

Publications (2)

Publication Number Publication Date
JPH10323673A true JPH10323673A (en) 1998-12-08
JP3900666B2 JP3900666B2 (en) 2007-04-04

Family

ID=26436139

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10048598A Expired - Fee Related JP3900666B2 (en) 1997-03-28 1998-03-28 Deionized water production method

Country Status (1)

Country Link
JP (1) JP3900666B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001259645A (en) * 2000-03-23 2001-09-25 Japan Organo Co Ltd Deionized water production method
JP2001276836A (en) * 2000-03-28 2001-10-09 Japan Organo Co Ltd Production method of deionized water
JP2003181459A (en) * 2001-12-18 2003-07-02 Asahi Glass Co Ltd Method for producing deionized water
JP2007268331A (en) * 2006-03-30 2007-10-18 Japan Organo Co Ltd Apparatus for manufacturing electrically deionized water
JP2012521290A (en) * 2009-03-26 2012-09-13 ゼネラル・エレクトリック・カンパニイ Method for removing ionic species from a desalinator
WO2014142756A1 (en) * 2013-03-14 2014-09-18 Wisewater Pte. Ltd Polarized electrodialysis
CN106957125A (en) * 2017-04-17 2017-07-18 中源晟朝股份有限公司 A kind of heavy metal pollution underground water in situ remediation system
WO2019111476A1 (en) * 2017-12-07 2019-06-13 栗田工業株式会社 Reverse osmosis membrane concentrated water treatment method
CN111377567A (en) * 2019-10-28 2020-07-07 国电福州发电有限公司 System and method for utilizing electrodialysis resource to utilize strong brine
CN113493240A (en) * 2020-04-01 2021-10-12 佛山市云米电器科技有限公司 Regeneration control method, household water purifying device and computer readable storage medium

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4481417B2 (en) * 2000-03-23 2010-06-16 オルガノ株式会社 Deionized water production method
JP2001259645A (en) * 2000-03-23 2001-09-25 Japan Organo Co Ltd Deionized water production method
JP2001276836A (en) * 2000-03-28 2001-10-09 Japan Organo Co Ltd Production method of deionized water
JP2003181459A (en) * 2001-12-18 2003-07-02 Asahi Glass Co Ltd Method for producing deionized water
JP2007268331A (en) * 2006-03-30 2007-10-18 Japan Organo Co Ltd Apparatus for manufacturing electrically deionized water
US8864911B2 (en) 2009-03-26 2014-10-21 General Electric Company Method for removing ionic species from desalination unit
JP2012521290A (en) * 2009-03-26 2012-09-13 ゼネラル・エレクトリック・カンパニイ Method for removing ionic species from a desalinator
WO2014142756A1 (en) * 2013-03-14 2014-09-18 Wisewater Pte. Ltd Polarized electrodialysis
CN106957125A (en) * 2017-04-17 2017-07-18 中源晟朝股份有限公司 A kind of heavy metal pollution underground water in situ remediation system
WO2019111476A1 (en) * 2017-12-07 2019-06-13 栗田工業株式会社 Reverse osmosis membrane concentrated water treatment method
JP2019098300A (en) * 2017-12-07 2019-06-24 栗田工業株式会社 Method of treating concentrated water of reverse osmosis membrane
CN111377567A (en) * 2019-10-28 2020-07-07 国电福州发电有限公司 System and method for utilizing electrodialysis resource to utilize strong brine
CN113493240A (en) * 2020-04-01 2021-10-12 佛山市云米电器科技有限公司 Regeneration control method, household water purifying device and computer readable storage medium
CN113493240B (en) * 2020-04-01 2023-02-28 佛山市云米电器科技有限公司 Regeneration control method, household water purifying device and computer readable storage medium

Also Published As

Publication number Publication date
JP3900666B2 (en) 2007-04-04

Similar Documents

Publication Publication Date Title
US9637400B2 (en) Systems and methods for water treatment
US5376250A (en) Method of producing water having a reduced salt content
US6565725B2 (en) Method for producing deionized water
CN101486503B (en) Method for making drinking water
JP3305139B2 (en) Method for producing deionized water by electrodeionization method
CN101723491A (en) Electrodeionization method and device for basic working unit containing three compartments
JPH10323673A (en) Deionized water-producing method
JP7275536B2 (en) Electrodeionization apparatus and method for producing deionized water using the same
CN111954568B (en) Saline water recovery system based on bipolar membrane
US5944972A (en) Method for producing deionized water
JP3413883B2 (en) Pure water production equipment
US11577202B2 (en) Electrodialysis process and bipolar membrane electrodialysis devices for silica removal
WO1997046491A1 (en) Process for producing deionized water by electrical deionization technique
JPH07299454A (en) Membrane treating device
JP3695338B2 (en) Method for producing deionized water
JP3480661B2 (en) Water treatment method for electric deionized water production equipment
JP4915843B2 (en) Electric softening device, softening device and soft water production method
JP4531213B2 (en) Desalination equipment
JPH11244854A (en) Production of pure water
WO2023002693A1 (en) Method for operating pure-water production system
JP3951816B2 (en) Electric regenerative deionized water production method
JP4660890B2 (en) Operation method of electrodeionization equipment
JPH09290271A (en) Electric deionizing exchange device
WO2007132685A1 (en) Electric softening apparatus, softening apparatus, method of producing soft water and method of operating the softening apparatus
KR20190046718A (en) Operation method of water quality management system and water quality management system

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040830

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040830

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061225

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100112

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110112

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110112

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110112

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110112

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110112

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110112

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees