JPH0663068B2 - Method for producing manganese-aluminum-carbon alloy magnet - Google Patents
Method for producing manganese-aluminum-carbon alloy magnetInfo
- Publication number
- JPH0663068B2 JPH0663068B2 JP8855286A JP8855286A JPH0663068B2 JP H0663068 B2 JPH0663068 B2 JP H0663068B2 JP 8855286 A JP8855286 A JP 8855286A JP 8855286 A JP8855286 A JP 8855286A JP H0663068 B2 JPH0663068 B2 JP H0663068B2
- Authority
- JP
- Japan
- Prior art keywords
- billet
- compression
- peripheral portion
- aluminum
- punch
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Manufacturing Cores, Coils, And Magnets (AREA)
Description
【発明の詳細な説明】 産業上の利用分野 本発明は、永久磁石の製造法に係り、とくに多結晶マン
ガン−アルミニウム−炭素(Mn−Al−C)系合金磁石に
よる多極着磁用Mn−Al−C系合金磁石の製造法に関す
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a permanent magnet, and more particularly to Mn- for magnetizing multipoles using a polycrystalline manganese-aluminum-carbon (Mn-Al-C) alloy magnet. The present invention relates to a method for manufacturing an Al-C alloy magnet.
従来の技術 Mn−Al−C系磁石用合金は、68〜73質量%(以下単に%
で表わす)のMnと(1/10Mn−6.6)〜(1/3Mn−22.
2)%のCと残部のAlからなり、不純物以外に添加元素
を含まない3元系及び少量の添加元素を含む4元系以上
の多元系磁石用合金が知られており、これらを総称する
ものである。同様に、Mn−Al−C系合金磁石は、主とし
て強磁性相である面心正方晶(τ相、LI0型規則格子)
の組織で構成され、Cを必須構成元素として含むもので
あり、不純物以外に添加元素を含まない3元系及び少量
の添加元素を含む4元系以上の多元系合金磁石が知られ
ており、これらを総称するものである。Prior art alloys for Mn-Al-C magnets contain 68 to 73 mass% (hereinafter simply referred to as%
Mn and (1 / 10Mn-6.6) to (1 / 3Mn-22.
2) Multi-component magnet alloys composed of 3% C and the balance Al, ternary system containing no additional elements other than impurities, and quaternary system containing a small amount of additional elements are known. It is a thing. Similarly, the Mn-Al-C alloy magnet is mainly a face-centered tetragonal crystal (τ phase, LI 0 type ordered lattice) that is a ferromagnetic phase.
It is known that there are ternary alloy magnets of ternary system or more containing ternary system containing no additional element other than impurities and quaternary system containing a small amount of additional element, These are generic names.
従来、その製造方法は、Mn−Al−C系磁石用合金からな
る中空体状ビレットの外周を、外型で拘束した状態で、
その圧縮面が平面となったポンチにより、圧縮加工する
ものであった(特開昭58−192306号公報)。Conventionally, the manufacturing method is such that the outer periphery of a hollow body billet made of an alloy for Mn-Al-C magnets is constrained by an outer mold,
A punch having a flat compression surface was used for compression processing (Japanese Patent Laid-Open No. 192306/58).
発明が解決しようとする問題点 上記従来の製造方法によれば、ビレットは、その内・外
周部とも略等しい圧縮ひずみが加えられることとなるの
で、例えばこの圧縮により磁化容易方向配列は第6図の
A線のごとく半径方向への略直線となる。Problems to be Solved by the Invention According to the above-described conventional manufacturing method, the billet is subjected to substantially the same compressive strain at both the inner and outer peripheral portions thereof. It becomes a substantially straight line in the radial direction like the line A.
したがって、この状態で同図に示すごとく外周、または
内周にS,Nの着磁をしようとしても、その場合の理想的
な磁化容易方向配列である略半円状のB線とはあまりに
も磁化容易方向配列が異なるため、着磁作業を行っても
強力な磁力が得られなかった。Therefore, in this state, even if S and N are magnetized on the outer circumference or the inner circumference as shown in the figure, the ideal semi-circular B line which is the ideal easy magnetization direction array is too much. Since the arrangement of the easy magnetization direction is different, a strong magnetic force could not be obtained even when the magnetizing work was performed.
そこで上記従来例ではその第2図に示すごとく内周にS,
Nの着磁を行う前に、圧縮後のビレットの内周部を再度
圧縮することにより磁化容易方向配列を本出願の第6図
のB線のごとく略半円状に近づけ、その後内周への着磁
作業を行うようにしていた。Therefore, in the above-mentioned conventional example, as shown in FIG.
Before the magnetizing of N, the inner peripheral portion of the compressed billet is compressed again to bring the easy magnetization direction array to a substantially semicircular shape as shown by line B in FIG. 6 of the present application, and then to the inner periphery. I was supposed to do the magnetization work.
しかしながら従来のものはこのような略半円状の磁化容
易方向配列を得るには、ビレットの圧縮後に、ビレット
の内周、または外周を再度圧縮しなければならず、作業
性の悪いものであった。However, in the conventional case, in order to obtain such a substantially semi-circular easy direction alignment, the inner circumference or the outer circumference of the billet must be compressed again after the compression of the billet, resulting in poor workability. It was
そこで本発明は、ビレットの外周部にS,Nの着磁を行う
ものにおいて、略半円状の磁化容易方向配列が簡単に得
られるようにすることを目的とするものである。Therefore, an object of the present invention is to make it possible to easily obtain a substantially semi-circular array of easy magnetization directions in the case of magnetizing S and N on the outer peripheral portion of the billet.
問題点を解決するための手段 そしてこの目的を達成するために本発明は、マンガン−
アルミニウム−炭素系磁石用合金からなる中空体状のビ
レットを、530〜830℃の温度で、少なくともビレットの
外周および内周の一部分を自由にした状態で、内周部か
ら外周部に向けてビレットの端部に接近する傾斜を有す
る圧縮面を備えたポンチにより軸方向に圧縮することに
より、ビレットの外周部の圧縮ひずみが内周部の圧縮ひ
ずみより大きくなるように圧縮加工をするものである。In order to achieve this object, the present invention provides manganese-
A hollow body-shaped billet made of an aluminum-carbon magnet alloy is billeted from the inner peripheral portion to the outer peripheral portion at a temperature of 530 to 830 ° C., with at least a part of the outer peripheral portion and the inner peripheral portion of the billet being free. Is compressed in the axial direction by a punch having a compression surface having an inclination approaching the end of the billet, so that the compression strain of the outer peripheral portion of the billet is greater than the compression strain of the inner peripheral portion. .
作用 以上の構成とすると、マンガン−アルミニウム−炭素系
磁石用合金からなる中空体状ビレットの外周をポンチに
より軸方向に圧縮すると、ポンチの圧縮面が、内周部か
ら外周部に向けてビレットに接近する傾斜を有するの
で、ビレットはその外周部の圧縮ひずみが内周部の圧縮
ひずみより大きくなり、この結果として圧縮後のビレッ
トの外周部には、略半円状の磁化容易方向配列が一度の
圧縮により容易に形成され、またこれによりビレットの
外周にS,Nの着磁を行うと強力な磁力が得られることに
なるのである。With the above configuration, when the outer periphery of the hollow body billet made of the alloy for manganese-aluminum-carbon magnets is axially compressed by the punch, the compression surface of the punch becomes the billet from the inner peripheral portion toward the outer peripheral portion. Since the billet has an approaching inclination, the compressive strain of the outer peripheral portion of the billet is larger than the compressive strain of the inner peripheral portion, and as a result, the semi-circular magnetic easy direction array is once formed on the outer peripheral portion of the billet after compression. It is easily formed by the compression of S and N, and when S and N are magnetized on the outer periphery of the billet, a strong magnetic force is obtained.
実施例 第1図は加工前の状態の断面を示す。1はビレット、2,
3はポンチである。第1図に示すように、ポンチ2およ
びポンチ3のビレット1と接触する圧縮面2a,3aは、内
周部から外周部に向けてビレットの端部に接近する傾斜
を有する。このポンチ2およびポンチ3を用いて、ビレ
ット1の軸方向に加圧することによって、ビレット1は
軸方向に圧縮加工されて第2図に示す状態になる。第2
図に示したように加工後のビレット1の外周部の高さは
内周部の高さより低い。つまり、ビレット1の外周部の
圧縮ひずみが内周部の圧縮ひずみより大きくなるように
ビレット1の軸方向に圧縮加工を施したことになる。圧
縮ひずみとは、ビレット1の軸方向のひずみをいう。Example FIG. 1 shows a cross section before processing. 1 is billet, 2,
3 is a punch. As shown in FIG. 1, the compression surfaces 2a and 3a of the punch 2 and the punch 3 which come into contact with the billet 1 are inclined so as to approach the ends of the billet from the inner peripheral portion toward the outer peripheral portion. By using the punch 2 and the punch 3 to pressurize the billet 1 in the axial direction, the billet 1 is compressed in the axial direction to the state shown in FIG. Second
As shown in the figure, the height of the outer peripheral portion of the billet 1 after processing is lower than the height of the inner peripheral portion. That is, the compression processing is applied in the axial direction of the billet 1 so that the compression strain of the outer peripheral portion of the billet 1 becomes larger than the compression strain of the inner peripheral portion. Compressive strain refers to strain in the axial direction of the billet 1.
すなわち本実施例においては、マンガン−アルミニウム
−炭素系磁石用合金からなる中空体状ビレット1の外周
をポンチ2,3により軸方向に圧縮すると、ポンチ2,3の圧
縮面2a,3aが、内周部から外周部に向けてビレット1に
接近する傾斜を有するので、ビレット1はその外周部の
圧縮ひずみが内周部の圧縮ひずみより大きくなり、この
結果として圧縮後のビレット1の外周部には、第6図の
B線のごとく略半円状の磁化容易方向配列が一度の圧縮
により容易に形成され、またこれによりビレット1の外
周にS,Nの着磁を行うと強力な磁力が得られることにな
るのである。That is, in this embodiment, when the outer circumference of the hollow body billet 1 made of an alloy for manganese-aluminum-carbon magnets is axially compressed by the punches 2 and 3, the compression surfaces 2a and 3a of the punches 2 and 3 are Since the billet 1 has an inclination that approaches the billet 1 from the peripheral portion toward the outer peripheral portion, the compressive strain of the outer peripheral portion of the billet 1 becomes larger than the compressive strain of the inner peripheral portion, and as a result, the outer peripheral portion of the billet 1 after compression is Is easily formed by a single compression, as shown by the line B in FIG. 6, and a strong magnetic force can be obtained by magnetizing S and N on the outer periphery of the billet 1. It will be obtained.
第3図〜第5図は他の実施例を示し、第3図は加工前の
状態の断面を示す。1はビレット、2,3はポンチ、4は
外型である。第3図に示すように、前記実施例と異なる
点は、外型4を用いていることである。このポンチ2,3
を用いて、ビレット1の軸方向に加圧することによっ
て、ビレット1は軸方向に圧縮加工されて第4図に示す
状態になり、更に圧縮加工を行うと第5図に示したよう
になる。圧縮加工後のビレット1の外周部の高さは内周
部の高さより低い。つまり、この場合もビレット1の外
周部の圧縮ひずみが内周の圧縮ひずみより大きくなるよ
うにビレット1の軸方向に圧縮加工を施したことにな
る。3 to 5 show another embodiment, and FIG. 3 shows a cross section before processing. 1 is a billet, 2 and 3 are punches, and 4 is an outer mold. As shown in FIG. 3, the difference from the above-mentioned embodiment is that the outer mold 4 is used. This punch 2,3
By pressing the billet 1 in the axial direction using, the billet 1 is compressed in the axial direction to the state shown in FIG. 4, and when further compressed, it becomes as shown in FIG. The height of the outer peripheral portion of the billet 1 after compression processing is lower than the height of the inner peripheral portion. That is, also in this case, the compression processing is performed in the axial direction of the billet 1 so that the compression strain of the outer peripheral portion of the billet 1 becomes larger than the compression strain of the inner periphery.
なお前述したような圧縮加工は、530〜830℃の温度領域
において行えたが、780℃を越える温度では、磁気特性
がかなり低下した。より望ましい温度範囲としては560
〜760℃であった。The compression process as described above could be performed in the temperature range of 530 to 830 ° C, but the magnetic properties were considerably deteriorated at the temperature exceeding 780 ° C. A more desirable temperature range is 560
It was ~ 760 ° C.
次に本発明の更に具体的な実施例について説明する。Next, more specific examples of the present invention will be described.
具体例1(第1図) 配合組成で69.4%のMn、29.3%のAl、0.5%のC、0.7%
のNi及び0.1%のTiを溶解鋳造し、外径30mm、内径16m
m、長さ25mmの円筒ビレット1を作製した。このビレッ
ト1に1100℃で2時間保持した後、600℃まで風冷し、6
00℃で30分間保持した後、室温まで放冷する熱処理を施
した。次に、潤滑剤を介して、第1図に示したようなポ
ンチ2,3よりなる金型を用いて、680℃の温度で、ビレッ
ト1の内周部の長さが15mmまで圧縮加工を行った。なお
第1図において、ポンチ端面の傾斜角(α)は10゜であ
る。Example 1 (Fig. 1) 69.4% Mn, 29.3% Al, 0.5% C, 0.7%
Ni and 0.1% Ti are melt-cast, outer diameter 30mm, inner diameter 16m
A cylindrical billet 1 having m and a length of 25 mm was produced. Hold this billet 1 at 1100 ° C for 2 hours, air cool to 600 ° C, and
After holding at 00 ° C. for 30 minutes, a heat treatment of allowing to cool to room temperature was performed. Next, using a die made of punches 2 and 3 as shown in FIG. 1 through a lubricant, compression processing was performed at a temperature of 680 ° C. until the inner peripheral length of the billet 1 was 15 mm. went. In FIG. 1, the inclination angle (α) of the punch end face is 10 °.
加工後のビレット1を外径40mmに切削加工した後、24極
の外周着磁をし、表面磁束密度を測定した。After machining the billet 1 after processing to an outer diameter of 40 mm, outer circumference was magnetized with 24 poles, and the surface magnetic flux density was measured.
比較のために、前述した配合組成と同じ配合組成のMn,A
l,C,NiおよびTiを溶解鋳造し、外径30mm、内径16mm、長
さ25mmの円筒ビレット1を作製し、前記と同じ熱処理を
行った。次に、潤滑剤を介して、圧縮面が平面となった
ポンチを用いて、長さが15mmまでの圧縮加工を行った。
さらに前記と同様に切削加工した後、着磁し、表面磁束
密度を測定した。For comparison, Mn, A with the same composition as the composition described above
l, C, Ni and Ti were melted and cast to prepare a cylindrical billet 1 having an outer diameter of 30 mm, an inner diameter of 16 mm and a length of 25 mm, and the same heat treatment as described above was performed. Next, a punch having a flat compression surface was used to perform compression processing up to 15 mm in length through a lubricant.
Further, after cutting the same as the above, it was magnetized and the surface magnetic flux density was measured.
以上の両者の値を比較すると、本実施例の方法で得た磁
石の表面磁束密度の値は、比較のために作製した磁石の
それの約1.2倍であった。Comparing the above two values, the value of the surface magnetic flux density of the magnet obtained by the method of this example was about 1.2 times that of the magnet produced for comparison.
具体例(第3図) 具体例1と同じ配合組成のMn,Al,CおよびNiを溶解鋳造
し、外径30mm、内径16mm、長さ25mmのの円筒ビレット1
を作製し、具体例1と同じ熱処理をした。次に、潤滑剤
を介して、第3図に示したようなポンチ2,3、外径4よ
りなる金型を用いてビレット1の外周および内周を自由
な状態にして、680℃の温度で、ビレット1の外周部の
長さが13.3mmまでの圧縮加工を行った。なおポンチ2,3
端面の傾斜角(α)は10゜、外型4の内径は34mmであ
る。Concrete Example (Fig. 3) Mn, Al, C and Ni having the same composition as in Concrete Example 1 were melt cast, and a cylindrical billet 1 having an outer diameter of 30 mm, an inner diameter of 16 mm and a length of 25 mm was prepared.
Was prepared and subjected to the same heat treatment as in Example 1. Next, using a die having punches 2, 3 and an outer diameter 4 as shown in FIG. 3 through a lubricant, the outer and inner circumferences of the billet 1 were made free, and the temperature of 680 ° C. Then, the outer peripheral portion of the billet 1 was compressed to a length of 13.3 mm. Punch 2,3
The inclination angle (α) of the end face is 10 °, and the inner diameter of the outer mold 4 is 34 mm.
この圧縮加工を施したビレット1を外径33mmに切削加工
した後、具体例1と同様に24極の外周着磁した。表面磁
束密度を測定し、比較のために作製した磁石と比較し
た。The billet 1 that had been subjected to this compression processing was cut into an outer diameter of 33 mm, and then magnetized with 24 poles in the same manner as in Example 1. The surface magnetic flux density was measured and compared with a magnet manufactured for comparison.
以上の両者の値を比較すると、本実施例の方法で得た磁
石の表面磁束密度の値は、比較のために作製した磁石の
それの約1.2倍であった。Comparing the above two values, the value of the surface magnetic flux density of the magnet obtained by the method of this example was about 1.2 times that of the magnet produced for comparison.
発明の効果 以上のように本発明は、マンガン−アルミニウム−炭素
系磁石用合金からなる中空体状ビレットの外周をポンチ
により軸方向に圧縮するものにおいて、ポンチの圧縮面
が、内周部から外周部に向けてビレットに接近する傾斜
を有するので、ビレットはその内周部の圧縮ひずみが内
周部の圧縮ひずみより大きくなり、この結果として圧縮
後のビレットの外周部には、略半円状の磁化容易方向配
列が一度の圧縮により容易に形成され、またこれにより
ビレットの外周にS,Nの着磁を行うと強力な磁力が得ら
れることなるのである。EFFECTS OF THE INVENTION As described above, the present invention compresses the outer circumference of a hollow body billet made of an alloy for manganese-aluminum-carbon magnets in the axial direction by a punch, in which the compression surface of the punch is from the inner peripheral portion to the outer periphery. Since the billet has an inclination that approaches the billet, the compression strain of the inner circumference of the billet is larger than that of the inner circumference, and as a result, the outer circumference of the billet after compression has a substantially semicircular shape. The easy magnetization direction array of is easily formed by one-time compression, and when S and N are magnetized on the outer periphery of the billet, a strong magnetic force is obtained.
第1図ないし第5図は夫々本発明の実施例の断面図、第
6図は磁化容易方向配列を示す平面図である。 1……ビレット、2,3……ポンチ、4……外型。1 to 5 are cross-sectional views of an embodiment of the present invention, and FIG. 6 is a plan view showing an easy magnetization direction array. 1 ... Billet, 2,3 ... Punch, 4 ... Outer mold.
Claims (1)
金からなる中空体状のビレットを、530〜830℃の温度
で、少なくともビレットの外周および内周の一部分を自
由にした状態で、内周部から外周部に向けてビレットの
端部に接近する傾斜を有する圧縮面を備えたポンチによ
り、軸方向に圧縮することにより、ビレットの外周部の
圧縮ひずみが内周部の圧縮ひずみより大きくなるように
圧縮加工をするマンガン−アルミニウム−炭素系合金磁
石の製造法。1. A hollow body-shaped billet made of an alloy for manganese-aluminum-carbon magnets, at a temperature of 530 to 830 ° C., with at least part of the outer and inner circumferences of the billet being free, From the axial direction to the outer circumference of the billet, a punch having a compression surface with a slope that approaches the end of the billet causes the compression strain in the outer circumference of the billet to be greater than the compression strain in the inner circumference. A method for producing a manganese-aluminum-carbon alloy magnet, which is subjected to compression processing.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8855286A JPH0663068B2 (en) | 1986-04-17 | 1986-04-17 | Method for producing manganese-aluminum-carbon alloy magnet |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8855286A JPH0663068B2 (en) | 1986-04-17 | 1986-04-17 | Method for producing manganese-aluminum-carbon alloy magnet |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS62247052A JPS62247052A (en) | 1987-10-28 |
JPH0663068B2 true JPH0663068B2 (en) | 1994-08-17 |
Family
ID=13946025
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8855286A Expired - Lifetime JPH0663068B2 (en) | 1986-04-17 | 1986-04-17 | Method for producing manganese-aluminum-carbon alloy magnet |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0663068B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3116513B2 (en) * | 1992-02-10 | 2000-12-11 | 株式会社村田製作所 | Chip coil and method of manufacturing the same |
-
1986
- 1986-04-17 JP JP8855286A patent/JPH0663068B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPS62247052A (en) | 1987-10-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0663068B2 (en) | Method for producing manganese-aluminum-carbon alloy magnet | |
JPH0663072B2 (en) | Method for producing manganese-aluminum-carbon alloy magnet | |
JPH0663074B2 (en) | Method for producing manganese-aluminum-carbon alloy magnet | |
JPH0663066B2 (en) | Method for producing manganese-aluminum-carbon alloy magnet | |
JPS6210260A (en) | Manufacture of manganese-aluminum-carbon alloy magnet | |
JPH0663071B2 (en) | Method for producing manganese-aluminum-carbon alloy magnet | |
JPH0663073B2 (en) | Method for producing manganese-aluminum-carbon alloy magnet | |
JPH06102820B2 (en) | Method for producing manganese-aluminum-carbon alloy magnet | |
JPH0680607B2 (en) | Method for producing manganese-aluminum-carbon alloy magnet | |
JPH0434804B2 (en) | ||
JPH0663075B2 (en) | Method for producing manganese-aluminum-carbon alloy magnet | |
JPS62247053A (en) | Manufacture of manganese-aluminum-carbon alloy magnet | |
JPH0673328B2 (en) | Method for producing manganese-aluminum-carbon alloy magnet | |
JPH0673327B2 (en) | Method for producing manganese-aluminum-carbon alloy magnet | |
JPS61213357A (en) | Production of manganese-aluminum-carbon alloy magnet | |
JPH0663070B2 (en) | Method for producing manganese-aluminum-carbon alloy magnet | |
JPH0663067B2 (en) | Method for producing manganese-aluminum-carbon alloy magnet | |
JPS6210257A (en) | Manufacture of manganese-aluminum-carbon alloy magnet | |
JPH061741B2 (en) | Alloy magnet manufacturing method | |
JPS61213355A (en) | Production of manganese-aluminum-carbon alloy magnet | |
JPH0639674B2 (en) | Method for producing manganese-aluminum-carbon alloy magnet | |
JPH0680606B2 (en) | Method for producing manganese-aluminum-carbon alloy magnet | |
JPH0434807B2 (en) | ||
JPS62143406A (en) | Manufacture of manganese-aluminum-carbon alloy magnet | |
JPH06102819B2 (en) | Method for producing manganese-aluminum-carbon alloy magnet |