JPH06102820B2 - Method for producing manganese-aluminum-carbon alloy magnet - Google Patents

Method for producing manganese-aluminum-carbon alloy magnet

Info

Publication number
JPH06102820B2
JPH06102820B2 JP60251045A JP25104585A JPH06102820B2 JP H06102820 B2 JPH06102820 B2 JP H06102820B2 JP 60251045 A JP60251045 A JP 60251045A JP 25104585 A JP25104585 A JP 25104585A JP H06102820 B2 JPH06102820 B2 JP H06102820B2
Authority
JP
Japan
Prior art keywords
billet
aluminum
carbon alloy
alloy magnet
manganese
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60251045A
Other languages
Japanese (ja)
Other versions
JPS62112765A (en
Inventor
昭彦 井端
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP60251045A priority Critical patent/JPH06102820B2/en
Publication of JPS62112765A publication Critical patent/JPS62112765A/en
Publication of JPH06102820B2 publication Critical patent/JPH06102820B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacturing Cores, Coils, And Magnets (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、永久磁石の製造法に係り、特に多結晶マンガ
ン−アルミニウム−炭素(Mn−Al−C)系合金磁石によ
る多極着磁用Mn−Al−C系合金磁石の製造法に関する。
Description: FIELD OF THE INVENTION The present invention relates to a method for manufacturing a permanent magnet, and more particularly, for multipolar magnetizing with a polycrystalline manganese-aluminum-carbon (Mn-Al-C) alloy magnet. The present invention relates to a method for manufacturing an Mn-Al-C alloy magnet.

(従来の技術) Mn−Al−C系磁石用合金は、68〜73質量%(以下、単に
%で表す)のMnと(1/10Mn−6.6)〜(1/3Mn−22.2)%
のCと残部のAlからなり、不純物以外に添加元素を含ま
ない3元系および少量の添加元素を含む4元系以上の多
元系磁石用合金が知られており、これらを総称するもの
である。同様に、Mn−Al−C系磁石用合金は、主として
強磁性相である面心正方晶(τ相、Ll0型規則格子)の
組織で構成され、Cを必須構成元素として含むものであ
り、不純物以外に添加元素を含まない3元系および少量
の添加元素を含む4元系以上の多元系磁石用合金が知ら
れており、これらを総称するものである。
(Prior Art) An alloy for Mn-Al-C magnets has 68 to 73 mass% (hereinafter simply expressed as%) of Mn and (1 / 10Mn-6.6) to (1 / 3Mn-22.2)%.
The alloys for multi-component magnets, which are composed of C and the balance Al and contain no additional element other than impurities, and quaternary or more multi-element magnets containing a small amount of additional elements are known and are collectively referred to. . Similarly, alloying Mn-Al-C based magnets, face-centered tetragonal (tau phase, Ll 0 type ordered lattice) is mainly ferromagnetic phase consists of tissue are those containing C as the essential constituent elements A ternary system alloy containing no additional element other than impurities and a quaternary or more multi-component magnet alloy containing a small amount of additional element are known and are collectively referred to.

従来、その製造方法は、Mn−Al−C系磁石用合金からな
る中空体ビレットの外周を、外型で拘束した状態で、そ
の圧縮面が平面となったポンチにより圧縮加工するもの
であった(特開昭58-192306号公報)。
Conventionally, the manufacturing method has been one in which the outer periphery of a hollow body billet made of an alloy for Mn-Al-C magnets is constrained by an outer die, and compression processing is performed by a punch whose compression surface is a flat surface. (JP-A-58-192306).

(発明が解決しようとする問題点) 上記従来の製造方法によれば、ビレットは、その内・外
周部とも略等しい圧縮ひずみが加えられることとなるの
で、例えば、この圧縮により磁化容易方向配列は、第2
図のA線のごとく半径方向への略直線となる。
(Problems to be Solved by the Invention) According to the above-described conventional manufacturing method, the billet is subjected to substantially the same compressive strain on both the inner and outer peripheral portions thereof. , Second
It becomes a substantially straight line in the radial direction like the line A in the figure.

したがって、この状態で同図に示すごとく、例えば内周
にS,Nの着磁をしようとしても、その場合の理想的な磁
化容易方向配列である略半円状のB線とは、あまりにも
磁化容易方向配列が異なるため、着磁作業を行っても強
力な磁力が得られなかった。
Therefore, as shown in the same figure in this state, for example, even if it is attempted to magnetize S and N on the inner circumference, the ideal semi-circular B line which is the ideal easy magnetization direction array is too much. Since the arrangement of the easy magnetization direction is different, a strong magnetic force could not be obtained even when the magnetizing work was performed.

そこで上記従来例では内周にS,Nの着磁を行う前に、圧
縮後のビレットの内周部を再度圧縮することにより磁化
容易方向配列を第2図のB線のごとく略半円状に近づ
け、その後、内周への着磁作業を行うようにしていた。
Therefore, in the above-mentioned conventional example, before the S and N are magnetized on the inner circumference, the inner circumference of the compressed billet is compressed again so that the easy magnetization direction array is substantially semicircular as shown by line B in FIG. And then magnetized the inner circumference.

しかしながら、従来のものは、このような略半円状の磁
化容易方向配列を得るには、ビレットの圧縮後に、ビレ
ットの内周または外周を再度圧縮しなければならず、作
業性の悪いものであった。
However, in the conventional case, in order to obtain such a substantially semicircular easy magnetization direction array, the inner circumference or the outer circumference of the billet must be compressed again after the compression of the billet, and the workability is poor. there were.

そこで本発明は、ビレットの外周部にS,Nの着磁を行う
ものにおいて、略半円状の磁化容易方向配列が簡単に得
られるようにすることを目的とするものである。
Therefore, an object of the present invention is to make it possible to easily obtain a substantially semi-circular array of easy magnetization directions in the case of magnetizing S and N on the outer peripheral portion of the billet.

(問題点を解決するための手段) そして、上記目的を達成するために、本発明は、あらか
じめ異方性化した多結晶マンガン−アルミニウム−炭素
系磁石用合金からなる中空体状のビレットを、530〜830
度の温度で、ビレットの外周を外型で拘束した状態で、
しかも少なくとも内周の一部分を自由にした状態でポン
チにより軸方向に圧縮する構成とし、前記ポンチの圧縮
面に、その外周面から内周面に向けてビレットの端部に
接近する傾斜を設けて、ビレットの内周部の圧縮ひずみ
が外周部の圧縮ひずみより大きくなるようにビレットの
軸方向に圧縮加工を施すものである。
(Means for Solving the Problems) Then, in order to achieve the above object, the present invention provides a hollow body-shaped billet made of a pre-anisotropic polycrystalline manganese-aluminum-carbon magnet alloy. 530 ~ 830
At a temperature of 10 degrees, with the outer periphery of the billet restrained by an outer mold,
Moreover, at least a part of the inner circumference is configured to be axially compressed by a punch, and the compression surface of the punch is provided with an inclination that approaches the end of the billet from the outer peripheral surface toward the inner peripheral surface. The billet is compressed in the axial direction so that the inner part of the billet has a larger compressive strain than the outer part.

(作用) 上記の構成にして、あらかじめ異方性化した多結晶マン
ガン−アルミニウム−炭素系磁石用合金からなる中空体
状ビレットの外周を外型で拘束した状態で、このビレッ
トをポンチにより軸方向に圧縮すると、ポンチの圧縮面
が、外周部から内周部に向けてビレットの端部に接近す
る傾斜を有するので、ビレットはその内周部の圧縮ひず
みが外周部の圧縮ひずみより大きくなり、この結果とし
て圧縮後のビレットの内周部には、略半円状の磁化容易
方向配列が一度の圧縮により容易に形成され、またこれ
によりビレットの外周にS,Nの着磁を行うと強力な磁力
が得られることになるのである。
(Operation) With the above-mentioned structure, the billet is axially constrained by a punch while the outer periphery of the hollow body billet made of a pre-anisotropic polycrystalline manganese-aluminum-carbon magnet alloy is constrained by an outer die. When compressed to, since the compression surface of the punch has an inclination approaching the end of the billet from the outer peripheral portion toward the inner peripheral portion, the billet has a compressive strain greater than the compressive strain of the outer peripheral portion, As a result, an approximately semi-circular easy magnetization direction array is easily formed by one-time compression on the inner circumference of the billet after compression, and this makes it strong when S and N are magnetized on the outer circumference of the billet. That is, a strong magnetic force can be obtained.

(実施例) 以下、本発明の実施例を図面を参照して説明する。(Example) Hereinafter, the Example of this invention is described with reference to drawings.

第1図は本発明の一実施例を実施するための加工装置の
一例を示す断面図であり、第1図(a)および(b)
は、それぞれ加工の前後の状態を示す要部断面図であっ
て、円筒形ビレット1は、上ポンチ2と下ポンチ3およ
び外型4で圧縮加工される。第1図(a)に示すよう
に、上ポンチ2および下ポンチ3の圧縮面は、その外周
面から内周面に向けてビレット1の端部に接近する傾斜
を有する円錐面となっている。この上下ポンチ2および
3により、円筒形ビレットは軸方向に圧縮加工されて、
第1図(b)に示す外周部の高さが内周部の高さより高
い臼状の円筒形のビレット5が得られる。すなわち、ビ
レット5は、ビレット1に対して内周部の圧縮ひずみが
外周部の圧縮ひずみより大きくなるように圧縮加工を施
して得られたものである。なお、圧縮ひずみとは、ビレ
ットの軸方向のひずみをいう。
FIG. 1 is a sectional view showing an example of a processing apparatus for carrying out one embodiment of the present invention, and FIGS. 1 (a) and 1 (b).
3A and 3B are cross-sectional views of a main part showing states before and after processing, respectively, in which the cylindrical billet 1 is compression processed by the upper punch 2, the lower punch 3 and the outer die 4. As shown in FIG. 1 (a), the compression surfaces of the upper punch 2 and the lower punch 3 are conical surfaces having an inclination approaching the end of the billet 1 from the outer peripheral surface toward the inner peripheral surface. . By these upper and lower punches 2 and 3, the cylindrical billet is compressed in the axial direction,
A mortar-shaped cylindrical billet 5 shown in FIG. 1 (b) is obtained in which the height of the outer peripheral portion is higher than the height of the inner peripheral portion. That is, the billet 5 is obtained by subjecting the billet 1 to compression processing so that the compression strain in the inner peripheral portion is larger than the compression strain in the outer peripheral portion. The compressive strain means strain in the axial direction of the billet.

次に、本発明による更に具体的な実施例について説明す
る。
Next, more specific examples according to the present invention will be described.

すなわち、配合組成で69.4%のマンガンMn,29.3%のア
ルミニウムAl,0.5%の炭素C,0.7%のニッケルNi,および
0.1%のチタンTiを溶解後、直径50mm,長さ40mmの円柱ビ
レットを鋳造した。この円柱ビレットを、温度1100℃で
2時間加熱し、温度600℃まで風冷し、そのまま30分間
保持した後、室温まで放冷する熱処理を行った。次に、
潤滑剤を用いて、720℃の温度で、押出加工を行い、直
径32mm,長さ98mmの棒材を得た。この棒材を切断および
切削加工して、外径30mm,内径20mm,長さ20mmの両端面が
平面の円筒形ビレット1とし、次にこの円筒形ビレット
1を潤滑剤を用いて第1図に示した内径30mmの外型4を
用いて外周面を拘束し、且つ内周を自由な状態にして傾
斜角αが20°の円錐面で端面を構成した上ポンチ2およ
び下ポンチ3を用い、680℃の温度で、円筒ビレット1
の外周部の長さが13.3mmになるまで圧縮加工を行った。
That is, in the composition, 69.4% manganese Mn, 29.3% aluminum Al, 0.5% carbon C, 0.7% nickel Ni, and
After 0.1% titanium Ti was melted, a cylindrical billet having a diameter of 50 mm and a length of 40 mm was cast. This cylindrical billet was heated at a temperature of 1100 ° C. for 2 hours, air-cooled to a temperature of 600 ° C., held as it was for 30 minutes, and then heat-treated to cool to room temperature. next,
Using a lubricant, extrusion processing was performed at a temperature of 720 ° C to obtain a bar material having a diameter of 32 mm and a length of 98 mm. This rod is cut and cut to form a cylindrical billet 1 with both outer diameters of 30 mm, inner diameter of 20 mm, and length of 20 mm and flat end faces. Then, this cylindrical billet 1 is lubricated with a lubricant as shown in FIG. The outer punch 4 having an inner diameter of 30 mm shown is used to constrain the outer circumferential surface, and the inner punch is free, and the upper punch 2 and the lower punch 3 each having an end surface composed of a conical surface having an inclination angle α of 20 ° are used. Cylindrical billet 1 at a temperature of 680 ℃
The compression processing was performed until the length of the outer peripheral portion became 13.3 mm.

この圧縮加工を施したビレット5の内径を18mmまで切削
加工して、着磁装置を用い内周面に18極の多極着磁を施
し、その表面磁束密度をホール素子で測定した。
The inner diameter of the compressed billet 5 was cut to 18 mm, and the inner peripheral surface was multi-polarized with 18 poles using a magnetizing device, and the surface magnetic flux density was measured with a Hall element.

比較のために、前述した押出棒を切断および切削加工し
て、外周30mm,内周20mm,長さ20mmの円筒形ビレット1に
した。この円筒形ビレットを潤滑剤を用いて、圧縮面が
平面となった金型を使用し、円筒ビレット1の長さが1
3.3mmになるまで圧縮加工を行い、さらに、上記と同寸
法に内周面を切削加工を施して着磁し、表面磁束密度を
測定した。
For comparison, the extruded rod described above was cut and cut into a cylindrical billet 1 having an outer circumference of 30 mm, an inner circumference of 20 mm, and a length of 20 mm. This cylindrical billet is lubricated with a die whose compression surface is flat, and the length of the cylindrical billet 1 is 1
The surface magnetic flux density was measured by performing compression processing to 3.3 mm, further cutting the inner peripheral surface to the same size as the above, and magnetizing.

これら両者の値を比較した結果、本発明の方法で得た磁
石の表面磁束密度は、比較のために作製した磁石の表面
磁束密度の1.2倍であった。
As a result of comparing these two values, the surface magnetic flux density of the magnet obtained by the method of the present invention was 1.2 times the surface magnetic flux density of the magnet prepared for comparison.

(発明の効果) 以上のごとく本発明は、あらかじめ異方性化した多結晶
Mn−Al−C系磁石用合金からなる中空体状ビレットの外
周を外型で拘束した状態で、このビレットをポンチによ
り軸方向に圧縮するもので、ポンチの圧縮面が、外周部
から内周部に向けてビレットの端部に接近する傾斜を有
するので、ビレットはその内周部の圧縮ひずみが外周部
の圧縮ひずみより大きくなり、この結果として圧縮後の
ビレットの内周部には、略半円状の磁化容易方向配列が
一度の圧縮により容易に形成され、またこれによりビレ
ットの内周にS,Nの着磁を行うと強力な磁力が得られる
ことになる。
(Effects of the Invention) As described above, the present invention is based on a polycrystal that is anisotropy in advance.
Hollow body billet made of Mn-Al-C magnet alloy is compressed in the axial direction by a punch while the outer circumference of the billet is constrained by an outer die. The compression surface of the punch is from the outer circumference to the inner circumference. Since the billet has an inclination that approaches the end of the billet, the compressive strain of the billet becomes greater than the compressive strain of the billet, and as a result, the billet after compression has a substantially A semi-circular easy-direction array is easily formed by one-time compression, and a strong magnetic force can be obtained by magnetizing S and N on the inner circumference of the billet.

【図面の簡単な説明】[Brief description of drawings]

第1図(a),(b)は本発明の一実施例を実施するた
めの加工装置の一例を示す断面図、第2図は磁化容易方
向配列を示す平面図である。 1,5…ビレット、2,3…ポンチ、4…外型。
1 (a) and 1 (b) are sectional views showing an example of a processing apparatus for carrying out an embodiment of the present invention, and FIG. 2 is a plan view showing an easy magnetization direction array. 1,5 ... Billet, 2,3 ... Punch, 4 ... Outer mold.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】あらかじめ異方性化した多結晶マンガン−
アルミニウム−炭素系合金磁石からなる中空体状のビレ
ットを、530〜830℃の温度で、ビレットの外周を拘束
し、且つ少なくとも内周の一部分を自由にした状態でポ
ンチにより軸方向に圧縮する構成とし、前記ポンチの圧
縮面に、その外周面から内周面に向けてビレットの端部
に接近する傾斜を設けて、ビレットの内周部の圧縮ひず
みが外周部の圧縮ひずみより大きくなるように中空体の
軸方向に圧縮加工を施すことを特徴とするマンガン−ア
ルミニウム−炭素系合金磁石の製造法。
1. Pre-anisotropic polycrystalline manganese-
A structure in which a hollow billet made of an aluminum-carbon alloy magnet is axially compressed by a punch at a temperature of 530 to 830 ° C while the outer periphery of the billet is constrained and at least a part of the inner periphery is free. And, the compression surface of the punch is provided with an inclination that approaches the end of the billet from the outer peripheral surface toward the inner peripheral surface, so that the compression strain of the inner peripheral portion of the billet is larger than the compression strain of the outer peripheral portion. A method for producing a manganese-aluminum-carbon alloy magnet, which comprises subjecting a hollow body to compression processing in the axial direction.
【請求項2】ビレットが、中空体の軸方向に磁化容易軸
を有する多結晶マンガン−アルミニウム−炭素系合金磁
石からなり、しかも上記圧縮ひずみが対数ひずみの絶対
値で0.05以上である特許請求の範囲第(1)項記載のマ
ンガン−アルミニウム−炭素系合金磁石の製造法。
2. The billet is composed of a polycrystalline manganese-aluminum-carbon alloy magnet having an axis of easy magnetization in the axial direction of the hollow body, and the compressive strain is 0.05 or more in absolute value of logarithmic strain. A method for producing a manganese-aluminum-carbon alloy magnet according to the range (1).
【請求項3】ビレットが、中空体の軸方向に垂直な平面
に平行に磁化容易軸を有し、しかも前記平面内では磁気
的に等方性であり、且つ上記軸方向と上記平面に平行な
平面内では異方性である多結晶マンガン−アルミニウム
−炭素系合金磁石からなる特許請求の範囲第(1)項記
載のマンガン−アルミニウム−炭素系合金磁石の製造
法。
3. The billet has an axis of easy magnetization parallel to a plane perpendicular to the axial direction of the hollow body, is magnetically isotropic in the plane, and is parallel to the axial direction and the plane. The method for producing a manganese-aluminum-carbon alloy magnet according to claim (1), comprising a polycrystalline manganese-aluminum-carbon alloy magnet which is anisotropic in a plane.
JP60251045A 1985-11-09 1985-11-09 Method for producing manganese-aluminum-carbon alloy magnet Expired - Lifetime JPH06102820B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60251045A JPH06102820B2 (en) 1985-11-09 1985-11-09 Method for producing manganese-aluminum-carbon alloy magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60251045A JPH06102820B2 (en) 1985-11-09 1985-11-09 Method for producing manganese-aluminum-carbon alloy magnet

Publications (2)

Publication Number Publication Date
JPS62112765A JPS62112765A (en) 1987-05-23
JPH06102820B2 true JPH06102820B2 (en) 1994-12-14

Family

ID=17216791

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60251045A Expired - Lifetime JPH06102820B2 (en) 1985-11-09 1985-11-09 Method for producing manganese-aluminum-carbon alloy magnet

Country Status (1)

Country Link
JP (1) JPH06102820B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4561974B2 (en) * 2004-09-01 2010-10-13 大同特殊鋼株式会社 Manufacturing method of ring magnet material

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60130812A (en) * 1983-12-20 1985-07-12 Matsushita Electric Ind Co Ltd Manufacture of manganese-aluminum-carbon alloy magnet

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60130812A (en) * 1983-12-20 1985-07-12 Matsushita Electric Ind Co Ltd Manufacture of manganese-aluminum-carbon alloy magnet

Also Published As

Publication number Publication date
JPS62112765A (en) 1987-05-23

Similar Documents

Publication Publication Date Title
US4579607A (en) Permanent Mn-Al-C alloy magnets and method for making same
JPH06102820B2 (en) Method for producing manganese-aluminum-carbon alloy magnet
JPH06102819B2 (en) Method for producing manganese-aluminum-carbon alloy magnet
JPH0479122B2 (en)
JPH0639675B2 (en) Method for producing manganese-aluminum-carbon alloy magnet
JP2563407B2 (en) Rare earth magnet manufacturing method
JPH0663066B2 (en) Method for producing manganese-aluminum-carbon alloy magnet
JPH0663068B2 (en) Method for producing manganese-aluminum-carbon alloy magnet
JPH0663074B2 (en) Method for producing manganese-aluminum-carbon alloy magnet
JPH0663073B2 (en) Method for producing manganese-aluminum-carbon alloy magnet
JPH0663075B2 (en) Method for producing manganese-aluminum-carbon alloy magnet
JPH0663072B2 (en) Method for producing manganese-aluminum-carbon alloy magnet
JPH0663070B2 (en) Method for producing manganese-aluminum-carbon alloy magnet
JPS58192306A (en) Manufacture of manganese-aluminum-carbon alloy magnet
JPH0311521B2 (en)
JPH061741B2 (en) Alloy magnet manufacturing method
JPS6210257A (en) Manufacture of manganese-aluminum-carbon alloy magnet
JPH0639672B2 (en) Method for producing manganese-aluminum-carbon alloy magnet
JPH0673328B2 (en) Method for producing manganese-aluminum-carbon alloy magnet
JPH0338722B2 (en)
JPH0639674B2 (en) Method for producing manganese-aluminum-carbon alloy magnet
JPH061742B2 (en) Alloy magnet manufacturing method
JPS61168210A (en) Permanent magnet
JPH0673327B2 (en) Method for producing manganese-aluminum-carbon alloy magnet
JPH0639670B2 (en) Method for producing manganese-aluminum-carbon alloy magnet