JPH0663066B2 - Method for producing manganese-aluminum-carbon alloy magnet - Google Patents

Method for producing manganese-aluminum-carbon alloy magnet

Info

Publication number
JPH0663066B2
JPH0663066B2 JP8850586A JP8850586A JPH0663066B2 JP H0663066 B2 JPH0663066 B2 JP H0663066B2 JP 8850586 A JP8850586 A JP 8850586A JP 8850586 A JP8850586 A JP 8850586A JP H0663066 B2 JPH0663066 B2 JP H0663066B2
Authority
JP
Japan
Prior art keywords
billet
peripheral portion
compression
aluminum
punch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP8850586A
Other languages
Japanese (ja)
Other versions
JPS62243752A (en
Inventor
昭彦 井端
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP8850586A priority Critical patent/JPH0663066B2/en
Publication of JPS62243752A publication Critical patent/JPS62243752A/en
Publication of JPH0663066B2 publication Critical patent/JPH0663066B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacturing Cores, Coils, And Magnets (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、永久磁石の製造法に係り、とくに多結晶マン
ガン−アルミニウム−炭素(Mn−Al−C)系合金磁石に
よる多極着磁用Mn−Al−C系合金磁石の製造法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a permanent magnet, and more particularly to Mn- for magnetizing multipoles using a polycrystalline manganese-aluminum-carbon (Mn-Al-C) alloy magnet. The present invention relates to a method for manufacturing an Al-C alloy magnet.

従来の技術 Mn−Al−C系磁石用合金は、68〜73質量%(以下単に%
で表わす)のMnと(1/10Mn−6.6)〜(1/3Mn−22.
2)%のCと残部のAlからなり、不純物以外に添加元素
を含まない3元系及び少量の添加元素を含む4元系以上
の多元系磁石用合金が知られており、これらを総称する
ものである。またこの合金を用いて形成した、Mn−Al−
C系合金磁石は、主として強磁性相である面心正方晶
(τ相、L1型規則格子)の組織で構成されている。
Prior art alloys for Mn-Al-C magnets contain 68 to 73 mass% (hereinafter simply referred to as%
Mn and (1 / 10Mn-6.6) to (1 / 3Mn-22.
2) Multi-component magnet alloys composed of 3% C and the balance Al, ternary system containing no additional elements other than impurities, and quaternary system containing a small amount of additional elements are known. It is a thing. In addition, Mn-Al- formed using this alloy
C alloy magnet is composed of mainly face-centered tetragonal (tau phase, L1 0 type ordered lattice) is a ferromagnetic phase of tissue.

従来、その製造方法は、Mn−Al−C系磁石用合金からな
る中空体状ビレットの外周を、外型で拘束した状態で、
その圧縮面が平面となったポンチにより、圧縮加工する
ものであった(特開昭58−192306号公報)。
Conventionally, the manufacturing method is such that the outer periphery of a hollow body billet made of an alloy for Mn-Al-C magnets is constrained by an outer mold,
A punch having a flat compression surface was used for compression processing (Japanese Patent Laid-Open No. 192306/58).

発明が解決しようとする問題点 上記従来の製造方法によれば、ビレットは、その内、外
周部とも略等しい圧縮ひずみが加えられることとなるの
で、例えばこの圧縮により磁化容易方向配列は第3図の
A線のごとく半径方向への略直線となる。
Problems to be Solved by the Invention According to the above-described conventional manufacturing method, since the billet is subjected to substantially the same compressive strain both in the billet and the outer peripheral portion, for example, this compression causes the easy magnetization direction arrangement to be as shown in FIG. It becomes a substantially straight line in the radial direction like the line A.

したがって、この状態で同図に示すごとく外周、または
内周に、S,Nの着磁をしようとしても、その場合の理想
的な磁化容易方向配列である略半円状のB線とはあまり
にも磁化容易方向配列が異なるため、着磁作業を行って
も強力な磁力が得られなかった。
Therefore, in this state, even if it is attempted to magnetize S and N on the outer circumference or the inner circumference as shown in the same figure, the ideal semi-circular B line which is the ideal easy magnetization direction array in that case is too much. However, since the arrangement in the easy magnetization direction is different, a strong magnetic force could not be obtained even when the magnetizing work was performed.

そこで上記従来例ではその第2図に示すごとく内周にS,
Nの着磁を行う前に、圧縮後のビレットの内周部を再度
圧縮することにより磁化容易方向配列を本出願の第3図
のごとく略半円状に近づけ、その後内周への着磁作業を
行うようにしていた。
Therefore, in the above-mentioned conventional example, as shown in FIG.
Before magnetizing N, the inner peripheral portion of the compressed billet is compressed again to bring the easy magnetization direction array close to a substantially semicircular shape as shown in FIG. 3 of the present application, and then magnetizing the inner periphery. I was trying to do the work.

しかしながら従来のものはこのような略半円状の磁化容
易方向配列を得るには、ビレットの圧縮後に、ビレット
の内周、または外周を再度圧縮しなければならず、作業
性の悪いものであった。
However, in the conventional case, in order to obtain such a substantially semi-circular easy direction alignment, the inner circumference or the outer circumference of the billet must be compressed again after the compression of the billet, resulting in poor workability. It was

そこで本発明は、ビレットの外周部にS,Nの着磁を行う
ものにおいて、略半円状の磁化容易方向配列が簡単に得
られるようにすることを目的とするものである。
Therefore, an object of the present invention is to make it possible to easily obtain a substantially semi-circular array of easy magnetization directions in the case of magnetizing S and N on the outer peripheral portion of the billet.

問題点を解決するための手段 そしてこの目的を達成するために本発明は、マンガン−
アルミニウム−炭素系磁石用合金からなる中空体状のビ
レットに、530〜830℃の温度で、ビレットの外周を外型
により拘束した状態で、その圧縮面が内周部から外周部
に向けてビレットに接近する傾斜を有するポンチによ
り、ビレットの外周部の圧縮ひずみが内周部の圧縮ひず
みより大きくなるようにビレットの軸方向に圧縮加工を
施すものである。
In order to achieve this object, the present invention provides manganese-
A billet in the form of a hollow body made of an aluminum-carbon magnet alloy is held at a temperature of 530 to 830 ° C. with the outer periphery of the billet being constrained by an outer mold, and its compression surface extends from the inner periphery to the outer periphery. With a punch having an inclination approaching to, the billet is compressed in the axial direction so that the compressive strain of the outer peripheral portion of the billet is larger than the compressive strain of the inner peripheral portion.

作用 以上の構成とすると、マンガン−アルミニウム−炭素系
磁石用合金からなる中空体状ビレットの外周を外型で拘
束した状態で、このビレットをポンチにより軸方向に圧
縮すると、ポンチの圧縮面が、内周部から外周部に向け
てビレットに接近する傾斜を有するので、ビレットはそ
の外周部の圧縮ひずみが内周部の圧縮ひずみより大きく
なり、この結果として圧縮後のビレットの外周部には、
略半円状の磁化容易方向配列が一度の圧縮により容易に
形成され、またこれによりビレットの外周にS,Nの着磁
を行うと強力な磁力が得られることになるのである。
With the above configuration, in the state where the outer periphery of the hollow body billet made of the alloy for manganese-aluminum-carbon magnets is constrained by the outer mold, when this billet is axially compressed by the punch, the compression surface of the punch is Since the billet has an inclination approaching the billet from the inner peripheral portion toward the outer peripheral portion, the compression strain of the outer peripheral portion of the billet is larger than the compressive strain of the inner peripheral portion, and as a result, the outer peripheral portion of the billet after compression is
A substantially semi-circular array of easy magnetization directions is easily formed by one compression, and a strong magnetic force can be obtained by magnetizing S and N on the outer circumference of the billet.

実施例 第1図は加工前の状態の断面を示す。1はビレット、2,
3はポンチ、4は外型である。ポンチ2およびポンチ3
のビレット1と接触する圧縮面が平面ではなく内周部か
ら外周部に向けてビレット1に接近する傾斜面となって
いる。このポンチ2およびポンチ3を用いて、ビレット
1の軸方向に加圧することによって、ビレットは軸方向
に圧縮加工されて第2図に示す状態になる。第2図に示
したように圧縮加工後のビレット1の外周部の高さは内
周部の高さより小さい。つまり、ビレット1の外周部の
圧縮ひずみが内周部の圧縮ひずみより大きくなるように
ビレット1の軸方向に圧縮加工を施したことになる。圧
縮ひずみとは、ビレット1の軸方向のひずみをいう。
Example FIG. 1 shows a cross section before processing. 1 is billet, 2,
3 is a punch and 4 is an outer type. Punch 2 and punch 3
The compression surface that contacts the billet 1 is not a flat surface but an inclined surface that approaches the billet 1 from the inner peripheral portion toward the outer peripheral portion. By using the punch 2 and the punch 3 to pressurize the billet 1 in the axial direction, the billet is compressed in the axial direction to the state shown in FIG. As shown in FIG. 2, the height of the outer peripheral portion of the billet 1 after compression processing is smaller than the height of the inner peripheral portion. That is, the compression processing is applied in the axial direction of the billet 1 so that the compression strain of the outer peripheral portion of the billet 1 becomes larger than the compression strain of the inner peripheral portion. Compressive strain refers to strain in the axial direction of the billet 1.

そしてこれによって、磁石の径方向の磁化容易方向配列
を自由にコントロールすることができる。
Thus, the arrangement of the easy magnetizing directions in the radial direction of the magnets can be freely controlled.

前述したような圧縮加工の可能な温度範囲は、530〜830
℃の温度領域で、780℃を越える温度では、磁気特性が
かなり低下した。より望ましい温度範囲としては560〜7
60℃であった。
The temperature range in which compression processing as described above is possible is 530 to 830.
In the temperature range of ℃, over 780 ℃, the magnetic properties deteriorated considerably. More desirable temperature range is 560-7
It was 60 ° C.

次に本発明の更に具体的な実施例について説明する。Next, more specific examples of the present invention will be described.

実施例1(第1図,第2図) 配合組成で69.4%のMn、29.3%のAl、0.5%のC、0.7%
のNi及び0.1%のTiを溶解鋳造し、外径30mm、内径20m
m、長さ20mmの円筒ビレット1を作製した。このビレッ
ト1に1100℃で2時間保持した後、室温まで放冷する熱
処理を施した。次に、潤滑剤を介して、ポンチ2,3、外
型4よりなる金型を用いて、円筒ビレット1の外周表面
を拘束し、しかも内周を自由な状態にして、680℃の温
度で、円筒ビレット1の外周部の長さを13.3mmまでの圧
縮加工を行った。なお第1図において、ポンチ端面の傾
斜角αは20℃、外型4の内径は30mmである。
Example 1 (FIGS. 1 and 2) 69.4% Mn, 29.3% Al, 0.5% C, 0.7% in the composition
Ni and 0.1% Ti are melt cast, outer diameter 30mm, inner diameter 20m
A cylindrical billet 1 having m and a length of 20 mm was produced. The billet 1 was held at 1100 ° C. for 2 hours, and then heat-treated to cool to room temperature. Next, through a lubricant, a die consisting of punches 2, 3 and an outer die 4 was used to restrain the outer peripheral surface of the cylindrical billet 1, and the inner periphery was made free, and at a temperature of 680 ° C. The cylindrical billet 1 was compressed to a peripheral length of 13.3 mm. In FIG. 1, the punch end face has an inclination angle α of 20 ° C., and the outer die 4 has an inner diameter of 30 mm.

加工後のビレット1を外径29mmに切削加工して、24極の
外周着磁を施し、表面磁束密度を測定した。
The billet 1 after processing was cut into an outer diameter of 29 mm, subjected to outer peripheral magnetization of 24 poles, and the surface magnetic flux density was measured.

比較のために、前述した配合組成と同じ配合組成のMn,A
l,C,NiおよびTiを溶解鋳造し、外径30mm、内径20mm、長
さ20mmの円筒ビレットを作製した。このビレットに前記
と同じ熱処理を施した。次に、潤滑剤を介して、圧縮面
が平面のポンチ、外径4よりなる金型を用いて、圧縮加
工を行った。加工後のビレット1の長さは13.3mmであっ
た。さらに前記と同様に切削加工して、着磁し、表面磁
束密度を測定した。
For comparison, Mn, A with the same composition as the composition described above
l, C, Ni and Ti were melted and cast to form a cylindrical billet having an outer diameter of 30 mm, an inner diameter of 20 mm and a length of 20 mm. This billet was subjected to the same heat treatment as above. Next, compression processing was performed through a lubricant using a punch having a flat compression surface and a die having an outer diameter of 4. The billet 1 after processing had a length of 13.3 mm. Further, it was cut and magnetized in the same manner as above, and the surface magnetic flux density was measured.

以上の両者の値を比較すると、本実施例の方法で得た磁
石の表面磁束密度の値は、比較のために作製した磁石の
それの約1.2倍であった。
Comparing the above two values, the value of the surface magnetic flux density of the magnet obtained by the method of this example was about 1.2 times that of the magnet produced for comparison.

すなわち本実施例のごとく、マンガン−アルミニウム−
炭素系磁石用合金からなる中空体状ビレット1の外周を
外型4で拘束した状態で、このビレット1をポンチ2,3
により軸方向に圧縮すると、ポンチ2,3の圧縮面が、内
周部から外周部に向けてビレット1に接近する傾斜を有
するので、ビレット1はその外周部の圧縮ひずみが内周
部の圧縮ひずみより大きくなり、この結果として圧縮後
のビレット1の外周部には、第3図のB線のごとく略半
円状の磁化容易方向配列が一度の圧縮により容易に形成
され、またこれによりビレットの外周にS,Nの着磁を行
うと強力な磁力が得られることになるのである。
That is, as in this embodiment, manganese-aluminum-
With the outer periphery of the hollow body-shaped billet 1 made of an alloy for carbon-based magnets constrained by the outer mold 4, the billet 1 is punched by punches 2, 3
When compressed in the axial direction by, the compression surfaces of the punches 2, 3 have an inclination that approaches the billet 1 from the inner peripheral portion toward the outer peripheral portion, so that the billet 1 has a compressive strain in the outer peripheral portion that compresses the inner peripheral portion. The strain becomes larger than the strain, and as a result, a substantially semicircular easy magnetization direction array is easily formed on the outer peripheral portion of the billet 1 after compression as shown by line B in FIG. When S and N are magnetized on the outer circumference of, the strong magnetic force will be obtained.

以上、Mn−Al−C系磁石用合金の組成については、Ni添
加の4元系とNi,Ti添加の5元系のものについてのみ示
したが、Mn−Al−C系合金磁石の基本組成である3元系
についても圧縮加工後の磁石の磁気特性に若干の差は認
められたが、公知の圧縮加工による方法より前述したよ
うな磁気特性の向上が認められた。
As for the composition of the Mn-Al-C system alloy for magnets, only the quaternary system of Ni addition and the quaternary system of Ni and Ti additions have been shown above, but the basic composition of the Mn-Al-C system alloy magnet is shown. Regarding the ternary system, a slight difference was observed in the magnetic characteristics of the magnet after compression processing, but the above-mentioned improvement in magnetic characteristics was recognized by the known compression processing method.

発明の効果 以上のように本発明によれば、マンガン−アルミニウム
−炭素系磁石用合金からなる中空体状ビレットの外周を
外型で拘束した状態で、このビレットをポンチにより軸
方向に圧縮すると、ポンチの圧縮面が、内周部から外周
部に向けてビレットに接近する傾斜を有するので、ビレ
ットはその外周部の圧縮ひずみが内周部の圧縮ひずみよ
り大きくなり、この結果として圧縮後のビレットの外周
部には、略半円状の磁化容易方向配列が一度の圧縮によ
り容易に形成され、またこれによりビレットの外周にS,
Nの着磁を行うと強力な磁力が得られることになるので
ある。
As described above, according to the present invention, when the outer periphery of the hollow body billet made of the alloy for manganese-aluminum-carbon magnets is constrained by the outer die, when this billet is axially compressed by the punch, Since the compression surface of the punch has an inclination that approaches the billet from the inner peripheral portion toward the outer peripheral portion, the compression strain of the outer peripheral portion of the billet is larger than that of the inner peripheral portion, and as a result, the billet after compression is An approximately semi-circular easy magnetization direction array is easily formed on the outer periphery of the single compression by one time.
When N is magnetized, a strong magnetic force will be obtained.

【図面の簡単な説明】[Brief description of drawings]

第1図,第2図は本発明の圧縮加工の一例を示す断面図
である。第3図は磁化容易方向配列を示す平面図であ
る。 1……ビレット、2,3……ポンチ、4……外型、α……
傾斜角。
1 and 2 are sectional views showing an example of the compression processing of the present invention. FIG. 3 is a plan view showing the arrangement of easy magnetization directions. 1 …… Billet, 2,3 …… Punch, 4 …… Outer mold, α ……
Tilt angle.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】マンガン−アルミニウム−炭素系磁石用合
金磁からなる中空体状のビレットに、530〜830℃の温度
で、ビレットの外周を外型により拘束した状態で、その
圧縮面が、内周部から外周部に向けてビレットに接近す
る傾斜を有するポンチにより、ビレットの外周部の圧縮
ひずみが内周部の圧縮ひずみより大きくなるようにビレ
ットの軸方向に圧縮加工を施すマンガン−アルミニウム
−炭素系合金磁石の製造法。
1. A hollow body-shaped billet made of an alloy magnet for a manganese-aluminum-carbon magnet, at a temperature of 530 to 830 ° C., with the outer periphery of the billet being constrained by an outer die, the compression surface of which is By a punch having an inclination approaching the billet from the peripheral portion toward the outer peripheral portion, manganese-aluminum-compressed in the axial direction of the billet so that the compressive strain of the outer peripheral portion of the billet is larger than the compressive strain of the inner peripheral portion. Manufacturing method of carbon alloy magnets.
JP8850586A 1986-04-17 1986-04-17 Method for producing manganese-aluminum-carbon alloy magnet Expired - Lifetime JPH0663066B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8850586A JPH0663066B2 (en) 1986-04-17 1986-04-17 Method for producing manganese-aluminum-carbon alloy magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8850586A JPH0663066B2 (en) 1986-04-17 1986-04-17 Method for producing manganese-aluminum-carbon alloy magnet

Publications (2)

Publication Number Publication Date
JPS62243752A JPS62243752A (en) 1987-10-24
JPH0663066B2 true JPH0663066B2 (en) 1994-08-17

Family

ID=13944680

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8850586A Expired - Lifetime JPH0663066B2 (en) 1986-04-17 1986-04-17 Method for producing manganese-aluminum-carbon alloy magnet

Country Status (1)

Country Link
JP (1) JPH0663066B2 (en)

Also Published As

Publication number Publication date
JPS62243752A (en) 1987-10-24

Similar Documents

Publication Publication Date Title
JPH0663066B2 (en) Method for producing manganese-aluminum-carbon alloy magnet
JPH0663074B2 (en) Method for producing manganese-aluminum-carbon alloy magnet
JPH0663068B2 (en) Method for producing manganese-aluminum-carbon alloy magnet
JPH0663072B2 (en) Method for producing manganese-aluminum-carbon alloy magnet
JPH0639675B2 (en) Method for producing manganese-aluminum-carbon alloy magnet
JPH06102820B2 (en) Method for producing manganese-aluminum-carbon alloy magnet
JPH06102819B2 (en) Method for producing manganese-aluminum-carbon alloy magnet
JPH0663071B2 (en) Method for producing manganese-aluminum-carbon alloy magnet
JPH0663073B2 (en) Method for producing manganese-aluminum-carbon alloy magnet
JPH0479122B2 (en)
JPH061741B2 (en) Alloy magnet manufacturing method
JPH0663075B2 (en) Method for producing manganese-aluminum-carbon alloy magnet
JPH0673327B2 (en) Method for producing manganese-aluminum-carbon alloy magnet
JPH0663070B2 (en) Method for producing manganese-aluminum-carbon alloy magnet
JPH0663069B2 (en) Method for producing manganese-aluminum-carbon alloy magnet
JPH0680607B2 (en) Method for producing manganese-aluminum-carbon alloy magnet
JPH0434804B2 (en)
JPS61213357A (en) Production of manganese-aluminum-carbon alloy magnet
JPH0639674B2 (en) Method for producing manganese-aluminum-carbon alloy magnet
JPH0680606B2 (en) Method for producing manganese-aluminum-carbon alloy magnet
JPH0663067B2 (en) Method for producing manganese-aluminum-carbon alloy magnet
JPH061743B2 (en) Alloy magnet manufacturing method
JPH0663063B2 (en) Method for producing manganese-aluminum-carbon alloy magnet
JPH0673328B2 (en) Method for producing manganese-aluminum-carbon alloy magnet
JPS6210257A (en) Manufacture of manganese-aluminum-carbon alloy magnet