JPH0660851B2 - Force detector - Google Patents

Force detector

Info

Publication number
JPH0660851B2
JPH0660851B2 JP60020724A JP2072485A JPH0660851B2 JP H0660851 B2 JPH0660851 B2 JP H0660851B2 JP 60020724 A JP60020724 A JP 60020724A JP 2072485 A JP2072485 A JP 2072485A JP H0660851 B2 JPH0660851 B2 JP H0660851B2
Authority
JP
Japan
Prior art keywords
voltage
resistor
output
signal processing
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60020724A
Other languages
Japanese (ja)
Other versions
JPS61180121A (en
Inventor
利明 酒井
和之 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP60020724A priority Critical patent/JPH0660851B2/en
Publication of JPS61180121A publication Critical patent/JPS61180121A/en
Publication of JPH0660851B2 publication Critical patent/JPH0660851B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/20Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress
    • G01L1/22Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using resistance strain gauges
    • G01L1/2268Arrangements for correcting or for compensating unwanted effects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/20Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress
    • G01L1/22Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using resistance strain gauges
    • G01L1/225Measuring circuits therefor

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 本発明は、信号処理部より給電され該信号処理部に出力
信号を送出する、たとえば拡散形シリコン半導体歪みセ
ンサを用いた圧力等の力検出装置、特に該力検出装置と
信号処理部とを接続する導線における断線のような異常
状態の自動検出を容易にする装置構成に関する。
Description: TECHNICAL FIELD The present invention relates to force detection such as pressure using, for example, a diffusion type silicon semiconductor strain sensor that is supplied with power from a signal processing unit and sends an output signal to the signal processing unit. BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a device configuration, and more particularly, to a device configuration that facilitates automatic detection of an abnormal state such as a wire break in a conductor connecting the force detection device and a signal processing unit.

〔従来技術とその問題点〕[Prior art and its problems]

第3図は従来の圧力検出装置を用いた自動車エンジンの
圧力監視装置の構成図で、図において1は受圧ダイヤフ
ラムとしてのシリコン基板上に拡散によって形成した複
数個の歪み抵抗素子を用いて構成された受圧センサ、2
は、加えられた圧力に応じて出力される受圧センサ1の
出力電圧Eが入力される演算増幅器、R5は本圧力検出
装置の出力端子3と演算増幅器2の出力側端子2aとの
間に接続された抵抗値固定の第5抵抗器で、R4は出力
端子3の電位を演算増幅器2の反転入力端子に帰還す
る、増幅器2と第5抵抗器R5と本抵抗器R4とからなる
差動増幅器4の帰還抵抗器である。抵抗器R5は、たと
えば、出力端子3が演算増幅器2の駆動電源の基準電位
ライン5に接触するというような異常状態が発生した
時、演算増幅器2の出力回路に過電流が流れて該増幅器
2が破壊されるということのないようにする演算増幅器
保護機能と、差動増幅器4の発振防止機能とを有してお
り、帰還抵抗器R4の抵抗値は差動増幅器4の増幅度を
決定する一要素である。2b,2cはそれぞれ演算増幅
器2の駆動電源接続用正電源端子、基準電源端子で、こ
の場合正電源端子2bは前記駆動電源の正電位ライン6
に接続され、基準電源端子2cは基準電位ライン5に接
続されている。7,8はそれぞれ電位ライン5,6に所
定の電位を供給する電源端子で、9は上述の各部からな
る圧力検出装置である。圧力検出装置9は上記のように
構成されているので受圧センサ1で検知した圧力に応じ
た信号が差動増幅器4の出力端子としての装置出力端子
3に現れる。10は、圧力検出装置9に上述の演算増幅
器駆動電源を供給し、かつ該検出装置の出力する信号を
受信して適宜信号処理を行う信号処理部で、3a,7
a,8aは該信号処理部10と圧力検出装置9とを接続
する電線である。11は圧力検出装置9と信号処理部1
0とからなる圧力監視装置である。図においては一台の
信号処理部10に一台の圧力検出装置9のみが接続され
ているが、通常自動車エンジン等の圧力監視装置におい
ては一台の信号処理部10に吸入負圧検出用や燃焼排ガ
ス圧力検出用などの複数台の圧力検出装置が接続される
のが通例である。
FIG. 3 is a block diagram of a pressure monitoring device for an automobile engine using a conventional pressure detecting device. In FIG. 3, reference numeral 1 is a structure using a plurality of strain resistance elements formed by diffusion on a silicon substrate as a pressure receiving diaphragm. Pressure sensor, 2
Is an operational amplifier to which the output voltage E of the pressure receiving sensor 1 that is output according to the applied pressure is input, and R 5 is between the output terminal 3 of the present pressure detection device and the output side terminal 2a of the operational amplifier 2. A fifth resistor having a fixed resistance value connected, R 4 feeds back the potential of the output terminal 3 to the inverting input terminal of the operational amplifier 2, and is composed of the amplifier 2, the fifth resistor R 5, and the main resistor R 4. Is a feedback resistor of the differential amplifier 4. In the resistor R 5 , for example, when an abnormal state occurs such that the output terminal 3 comes into contact with the reference potential line 5 of the driving power source of the operational amplifier 2, an overcurrent flows in the output circuit of the operational amplifier 2 to cause an abnormal condition. 2 has an operational amplifier protection function for preventing the destruction of 2 and an oscillation prevention function for the differential amplifier 4, and the resistance value of the feedback resistor R 4 determines the amplification degree of the differential amplifier 4. This is one factor that determines it. Reference numerals 2b and 2c denote a positive power supply terminal and a reference power supply terminal for connecting a driving power supply of the operational amplifier 2, respectively. In this case, the positive power supply terminal 2b is a positive potential line 6 of the driving power supply.
, And the reference power supply terminal 2c is connected to the reference potential line 5. Reference numerals 7 and 8 are power supply terminals for supplying predetermined potentials to the potential lines 5 and 6, respectively, and 9 is a pressure detection device including the above-mentioned components. Since the pressure detecting device 9 is configured as described above, a signal corresponding to the pressure detected by the pressure receiving sensor 1 appears at the device output terminal 3 as the output terminal of the differential amplifier 4. A signal processing unit 10 supplies the above-mentioned operational amplifier driving power source to the pressure detection device 9 and receives a signal output from the detection device to appropriately perform signal processing.
Reference numerals a and 8a are electric wires that connect the signal processing unit 10 and the pressure detection device 9. Reference numeral 11 denotes the pressure detection device 9 and the signal processing unit 1.
0 is a pressure monitoring device. In the figure, only one pressure detection device 9 is connected to one signal processing unit 10. However, in a pressure monitoring device such as an automobile engine, one signal processing unit 10 is usually used for detecting a suction negative pressure. It is customary to connect a plurality of pressure detection devices such as for detecting combustion exhaust gas pressure.

第4図は第3図の圧力監視装置11における各部の動作
説明図で、図の横軸は受圧センサ1に加えられる圧力
P、縦軸は圧力検出装置の出力端子3から出力される電
圧Vを示している。第3図および第4図において、特性
線12は圧力検出装置9が正常な動作状態にある時の該
検出装置の出力特性を示すもので、13は圧力検出装置
9における正常な圧力検出範囲、Pu,Pdはそれぞれ
検出範囲13における最大圧力、最小圧力、Vmu,V
mdはそれぞれ圧力Pu,Pdに対応する出力電圧であ
る。特性線12は、受圧センサ1に加えられる圧力Pが
最大圧力Puを越えて増加すると出力電圧Vが上昇して
遂に上限飽和電圧Vhに達し、圧力Pが最小圧力Pdを
越えて減少すると出力電圧Vが下降して遂に下限飽和電
圧Vlに達することを示している。FHは下側電圧がV
fhdであってかつ電圧幅が△Vfhであるように信号
処理部10に設定した上限フエールセーフ電圧領域、F
Lは上側電圧がVfluであってかつ電圧幅が△Vfl
であるように信号処理部10に設定した下限フエールセ
ーフ電圧領域で、Vflu<Vfhdであるように設定
されており、信号処理部10は、電圧領域FHまたはF
L内にある電圧が、出力端子3等を介して複数台の圧力
検出装置のいずれから入力されても警報信号を出力する
ように構成されている。Veh,Velは、第3図にお
ける電線3a,7a,8aや電位ライン5,6等に断線
や相互間短絡等の異常状態が発生した場合に、圧力検出
装置9に設けられた図示していない機構によって出力端
子3に出力される上側異常電圧、下側異常電圧で、通常
圧力監視装置11は、電圧Vehが領域FHにあり、電
圧Velが領域FLにあるように関係各部が構成されて
いる。
FIG. 4 is an explanatory view of the operation of each part in the pressure monitoring device 11 of FIG. 3, where the horizontal axis of the figure is the pressure P applied to the pressure sensor 1 and the vertical axis is the voltage V output from the output terminal 3 of the pressure detection device. Is shown. In FIGS. 3 and 4, a characteristic line 12 shows the output characteristic of the pressure detecting device 9 when the pressure detecting device 9 is in a normal operating state, and 13 is a normal pressure detecting range in the pressure detecting device 9, Pu and Pd are the maximum pressure, the minimum pressure, and Vmu and V in the detection range 13, respectively.
md is an output voltage corresponding to the pressures Pu and Pd, respectively. The characteristic line 12 shows that when the pressure P applied to the pressure receiving sensor 1 increases beyond the maximum pressure Pu, the output voltage V increases and finally reaches the upper limit saturation voltage Vh, and when the pressure P decreases below the minimum pressure Pd, the output voltage V increases. It shows that V decreases and finally reaches the lower limit saturation voltage Vl. The lower voltage of FH is V
The upper limit fail-safe voltage range set in the signal processing unit 10 so that the voltage width is fhd and ΔVfh, F
L has an upper voltage of Vflu and a voltage width of ΔVfl
In the lower limit fail-safe voltage region set in the signal processing unit 10 as described above, Vflu <Vfhd is set, and the signal processing unit 10 sets the voltage region FH or FH.
The alarm signal is output when the voltage in L is input from any of the plurality of pressure detection devices via the output terminal 3 or the like. Veh and Vel are not shown in the figure provided in the pressure detection device 9 when an abnormal state such as a disconnection or a mutual short circuit occurs in the electric wires 3a, 7a and 8a and the potential lines 5 and 6 in FIG. With the upper abnormal voltage and the lower abnormal voltage output to the output terminal 3 by the mechanism, in the normal pressure monitoring device 11, the related parts are configured such that the voltage Veh is in the region FH and the voltage Vel is in the region FL. .

圧力監視装置11では各部が上述のように構成されてい
るので、特性線12がフエールセーフ領域FHまたはF
Lのいずれかまたは双方内に入っていると、電線3a,
7a,8aや電位ライン5,6等に上述のような異常状
態が発生していなくても、信号処理部10から上記警報
信号が出力されるという現象が発生する。すなわちこの
場合、上記警報信号によって圧力検出装置9の正常状
態、異常状態を判別することは不可能であり、一方、下
側電圧Vfhd、電圧幅△Vfh、上側電圧Vflu、
電圧幅△Vflは複数の圧力検出装置9が接続される信
号処理部10の側で一方的に設定されるのが通例である
ため、特性線12がフエールセーフ領域FH,FLのい
ずれにも入らないようにする必要があるが、圧力検出装
置9は上述のように構成されているので、このような検
出装置には特性線12を調整して領域FH,FLに入ら
ないようにすることができないとう問題がある。
Since each part of the pressure monitoring device 11 is configured as described above, the characteristic line 12 indicates the fail safe area FH or F.
If either or both of L are inside, the electric wire 3a,
Even if the above-mentioned abnormal state does not occur in 7a, 8a, the potential lines 5, 6, etc., the phenomenon that the above-mentioned alarm signal is output from the signal processing unit 10 occurs. That is, in this case, it is impossible to determine the normal state or the abnormal state of the pressure detecting device 9 by the alarm signal, while the lower voltage Vfhd, the voltage width ΔVfh, the upper voltage Vflu,
Since the voltage width ΔVfl is normally set unilaterally on the side of the signal processing unit 10 to which the plurality of pressure detection devices 9 are connected, the characteristic line 12 is included in both the fail safe regions FH and FL. However, since the pressure detecting device 9 is configured as described above, it is necessary to adjust the characteristic line 12 in such a detecting device so that it does not enter the regions FH and FL. There is a problem that cannot be done.

〔発明の目的〕[Object of the Invention]

本発明は、上述したような拡散形半導体歪みセンサを用
いた圧力等の力検出装置における従来の問題を解消し
て、第4図におけるような特性線12の上限飽和電圧V
hおよび下限飽和電圧Vlを調整して該特性線12が領
域FH,FLのいずれにも入らないようにすることがで
き、もって力検出装置と信号処理部とを接続する導線の
断線というような異常状態の検出を自動的かつ容易に飽
和領域に入ったことの警報と区別して行うことができる
力検出装置を提供することを目的とする。
The present invention solves the conventional problem in the force detection device such as the pressure using the diffusion type semiconductor strain sensor as described above, and the upper limit saturation voltage V of the characteristic line 12 as shown in FIG.
It is possible to adjust the h and the lower limit saturation voltage Vl so that the characteristic line 12 does not enter either of the regions FH and FL, so that there is a disconnection of the conductor wire that connects the force detection device and the signal processing unit. An object of the present invention is to provide a force detection device capable of automatically and easily distinguishing an abnormal state from an alarm indicating that a saturated region has been entered.

〔発明の要点〕[Main points of the invention]

本発明は、上述の目的を達成するために、演算増幅器の
出力側端子に第5抵抗器が接続された差動増幅器と、こ
の差動増幅器に出力電圧を入力する拡散形半導体歪みセ
ンサと、からなり、差動増幅器の出力電圧により半導体
歪みセンサに加えられた力を検出する力検出装置を複数
個有し、演算増幅器駆動電源を供給すると共に力検出装
置の出力する信号を受信して信号処理を行う信号処理部
に前記複数個の力検出装置を接続したものにおいて、前
記信号処理部には上限フエールセーフ電圧領域と下限フ
エールセーフ電圧領域が各1つ設定されており、前記力
検出装置の前記演算増幅器を駆動する駆動電源の正電位
を第1抵抗器を介して該演算増幅器の正電源端子に供給
し、かつ、前記正電位が印加された駆動電源の正電位ラ
インと差動増幅器の出力端子とを接続する第2抵抗器と
差動増幅器の出力端子と駆動電源の基準電位ラインとを
接続する第3抵抗器と、を設け、前記第1乃至第3抵抗
器の抵抗値は調整可能であり、該第1乃至第3抵抗器の
抵抗値の調整により前記力検出装置からの出力である上
限飽和電圧及び下限飽和電圧のそれぞれを上限フエール
セーフ電圧領域に達しない上限飽和電圧及び下限フエー
ルセーフ電圧領域に達しない下限飽和電圧とするもの
で、このように構成することによって、第1ないし第3
抵抗器の各抵抗値を調整することによって、差動増幅器
の出力電圧を該出力電圧が上述したフエールセーフ領域
FH,FLのいずれにも入らないように設定するように
して、もってこの力検出装置と信号処理部とからなり力
検出装置の出力電圧が前記フエールセーフ領域FH,F
Lにあると信号処理部から警報信号を出力するようにし
た力監視装置のような装置における、該力検出装置と該
信号処理部とを接続する導線の断線、というような異常
状態の検出を自動的かつ容易に飽和領域の警報と区別し
て行うことができる力検出装置が得られるようにしたも
のである。
In order to achieve the above object, the present invention provides a differential amplifier in which a fifth resistor is connected to the output side terminal of an operational amplifier, and a diffusion type semiconductor strain sensor for inputting an output voltage to the differential amplifier, It has a plurality of force detection devices that detect the force applied to the semiconductor strain sensor by the output voltage of the differential amplifier, supplies the operational amplifier drive power, and receives the signal output from the force detection device. In the one in which the plurality of force detection devices are connected to a signal processing unit that performs processing, one upper limit fail safe voltage region and one lower limit fail safe voltage region are set in the signal processing unit. The positive potential of the driving power supply for driving the operational amplifier is supplied to the positive power supply terminal of the operational amplifier via the first resistor, and the positive potential line of the driving power supply to which the positive potential is applied and the differential amplifier. A second resistor connected to the output terminal and a third resistor connected to the output terminal of the differential amplifier and the reference potential line of the driving power supply are provided, and the resistance values of the first to third resistors are adjusted. It is possible to adjust the resistance values of the first to third resistors so that the upper limit saturation voltage and the lower limit saturation voltage, which are the outputs from the force detection device, do not reach the upper limit fail safe voltage region. The lower limit saturation voltage that does not reach the fail-safe voltage region is used. With this configuration, the first to third
By adjusting the resistance values of the resistors, the output voltage of the differential amplifier is set so that the output voltage does not fall in any of the above-mentioned fail-safe regions FH and FL. And a signal processing unit, the output voltage of the force detection device is the safe-safe region FH, F.
In the device such as the force monitoring device that outputs the alarm signal from the signal processing unit when it is at L, it is possible to detect an abnormal state such as disconnection of a lead wire connecting the force detection device and the signal processing unit. A force detection device is provided that can be automatically and easily distinguished from an alarm in the saturation region.

〔発明の実施例〕Example of Invention

第1図は本発明の一実施例である圧力検出装置14の構
成図で、図においては説明の便宜上圧力検出装置14は
信号処理部10に接続されて該信号処理部10と共に圧
力監視装置15を形成している。第1図の第3図と異な
る所は第1抵抗器R1、第2抵抗器R2、第3抵抗器R3
が設けられていることで、この場合、第1抵抗器R1
演算増幅器2を駆動する駆動電源の正電位を該演算増幅
器2の正電源端子2bに供給するように該端子2bと正
電位ライン6との間に接続され、第2抵抗器R2は正電
位ライン6と装置出力端子3との間に接続され、第3抵
抗器R3は出力端子3と基準電位ライン5との間に接続
されている。上記駆動電源は第3図の場合と同様に信号
処理部10内に組み込まれており、また第3図の場合と
同様に圧力監視装置15は、電線3a,7a,8aや電
位ライン5,6等に断線あるいは相互間短絡等の異常状
態が発生した場合、圧力検出装置14に設けられた図示
していない機構によって第4図の場合と同様な上側また
は下側異常電圧Veh,Velが出力端子3から出力さ
れ、信号処理部10がこれらの異常電圧を検出して警報
信号を出力するように構成されている。すなわち信号処
理部10には異常電圧Veh,Velの各大きさをそれ
ぞれ含むフエールセーフ領域FH,FLが設けられてい
る。
FIG. 1 is a block diagram of a pressure detecting device 14 according to an embodiment of the present invention. In the figure, the pressure detecting device 14 is connected to a signal processing unit 10 for convenience of description, and the pressure monitoring device 15 together with the signal processing unit 10. Is formed. 1 is different from FIG. 3 in that the first resistor R 1 , the second resistor R 2 and the third resistor R 3 are different.
In this case, the first resistor R 1 and the positive potential of the driving power source for driving the operational amplifier 2 are connected to the positive potential terminal 2b of the operational amplifier 2 so that the positive potential is supplied to the positive power source terminal 2b. The second resistor R 2 is connected between the line 6 and the positive potential line 6 and the device output terminal 3, and the third resistor R 3 is connected between the output terminal 3 and the reference potential line 5. It is connected to the. The drive power source is incorporated in the signal processing unit 10 as in the case of FIG. 3, and the pressure monitoring device 15 includes the electric wires 3a, 7a, 8a and the potential lines 5, 6 as in the case of FIG. When an abnormal state such as a wire break or a short circuit between them occurs, the upper and lower abnormal voltages Veh and Vel similar to those in FIG. 4 are output to the output terminals by a mechanism (not shown) provided in the pressure detection device 14. 3 and the signal processing unit 10 is configured to detect these abnormal voltages and output an alarm signal. That is, the signal processing unit 10 is provided with fail-safe regions FH and FL containing the respective magnitudes of the abnormal voltages Veh and Vel.

第1図においては各部が上述のように構成されているの
で、圧力検出装置14は第3図の圧力検出装置9と同様
に動作して出力端子3に受圧センサ1に加えられる圧力
に応じた電圧信号を出力し、この場合の圧力検出装置1
4の出力電圧特性は第2図の特性線16のようになる。
第2図においてVsh,Vslはそれぞれ特性線16の
上限飽和電圧、下限飽和電圧で、これらの飽和電圧は圧
力検出装置14が第1図のように構成されているので
(1)式および(2)式のように表される。これらの(1),(2)
式において、Vh,Vlはそれぞれ第4図に示した上限
飽和電圧、下限飽和電圧、I1は正電位ライン6から第
1抵抗器R1を介して演算増幅器2に流入する電流、V
ccは正電位ライン6の基準電位ライン5に対する電
圧、Voutは端子3の基準電位ライン5に対する電
圧、V4は演算増幅器2の反転入力端子電位の基準電位
ライン5に対する電圧である。このとき電流I2,I3
4はそれぞれ次の(1),(2)式のように表わされる。
In FIG. 1, since each part is configured as described above, the pressure detecting device 14 operates in the same manner as the pressure detecting device 9 of FIG. 3 and responds to the pressure applied to the pressure receiving sensor 1 at the output terminal 3. Outputs voltage signal, pressure detection device 1 in this case
The output voltage characteristic of No. 4 is as shown by the characteristic line 16 in FIG.
In FIG. 2, Vsh and Vsl are the upper limit saturation voltage and the lower limit saturation voltage of the characteristic line 16, respectively, and these saturation voltages are because the pressure detection device 14 is configured as shown in FIG.
It is expressed as in equations (1) and (2). These (1), (2)
In the formula, Vh and Vl are the upper limit saturation voltage and the lower limit saturation voltage, respectively, shown in FIG. 4, I 1 is the current flowing from the positive potential line 6 through the first resistor R 1 into the operational amplifier 2, and V 1
cc is the voltage of the positive potential line 6 with respect to the reference potential line 5, Vout is the voltage with respect to the reference potential line 5 of the terminal 3, and V 4 is the voltage of the inverting input terminal potential of the operational amplifier 2 with respect to the reference potential line 5. At this time, the currents I 2 , I 3 ,
I 4 is expressed by the following equations (1) and (2), respectively.

(1)式および(2)式から明らかなように、飽和電圧Vs
h,Vslは抵抗器R1,R2,R3の各抵抗値を調整す
ることによって適宜設定することが可能である。故に圧
力検出装置14においては、このように抵抗器R1
2,R3を調整することによって、特性線16が信号処
理部10に設定されたフエールセーフ領域FH,FLの
いずれにも入らないようにすることが容易にでき、この
ようにして出力電圧特性が領域FH,FLのいずれにも
入らないように設定された圧力検出装置14は導線3
a,7a,8a等の断線や相互間短絡のような異常状態
の自動検出が特性線16の飽和領域の警報とは確実に区
別されるので容易に行える力検出装置となる。
As is clear from the equations (1) and (2), the saturation voltage Vs
h and Vsl can be set appropriately by adjusting the resistance values of the resistors R 1 , R 2 and R 3 . Therefore, in the pressure detecting device 14, the resistors R 1 ,
By adjusting R 2 and R 3 , it is possible to easily prevent the characteristic line 16 from entering any of the fail-safe regions FH and FL set in the signal processing unit 10. The pressure detecting device 14 whose characteristic is set so as not to fall in any of the regions FH and FL has the conductor 3
The automatic detection of abnormal states such as disconnection of a, 7a, 8a, etc. and mutual short circuit is surely distinguished from the alarm of the saturation region of the characteristic line 16, so that the force detection device can be easily performed.

上述した実施例は圧力検出装置14であったが、本発明
はこのような圧力検出装置に限定されるものではなく、
受圧センサ1の構成を変えて、拡散形半導体歪みセンサ
を用いて圧力以外の他の種の力を検出するようにした力
検出装置にも適用できるものであることは明らかであ
る。
Although the embodiment described above is the pressure detecting device 14, the present invention is not limited to such a pressure detecting device,
It is apparent that the present invention can be applied to a force detection device in which the structure of the pressure sensor 1 is changed and a force of other species other than pressure is detected by using a diffusion type semiconductor strain sensor.

〔発明の効果〕〔The invention's effect〕

本発明においては、上述したように、演算増幅器の出力
側端子に第5抵抗器が接続された差動増幅器と、この差
動増幅器に出力電圧を入力する拡散形半導体歪みセンサ
と、からなり、差動増幅器の出力電圧により半導体歪み
センサに加えられた力を検出する力検出装置を複数個有
し、演算増幅器駆動電源を供給すると共に力検出装置の
出力する信号を受信して信号処理を行う信号処理部に前
記複数個の力検出装置を接続したものにおいて、前記信
号処理部には上限フエールセーフ電圧領域と下限フエー
ルセーフ電圧領域が各1つ設定されており、前記力検出
装置の前記演算増幅器を駆動する駆動電源の正電位を第
1抵抗器を介して該演算増幅器の正電源端子に供給し、
かつ、前記正電位が印加された駆動電源の正電位ライン
と差動増幅器の出力端子とを接続する第2抵抗器と、差
動増幅器の出力端子と駆動電源の基準電位ラインとを接
続する第3抵抗器と、を設け、前記第1乃至第3抵抗器
の抵抗値は調整可能であり、該第1乃至第3抵抗器の抵
抗値の調整により前記力検出装置からの出力である上限
飽和電圧及び下限飽和電圧のそれぞれを上限フエールセ
ーフ電圧領域に達しない上限飽和電圧及び下限フエール
セーフ電圧領域に達しない下限飽和電圧とするもので、
このように構成することによって、第1ないし第3抵抗
器の各抵抗値を調整することによって、差動増幅器の出
力電圧を該出力電圧が上述したフエールセーフ領域F
H,FLのいずれにも入らないように設定することがで
きる結果、この力検出装置と信号処理部とからなり力検
出装置の出力電圧が前記フエールセーフ領域FH,FL
にあると信号処理部から警報信号を出力するようにした
力監視装置のような装置における、該力検出装置と該信
号処理部とを接続する導線の断線、というような異常状
態の検出を自動的かつ容易に飽和領域の警報信号とは区
別して行うことができる力検出装置が得られる効果があ
る。
In the present invention, as described above, the differential amplifier in which the fifth resistor is connected to the output side terminal of the operational amplifier, and the diffusion type semiconductor strain sensor for inputting the output voltage to the differential amplifier, It has a plurality of force detection devices that detect the force applied to the semiconductor strain sensor by the output voltage of the differential amplifier, supplies the operational amplifier drive power supply, and receives the signal output from the force detection device to perform signal processing. In the one in which the plurality of force detection devices are connected to the signal processing unit, one upper limit fail safe voltage region and one lower limit fail safe voltage region are set in the signal processing unit, and the calculation of the force detection device is performed. The positive potential of the driving power source for driving the amplifier is supplied to the positive power source terminal of the operational amplifier via the first resistor,
And a second resistor connecting the positive potential line of the driving power source to which the positive potential is applied and the output terminal of the differential amplifier, and the second resistor connecting the output terminal of the differential amplifier and the reference potential line of the driving power source. 3 resistors are provided, and the resistance values of the first to third resistors can be adjusted. By adjusting the resistance values of the first to third resistors, the upper limit saturation that is the output from the force detection device. Each of the voltage and the lower limit saturation voltage is the upper limit saturation voltage that does not reach the upper limit fail safe voltage region and the lower limit saturation voltage that does not reach the lower limit fail safe voltage region,
With such a configuration, by adjusting the resistance values of the first to third resistors, the output voltage of the differential amplifier can be adjusted so that the output voltage is in the fail safe region F described above.
Since it can be set so that it does not fall into either H or FL, the output voltage of the force detection device is composed of this force detection device and the signal processing section, and the output voltage of the force detection device is in the fail-safe region FH, FL.
In the device such as the force monitoring device which outputs the alarm signal from the signal processing unit, the automatic detection of an abnormal state such as disconnection of a lead wire connecting the force detection device and the signal processing unit is automatically performed. There is an effect that a force detection device can be obtained that can be separately and easily distinguished from the alarm signal in the saturation region.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例の構成図、第2図は第1図に
おける各部の動作説明図、第3図は従来の圧力検出装置
を用いた圧力監視装置の構成図、第4図は第3図におけ
る各部の動作説明図である。 1…拡散形半導体歪みセンサとしての受圧センサ、2…
演算増幅器、2a…出力側端子、2b…正電源端子、3
…差動増幅器の出力端子としての装置出力端子、4…差
動増幅器、5…基準電位ライン、6…正電位ライン、
9,14…力検出装置としての圧力検出装置、R1…第
1抵抗器、R2…第2抵抗器、R3…第3抵抗器、R5
第5抵抗器。
FIG. 1 is a configuration diagram of an embodiment of the present invention, FIG. 2 is an operation explanatory diagram of each part in FIG. 1, FIG. 3 is a configuration diagram of a pressure monitoring device using a conventional pressure detection device, and FIG. [Fig. 4] is an operation explanatory view of each part in Fig. 3. 1 ... Pressure sensor as diffusion type semiconductor strain sensor, 2 ...
Operational amplifier, 2a ... Output side terminal, 2b ... Positive power supply terminal, 3
... Device output terminal as output terminal of differential amplifier, 4 ... Differential amplifier, 5 ... Reference potential line, 6 ... Positive potential line,
9, 14 ... Pressure detecting device as force detecting device, R 1 ... First resistor, R 2 ... Second resistor, R 3 ... Third resistor, R 5 ...
Fifth resistor.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】演算増幅器の出力側端子に第5抵抗器が接
続された差動増幅器と、前記差動増幅器に出力電圧を入
力する拡散形半導体歪みセンサと、からなり、前記差動
増幅器の出力電圧により前記半導体歪みセンサに加えら
れた力を検出する力検出装置を複数個有し、演算増幅器
駆動電源を供給すると共に力検出装置の出力する信号を
受信して信号処理を行う信号処理部に前記複数個の力検
出装置を接続したものにおいて、前記信号処理部には上
限フエールセーフ電圧領域と下限フエールセーフ電圧領
域が各1つ設定されており、前記力検出装置の前記演算
増幅器を駆動する駆動電源の正電位を第1抵抗器を介し
て該演算増幅器の正電源端子に供給し、かつ、前記正電
位が印加された前記駆動電源の正電位ラインと前記差動
増幅器の出力端子とを接続する第2抵抗器と、前記差動
増幅器の前記出力端子と前記駆動電源の基準電位ライン
とを接続する第3抵抗器と、を設け、前記第1乃至第3
抵抗器の抵抗値は調整可能であり、該第1乃至第3抵抗
器の抵抗値の調整により前記力検出装置からの出力であ
る上限飽和電圧及び下限飽和電圧のそれぞれを上限フエ
ールセーフ電圧領域に達しない上限飽和電圧及び下限フ
エールセーフ電圧領域に達しない下限飽和電圧とするこ
とを特徴とする力検出装置。
1. A differential amplifier having a fifth resistor connected to the output side terminal of an operational amplifier, and a diffusion type semiconductor strain sensor for inputting an output voltage to the differential amplifier. A signal processing unit that has a plurality of force detection devices that detect the force applied to the semiconductor strain sensor based on the output voltage, supplies an operational amplifier drive power source, and receives a signal output from the force detection device to perform signal processing. In the case where the plurality of force detecting devices are connected to each other, one upper limit fail safe voltage region and one lower limit fail safe voltage region are set in the signal processing unit, and the operational amplifier of the force detecting device is driven. The positive potential of the driving power supply to the positive power supply terminal of the operational amplifier via the first resistor, and the positive potential line of the driving power supply to which the positive potential is applied and the output terminal of the differential amplifier. A second resistor which connects, and a third resistor connecting the reference potential line of the output terminal and the driving power source of the differential amplifier is provided, the first to third
The resistance value of the resistor is adjustable, and by adjusting the resistance values of the first to third resistors, the upper limit saturation voltage and the lower limit saturation voltage, which are the outputs from the force detection device, are set to the upper limit fail safe voltage region. A force detection device having an upper limit saturation voltage that does not reach and a lower limit saturation voltage that does not reach a lower limit fail-safe voltage region.
JP60020724A 1985-02-05 1985-02-05 Force detector Expired - Lifetime JPH0660851B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60020724A JPH0660851B2 (en) 1985-02-05 1985-02-05 Force detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60020724A JPH0660851B2 (en) 1985-02-05 1985-02-05 Force detector

Publications (2)

Publication Number Publication Date
JPS61180121A JPS61180121A (en) 1986-08-12
JPH0660851B2 true JPH0660851B2 (en) 1994-08-10

Family

ID=12035119

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60020724A Expired - Lifetime JPH0660851B2 (en) 1985-02-05 1985-02-05 Force detector

Country Status (1)

Country Link
JP (1) JPH0660851B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008051722A (en) * 2006-08-25 2008-03-06 Tdk Corp Wire severance detection device of current sensor
JP2009180693A (en) * 2008-02-01 2009-08-13 Tdk Corp Detection system of disconnection between current sensor and electronic control unit

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02135831U (en) * 1989-04-17 1990-11-13
JP3918614B2 (en) 2002-04-09 2007-05-23 富士電機デバイステクノロジー株式会社 Disconnection failure detection circuit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008051722A (en) * 2006-08-25 2008-03-06 Tdk Corp Wire severance detection device of current sensor
JP2009180693A (en) * 2008-02-01 2009-08-13 Tdk Corp Detection system of disconnection between current sensor and electronic control unit

Also Published As

Publication number Publication date
JPS61180121A (en) 1986-08-12

Similar Documents

Publication Publication Date Title
US7098799B2 (en) Unit for sensing physical quantity
JP3287624B2 (en) Semiconductor sensor
US20090076760A1 (en) Sensor interface with integrated current measurement
KR930002446B1 (en) Fault detecting device
JP2635277B2 (en) Sensor unit control system
JPH0660851B2 (en) Force detector
JPH05107292A (en) Disconnection detector
EP0723161A1 (en) Trouble monitor device for bridge circuit
JP3183565B2 (en) Sensor failure detection device
JP2862296B2 (en) Voltage applied current measuring device and current applied voltage measuring device
JPH11121683A (en) Semiconductor integrated circuit
JP4517490B2 (en) Sensor device
JPWO2010100754A1 (en) Detection system and electrical system
JP5989171B1 (en) CURRENT DETECTION CIRCUIT AND ELECTRIC CONTROL DEVICE FOR VEHICLE HAVING THE CIRCUIT
JPH0830992B2 (en) Failure detector for analog output circuit
JP2703843B2 (en) Detector of broken position of feedback resistance of mod roll motor
JP2001183253A (en) Dynamic quantity sensor device
JPS63246011A (en) Monitor for final stage of bridge
JPH10338125A (en) Solenoid load monitoring circuit
CN115561662A (en) Power supply detection circuit, power supply circuit, power amplifier integrated circuit and sound equipment
JPH04295774A (en) Detecting circuit for disconnection of load
JP3929591B2 (en) Crew protection device
JPH11190750A (en) Resistance decision unit for low resistance electronic apparatus
JPH04260998A (en) Security unit
JPS629118A (en) Device for controlling combustion