JP5989171B1 - CURRENT DETECTION CIRCUIT AND ELECTRIC CONTROL DEVICE FOR VEHICLE HAVING THE CIRCUIT - Google Patents

CURRENT DETECTION CIRCUIT AND ELECTRIC CONTROL DEVICE FOR VEHICLE HAVING THE CIRCUIT Download PDF

Info

Publication number
JP5989171B1
JP5989171B1 JP2015070655A JP2015070655A JP5989171B1 JP 5989171 B1 JP5989171 B1 JP 5989171B1 JP 2015070655 A JP2015070655 A JP 2015070655A JP 2015070655 A JP2015070655 A JP 2015070655A JP 5989171 B1 JP5989171 B1 JP 5989171B1
Authority
JP
Japan
Prior art keywords
resistor
current
voltage
diode
current detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015070655A
Other languages
Japanese (ja)
Other versions
JP2016191575A (en
Inventor
淳 梶田
淳 梶田
瀬良 欣之
欣之 瀬良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2015070655A priority Critical patent/JP5989171B1/en
Application granted granted Critical
Publication of JP5989171B1 publication Critical patent/JP5989171B1/en
Publication of JP2016191575A publication Critical patent/JP2016191575A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

【課題】他からの信号がなくても、自動で増幅率を切り替えることができる電流検出回路を得る。【解決手段】電流検出抵抗15と直列に接続されるダイオード14と、ダイオード14と電流検出抵抗15との直列体に並列接続される並列抵抗16と、ダイオード14と電流検出抵抗15との直列体と、並列抵抗16から構成される回路の両端の電圧を検出する電圧検出部a、bを備えた。【選択図】図1A current detection circuit capable of automatically switching an amplification factor without a signal from another is obtained. A diode connected in series with a current detection resistor, a parallel resistor connected in parallel with a series body of the diode and the current detection resistor, and a series body of the diode and the current detection resistor. And voltage detectors a and b for detecting voltages at both ends of the circuit constituted by the parallel resistor 16. [Selection] Figure 1

Description

この発明は、電流検出抵抗を用いて電流検出を行う電流検出回路、及びその回路を備えた車両用電子制御装置に関するものである。   The present invention relates to a current detection circuit that performs current detection using a current detection resistor, and a vehicle electronic control device including the circuit.

電気を使用する製品においては、電流を検出することが多く使用されている。電流を検出するには、一般的に電流検出抵抗を用い、その両端の電圧を測定して電流検出していることが多い。
例えば、車両用電子制御装置においては、OBD(On-board diagnostics)の規制により、故障検出精度の向上が求められており、その対応として電流検出が用いられることがある。具体的な対応例としては、電流検出回路を含む高価なIC等を使用している。
In products that use electricity, it is often used to detect current. In order to detect the current, generally, a current detection resistor is used, and the current is often detected by measuring the voltage at both ends thereof.
For example, in an electronic control device for a vehicle, an improvement in failure detection accuracy is required by regulation of OBD (On-board diagnostics), and current detection may be used as a response. As a specific example, an expensive IC including a current detection circuit is used.

電流検出抵抗の両端電圧の測定には、一般的にダイナミックレンジが固定されており、例えばアンプにより増幅して電流検出を行う場合は、アンプの増幅率は一定になる。よって、大電流用にアンプの増幅率を設定すると小電流の検出が難しくなり、小電流用にアンプの増幅率を設定すると大電流の検出が難しくなる。この場合、大電流用のアンプと小電流用のアンプを個別で用意する等の必要がある。   In measuring the voltage across the current detection resistor, the dynamic range is generally fixed. For example, when the current is detected by amplification by an amplifier, the amplification factor of the amplifier is constant. Therefore, when the amplification factor of the amplifier is set for a large current, it becomes difficult to detect a small current, and when the amplification factor of the amplifier is set for a small current, it is difficult to detect a large current. In this case, it is necessary to prepare a large current amplifier and a small current amplifier separately.

例えば、特開2008−271674号公報(特許文献1)においては、電流値によりアンプの増幅率を設定するための抵抗を切り替えることにより、ひとつのアンプで大電流と小電流が検出できる技術が開示されている。   For example, Japanese Patent Application Laid-Open No. 2008-271574 (Patent Document 1) discloses a technique in which a large current and a small current can be detected by one amplifier by switching a resistor for setting the amplification factor of the amplifier according to a current value. Has been.

特開2008−271674号公報JP 2008-271694 A

前記特許文献1に開示された技術では、アンプの増幅率を切り替えるために、マイクロコンピュータ等からの切換え信号が必要となる。また、アンプはダイオードよりも高価であり、サイズも大きくなる課題がある。   In the technique disclosed in Patent Document 1, a switching signal from a microcomputer or the like is required to switch the amplification factor of the amplifier. Further, the amplifier is more expensive than the diode, and there is a problem that the size is increased.

この発明は、前記課題を解決するためのものであって、他からの信号がなくても、自動で増幅率を切り替えることができる電流検出回路、及びその回路を備えた車両用電子制御装置を提供することを目的とものである。   The present invention is for solving the above-described problem, and provides a current detection circuit capable of automatically switching an amplification factor without a signal from another, and a vehicle electronic control device including the circuit. The purpose is to provide.

この発明による電流検出回路は、電流検出を行う電流検出回路において、ダイオードと、前記ダイオードと並列接続される並列抵抗と、第1の抵抗と第2の抵抗の直列体で構成され、前記並列抵抗にバイアス電流を供給するバイアス回路と、前記並列抵抗の両端の電圧を検出する電圧検出部を有し、負荷に流れる電流を検出するマイクロコンピュータと、
前記マイクロコンピュータにより制御される駆動素子と、を備え、
前記第1の抵抗と前記第2の抵抗、及び前記並列抵抗の三者間の分圧を、前記駆動素子の駆動/非駆動の状態において、前記負荷の状態を識別できるように設定したものである。
Current detecting circuit according to the present invention, the current detection circuit which performs current detection, diode, a parallel resistor connected the diode and parallel, formed of the first resistor and the series connection of the second resistor, the A bias circuit for supplying a bias current to the parallel resistor; a microcomputer having a voltage detection unit for detecting a voltage at both ends of the parallel resistor;
A drive element controlled by the microcomputer,
The partial pressure between the first resistor, the second resistor, and the parallel resistor is set so that the state of the load can be identified in the driving / non-driving state of the driving element. is there.

この発明による電流検出回路によれば、ダイオードと、前記ダイオードと並列接続される並列抵抗と、第1の抵抗と第2の抵抗の直列体で構成され、前記並列抵抗にバイアス電流を供給するバイアス回路と、前記並列抵抗の両端の電圧を検出する電圧検出部を有し、負荷に流れる電流を検出するマイクロコンピュータと、前記マイクロコンピュータにより制御される駆動素子と、を備え、前記第1の抵抗と前記第2の抵抗、及び前記並列抵抗の三者間の分圧を、前記駆動素子の駆動/非駆動の状態において、前記負荷の状態を識別できるように設定したので、駆動素子の駆動状態においては、断線、地絡、天絡を検出することが出来、非駆動状態においては、断線、地絡を検出することができる。 According to the current detection circuit according to the present invention, supply and diode, a parallel resistor connected the diode and parallel, formed of the first resistor and the series connection of the second resistor, a bias current to said parallel resistor A bias circuit, a voltage detection unit for detecting a voltage across the parallel resistor, a microcomputer for detecting a current flowing through a load, and a drive element controlled by the microcomputer, And the second resistance and the parallel resistance are set so that the state of the load can be identified in the driving / non-driving state of the driving element. In a driving state, a disconnection, a ground fault, and a power fault can be detected, and in a non-driving state, a disconnection and a ground fault can be detected .

この発明の実施の形態1による電流検出回路を備えた車両用電子制御装置の回路図である。1 is a circuit diagram of a vehicle electronic control device including a current detection circuit according to Embodiment 1 of the present invention. FIG. 図1のマイコンの電流検出部における電位差と駆動素子に流れる電流値の関係を示す図である。It is a figure which shows the relationship between the electric potential difference in the electric current detection part of the microcomputer of FIG. 1, and the electric current value which flows into a drive element. この発明の実施の形態2による電流検出回路を備えた車両用電子制御装置の回路図である。It is a circuit diagram of the vehicle electronic control apparatus provided with the electric current detection circuit by Embodiment 2 of this invention. 図3のECUの端子の状態とマイコンの電流検出部に発生する電圧の関係を示す図である。It is a figure which shows the relationship between the state of the terminal of ECU of FIG. 3, and the voltage which generate | occur | produces in the electric current detection part of a microcomputer. 図3に示す回路における電圧の変化をタイムチャートで表した図である。It is the figure which represented the change of the voltage in the circuit shown in FIG. 3 with the time chart. この発明の実施の形態3による電流検出回路を備えた車両用電子制御装置の回路図である。It is a circuit diagram of the vehicle electronic control apparatus provided with the electric current detection circuit by Embodiment 3 of this invention. この発明の実施の形態4による電流検出回路を備えた車両用電子制御装置の回路図である。It is a circuit diagram of the vehicle electronic control apparatus provided with the electric current detection circuit by Embodiment 4 of this invention.

以下、この発明による電流検出回路、及びその回路を備えた車両用電子制御装置の好適な実施の形態について図面を参照して説明する。なお、各図中、同一符号は同一あるいは相当部分を示している。   DESCRIPTION OF EMBODIMENTS Hereinafter, preferred embodiments of a current detection circuit according to the present invention and a vehicle electronic control device including the circuit will be described with reference to the drawings. In the drawings, the same reference numerals denote the same or corresponding parts.

実施の形態1.
図1は、この発明の実施の形態1を説明する図で、ECUとエンジン構成体の回路構成を示す図である。
Embodiment 1.
FIG. 1 is a diagram for explaining a first embodiment of the present invention, and shows a circuit configuration of an ECU and an engine component.

図1において、符号10はECUを示し、符号11はバッテリ12とモータ13を備えたエンジン構成体を示している。ECU10は、ダイオード14と電流検出抵抗15の直列体、ダイオード14と電流検出抵抗15の直列体に並列接続された並列抵抗16、及びマイクロコンピュータ(以下、マイコンという。)17、並びにマイコン17により制御される駆動素子18を有している。マイコン17は、ダイオード14と電流検出抵抗15の直列体、及び並列抵抗16で構成される回路の両端の電圧をモニタする電圧検出部a、bを有し、モータ13に流れる電流値を検出する機能を有している。そして、マイコン17は、モニタした電圧を基に演算を行い、モータ13の負荷状況の検出や、各エンジン制御に必要な信号の出力などを行う。   In FIG. 1, reference numeral 10 denotes an ECU, and reference numeral 11 denotes an engine component including a battery 12 and a motor 13. The ECU 10 is controlled by a series body of the diode 14 and the current detection resistor 15, a parallel resistor 16 connected in parallel to the series body of the diode 14 and the current detection resistor 15, a microcomputer (hereinafter referred to as a microcomputer) 17, and the microcomputer 17. The driving element 18 is provided. The microcomputer 17 includes voltage detection units a and b that monitor voltages at both ends of a circuit including a diode 14 and a current detection resistor 15 and a parallel resistor 16, and detects a current value flowing through the motor 13. It has a function. The microcomputer 17 performs an operation based on the monitored voltage, and detects a load state of the motor 13 and outputs a signal necessary for each engine control.

モータ13は、バッテリ12を電源として回転し、マイコン17からの駆動信号で動作する駆動素子18により制御される。モータ13に流れる電流cの値は、負荷の状態等により大きく変動する。モータ13に流れる電流cとマイコン17に入力されるa−b間の電位差、即ち、電圧検出部a−b間に発生する電位差の関係は、モータ13に流れる電流cが小電流の際には並列抵抗16のみに流れ、並列抵抗16の抵抗値と電流から計算される電圧が電流cの値に比例して発生する。   The motor 13 is controlled by a driving element 18 that rotates with the battery 12 as a power source and operates in accordance with a driving signal from the microcomputer 17. The value of the current c flowing through the motor 13 varies greatly depending on the load state and the like. The relationship between the electric current c flowing through the motor 13 and the electric potential difference between a and b input to the microcomputer 17, that is, the potential difference generated between the voltage detectors a and b is as follows when the current c flowing through the motor 13 is a small current. Only the parallel resistor 16 flows, and a voltage calculated from the resistance value and current of the parallel resistor 16 is generated in proportion to the value of the current c.

ここで、電流cの値が増加し、電圧検出部a−b間の電位差がダイオード14の順方向電圧Vf(以下、Vfという。)と電流検出抵抗15の両端に発生する電圧とを加えた値を超えた場合、ダイオード14がオンし、ダイオード14及び電流検出抵抗15にも電流が流れ始める。ダイオード14がオンした後は、電圧検出部a−b間の電圧は電流検出抵抗15の抵抗値と電流から計算される電圧が支配的になる。 Here, the value of the current c increases, and the potential difference between the voltage detection units a and b is applied to the forward voltage Vf (hereinafter referred to as Vf) of the diode 14 and the voltage generated across the current detection resistor 15 . When the value is exceeded, the diode 14 is turned on, and current begins to flow through the diode 14 and the current detection resistor 15. After the diode 14 is turned on, the voltage calculated from the resistance value of the current detection resistor 15 and the current is dominant in the voltage between the voltage detection units a and b.

これにより、ダイオード14のオン前後で電流検出の基準となる抵抗が、並列抵抗16から電流検出抵抗15に切り替わるため、モータ13の負荷が変動し、電流値が大きく変動した際も、小電流及び大電流ともにオーバレンジ等することなく、リニアに電流の検出が可能になる。図2には、マイコン17の電圧検出部a、bにおける電位差と駆動素子18に流れる電流値の関係をを示している。   As a result, the resistance serving as a reference for current detection before and after the diode 14 is turned on is switched from the parallel resistance 16 to the current detection resistance 15, so that even when the load of the motor 13 fluctuates and the current value fluctuates greatly, Both large currents can be detected linearly without overrange. FIG. 2 shows the relationship between the potential difference in the voltage detectors a and b of the microcomputer 17 and the value of the current flowing through the drive element 18.

以上のように、実施の形態1による電流検出回路を備えた車両用電子制御装置は、モータ13に流れる電流cの値が小電流の場合は、ダイオード14はオンせずにダイオード14と並列に接続された並列抵抗16のみに電流が流れ、マイコン17の電圧検出部a、bにはダイオード14と並列に接続した並列抵抗16と電流により決められる電圧が発生する。そして、所定値以上の電流が流れるとダイオード14がオンし、マイコン17の電圧検出部a、bに発生する電圧は、ダイオード14のVf分とダイオード14と直列に接続された電流検出抵抗15と電流により決められる電圧の和が発生する。   As described above, in the vehicle electronic control device including the current detection circuit according to the first embodiment, when the value of the current c flowing through the motor 13 is small, the diode 14 is not turned on and is parallel to the diode 14. A current flows only in the connected parallel resistor 16, and a voltage determined by the current and the parallel resistor 16 connected in parallel with the diode 14 is generated in the voltage detection units a and b of the microcomputer 17. When a current of a predetermined value or more flows, the diode 14 is turned on, and the voltage generated in the voltage detection units a and b of the microcomputer 17 is equal to the Vf component of the diode 14 and the current detection resistor 15 connected in series with the diode 14. A sum of voltages determined by the current is generated.

よって、大電流と小電流時で、マイコン17の電圧検出部a、bに発生する電圧と電流の出力比が切り替わるため、ひとつのアンプで大電流と小電流を同時に検出することができる。また、OBDの対応としては、バイアス電流を供給することにより、各故障モード(断線、地絡、天絡)における回路に流れる電流を変えることで、故障の識別が可能になり、さらに、高価なICも不要となって、コストを抑えることも可能となる。 Therefore, since the output ratio of the voltage and current generated in the voltage detectors a and b of the microcomputer 17 is switched between a large current and a small current, a large current and a small current can be detected simultaneously by one amplifier. In addition, as a response to OBD, by supplying a bias current and changing the current flowing in the circuit in each failure mode (disconnection, ground fault, power fault), it becomes possible to identify the fault, and it is expensive. An IC is also unnecessary, and costs can be reduced.

実施の形態2.
次に、この発明の実施の形態2による電流検出回路を備えた車両用電子制御装置について説明する。以下の説明では、エンジンの電子制御を行うECUにおいて、O2ヒータのOBDに対応した回路を一例として説明する。
Embodiment 2.
Next, a vehicle electronic control device including a current detection circuit according to Embodiment 2 of the present invention will be described. In the following description, a circuit corresponding to the OBD of the O2 heater will be described as an example in the ECU that performs electronic control of the engine.

図3は、実施の形態2を説明する図で、ECU10と、バッテリ12とO2ヒータ30を備えたエンジン構成体11の構成を示す回路構成図である。
ECU10は、ダイオード14、ダイオード14に並列接続された並列抵抗16、マイコン17、マイコン17により制御される駆動素子18、及びバイアス回路31を有している。マイコン17は、ダイオード14と並列抵抗16で構成される回路の両端の電圧をモニタする電圧検出部a、bを有し、O2ヒータ30に流れる電流値を検出する機能を有している。そして、マイコン17は、モニタした電圧を基に演算を行い、O2ヒータ30に流れる電流の検出や、各エンジン制御に必要な信号の出力などを行う。また、バイアス回路31は、第1の抵抗31a、第2の抵抗31bの直列体で構成されており、直列接続された並列抵抗16に安定したバイアス電流を供給するものである。
FIG. 3 is a diagram illustrating the second embodiment, and is a circuit configuration diagram illustrating a configuration of the engine component 11 including the ECU 10, the battery 12, and the O 2 heater 30.
The ECU 10 includes a diode 14, a parallel resistor 16 connected in parallel to the diode 14, a microcomputer 17, a drive element 18 controlled by the microcomputer 17, and a bias circuit 31. The microcomputer 17 has voltage detection units a and b that monitor voltages at both ends of a circuit constituted by the diode 14 and the parallel resistor 16, and has a function of detecting a current value flowing through the O 2 heater 30. The microcomputer 17 performs an operation based on the monitored voltage, and detects a current flowing through the O2 heater 30 and outputs a signal necessary for each engine control. The bias circuit 31 includes a series body of a first resistor 31a and a second resistor 31b, and supplies a stable bias current to the parallel resistor 16 connected in series.

O2ヒータ30は、バッテリ12を電源とし、マイコン17からの駆動信号で動作する駆動素子18により制御される。なお、マイコン17に入力されるa−b間の電位差、即ち、電圧検出部a−b間の電位差は、駆動素子18の駆動/非駆動や、正常/故障によって変化する。第1の抵抗31a、第2の抵抗31b、及び抵抗16の分圧の設定は、駆動素子18の駆動/非駆動の状態において、各負荷状態(正常、断線、地絡(端子グランドショ−ト)、天絡(端子電源ショ−ト))において、識別できるように設定されている。   The O2 heater 30 is controlled by a drive element 18 that uses the battery 12 as a power source and operates in accordance with a drive signal from the microcomputer 17. Note that the potential difference between a and b input to the microcomputer 17, that is, the potential difference between the voltage detectors a and b changes depending on whether the drive element 18 is driven / not driven or normal / failure. The voltage division settings of the first resistor 31a, the second resistor 31b, and the resistor 16 are set in each load state (normal, disconnected, ground fault (terminal ground short (terminal ground short)) in the driving / non-driving state of the driving element 18. ), Skylight (terminal power supply short)).

実施の形態2による電流検出回路を備えた車両用電子制御装置は、前記のように構成されており、次にその動作について説明する。
まず、駆動素子18が駆動状態における各負荷状態の電圧検出部a−b間の電位差は下記の通りとなる。
O2ヒータ30の正常時は、バッテリ12からO2ヒータ30と駆動素子18を通りダイオード14に電流が流れるように、第1の抵抗31a、第2の抵抗31b、抵抗16の分圧を設定しておく。よって、ダイオード14に電流が流れるため、マイコン17の電圧検出部a−b間の電位差はダイオード14のVf分となる。
The vehicle electronic control device including the current detection circuit according to the second embodiment is configured as described above, and the operation thereof will be described next.
First, the potential difference between the voltage detectors ab in each load state when the drive element 18 is in the drive state is as follows.
When the O2 heater 30 is normal, the divided voltages of the first resistor 31a, the second resistor 31b, and the resistor 16 are set so that current flows from the battery 12 through the O2 heater 30 and the driving element 18 to the diode 14. deep. Therefore, since a current flows through the diode 14, the potential difference between the voltage detection units a and b of the microcomputer 17 is equal to the Vf of the diode 14.

また、O2ヒータ30の断線時は、第1の抵抗31a、駆動素子18、並列抵抗16の経路で電流が流れ、電圧検出部a−b間に電位差が発生する。このとき、ダイオード14には電流が流れないように電圧検出部a−b間にダイオード14のVfの、例えば半分程度の電位差が発生するように、第1の抵抗31aと並列抵抗16の分圧を設定しておく。よって、マイコン17の電圧検出部a−b間の電位差はダイオード14のVfの半分程度となる。   Further, when the O2 heater 30 is disconnected, a current flows through the path of the first resistor 31a, the driving element 18, and the parallel resistor 16, and a potential difference is generated between the voltage detectors a and b. At this time, the first resistor 31a and the parallel resistor 16 are divided so that a potential difference of, for example, about half of Vf of the diode 14 occurs between the voltage detection units a and b so that no current flows in the diode 14. Is set in advance. Therefore, the potential difference between the voltage detectors a and b of the microcomputer 17 is about half of Vf of the diode 14.

地絡時には、バイアス回路31の電流は、第1の抵抗31aから直接グランドに流れる。よって、マイコン17の電圧検出部a−b間の電位差は0Vとなる。また、天絡時は、ECU10の端子dにバッテリ12が直接接続されることを想定しているため、O2ヒータ30の駆動素子18を通り、ダイオード14に定格を上回る過電流が発生する。よって、ダイオード14に過電流が流れるため、マイコン17の電圧検出部a−b間の電位差はダイオード14のVfが通常よりも大きな値となる。ここで駆動素子18の駆動を停止する制御や回路を入れることにより、ダイオード14や駆動素子18の保護をもすることができる。   At the time of ground fault, the current of the bias circuit 31 flows directly from the first resistor 31a to the ground. Therefore, the potential difference between the voltage detection units a and b of the microcomputer 17 is 0V. Moreover, since it is assumed that the battery 12 is directly connected to the terminal d of the ECU 10 at the time of a power fault, an overcurrent exceeding the rating is generated in the diode 14 through the driving element 18 of the O2 heater 30. Therefore, since an overcurrent flows through the diode 14, the potential difference between the voltage detection units a and b of the microcomputer 17 is such that Vf of the diode 14 is larger than usual. Here, by providing a control or a circuit for stopping the driving of the driving element 18, the diode 14 and the driving element 18 can be protected.

次に、駆動素子18が停止状態における各負荷状態の電圧検出部a−b間の電位差は次の通りとなる。
O2ヒータ30の正常時は、バッテリ12からO2ヒータ30、第2の抵抗31bを通りダイオード14に電流が流れるように、第2の抵抗31b、並列抵抗16の分圧を設定しておく。よって、ダイオード14に電流が流れるため、マイコン17の電圧検出部a−b間の電位差はダイオード14のVf分となる。
Next, the potential difference between the voltage detectors a-b in each load state when the driving element 18 is stopped is as follows.
When the O2 heater 30 is normal, the partial pressure of the second resistor 31b and the parallel resistor 16 is set so that current flows from the battery 12 through the O2 heater 30 and the second resistor 31b to the diode 14. Therefore, since a current flows through the diode 14, the potential difference between the voltage detection units a and b of the microcomputer 17 is equal to the Vf of the diode 14.

O2ヒータ30の断線時は、第1の抵抗31a、第2の抵抗31b、並列抵抗16の経路で電流が流れ、電圧検出部a−b間に電位差が発生する。このとき、ダイオード14には電流が流れないよう、電圧検出部a−b間にVfの、例えば半分程度の電位差が発生するように、第1の抵抗31a、第2の抵抗31b、並列抵抗16の分圧を設定しておく。よって、マイコン17の電圧検出部a−b間の電位差はダイオード14のVfの半分程度となる。   When the O2 heater 30 is disconnected, a current flows through the path of the first resistor 31a, the second resistor 31b, and the parallel resistor 16, and a potential difference is generated between the voltage detectors ab. At this time, the first resistor 31a, the second resistor 31b, and the parallel resistor 16 are generated so that a potential difference of, for example, about half of Vf occurs between the voltage detection units a and b so that no current flows through the diode 14. Set the partial pressure of. Therefore, the potential difference between the voltage detectors a and b of the microcomputer 17 is about half of Vf of the diode 14.

地絡時には、バイアス回路31の電流は、第1の抵抗31aから直接グランドに流れる。よって、マイコン17の電圧検出部a−b間の電位差は0Vとなる。また、天絡時は、第2の抵抗31bを通りダイオード14に電流が流れるように、第2の抵抗31b、並列抵抗16の分圧が設定されている。よって、ダイオード14に電流が流れるため、マイコン17の電圧検出部a−b間の電位差はダイオード2のVf分となる。なお、非駆動時の天絡については、故障の検出ができないが、OBDで定められている故障検出は、「断線、地絡、天絡の2つ以上を検出できること」であり、OBDの要求については満たすことが可能である。   At the time of ground fault, the current of the bias circuit 31 flows directly from the first resistor 31a to the ground. Therefore, the potential difference between the voltage detection units a and b of the microcomputer 17 is 0V. In addition, the voltage division of the second resistor 31b and the parallel resistor 16 is set so that a current flows through the diode 14 through the second resistor 31b during a power fault. Therefore, since a current flows through the diode 14, the potential difference between the voltage detection parts a and b of the microcomputer 17 is equal to the Vf of the diode 2. In addition, although it is not possible to detect a fault with respect to a power fault at the time of non-driving, the fault detection defined by OBD is “that two or more of a disconnection, a ground fault, and a power fault can be detected”, which is a request of OBD. Can be satisfied.

なお、第1の抵抗31a、第2の抵抗31bの直列体で構成されたバイアス回路31を実施の形態1の並列抵抗16に直列接続し、並列抵抗16に安定したバイアス電流を供給するようすることも考えられる。   A bias circuit 31 composed of a series body of a first resistor 31a and a second resistor 31b is connected in series to the parallel resistor 16 of the first embodiment, and a stable bias current is supplied to the parallel resistor 16. It is also possible.

以上より、実施の形態2による電流検出回路を備えた車両用電子制御装置は、駆動/非駆動の各状態でOBDの要求を満たすことが可能である。   As described above, the vehicle electronic control device including the current detection circuit according to the second embodiment can satisfy the OBD requirement in each of the driving / non-driving states.

図4は、マイコン17の電圧検出部a−b間の電位差と、ECU10の端子dの状態(正常/故障)の関係を示すものであり、図5は、図3に示す回路における電圧の変化をタイムチャートで表したものである。   4 shows the relationship between the potential difference between the voltage detectors a and b of the microcomputer 17 and the state (normal / failure) of the terminal d of the ECU 10. FIG. 5 shows the change in voltage in the circuit shown in FIG. Is represented by a time chart.

実施の形態3.
次に、この発明の実施の形態3による電流検出回路を備えた車両用電子制御装置について説明する。
図6は、実施の形態3による電流検出回路を備えた車両用電子制御装置を説明する図である。実施の形態1あるいは2においては、マイコン17の電圧検出部a−b間の電位差を直接マイコン17で検出していたが、図6に示すように、ダイオード14の両端の電圧を増幅装置、例えばオペアンプ60などに入力して増幅して検出してもよい。なお、その他の構成は実施の形態2と同様であり、同一符号を付すことにより詳細説明を省略する。
実施の形態3によれば、マイコン17の電圧検出部a−b間の電位差をより正確に測定、識別することが可能となる。
Embodiment 3.
Next, a vehicle electronic control device including a current detection circuit according to Embodiment 3 of the present invention will be described.
FIG. 6 is a diagram illustrating a vehicle electronic control device including a current detection circuit according to the third embodiment. In the first or second embodiment, the potential difference between the voltage detection units a and b of the microcomputer 17 is directly detected by the microcomputer 17, but as shown in FIG. You may detect by amplifying by inputting into the operational amplifier 60 grade | etc.,. Other configurations are the same as those in the second embodiment, and the detailed description is omitted by giving the same reference numerals.
According to the third embodiment, the potential difference between the voltage detection units a and b of the microcomputer 17 can be measured and identified more accurately.

実施の形態4.
次に、この発明の実施の形態4による電流検出回路を備えた車両用電子制御装置について説明する。
図7は、実施の形態4による電流検出回路を備えた車両用電子制御装置を説明する図である。実施の形態1から3においては、ダイオード14の両端の電位差を検出していたが、図7に示すように、グランド基準でダイオード14のアノード側の電圧のみを測定することでも、対応は可能である。なお、その他の構成は実施の形態2と同様であり、同一符号を付すことにより詳細説明を省略する。
Embodiment 4.
Next, a vehicle electronic control device including a current detection circuit according to Embodiment 4 of the present invention will be described.
FIG. 7 is a diagram illustrating a vehicle electronic control device including a current detection circuit according to the fourth embodiment. In the first to third embodiments, the potential difference between both ends of the diode 14 is detected. However, as shown in FIG. 7, it is possible to cope with the problem by measuring only the voltage on the anode side of the diode 14 with reference to the ground. is there. Other configurations are the same as those in the second embodiment, and the detailed description is omitted by giving the same reference numerals.

以上、実施の形態1から4について説明したが、この発明はこれに限定されるものではなく、この発明の趣旨を逸脱しない範囲において、これらの構成を適宜組み合わせたり、その構成に一部変形を加えたり、構成を一部省略することが可能である。   As described above, the first to fourth embodiments have been described. However, the present invention is not limited to this, and within a range that does not depart from the gist of the present invention, these configurations are appropriately combined, or some modifications are made to the configurations. It is possible to add or partially omit the configuration.

10 ECU、11 エンジン構成体、12 バッテリ、13 モータ、14 ダイオード、15 電流検出抵抗、16 並列抵抗、17 マイクロコンピュータ(マイコン)、18 駆動素子、30 O2ヒータ、31 バイアス回路、31a 第1の抵抗、31b 第2の抵抗、60 増幅装置(オペアンプ)、a、b 電圧検出部 DESCRIPTION OF SYMBOLS 10 ECU, 11 Engine structure, 12 Battery, 13 Motor, 14 Diode, 15 Current detection resistance, 16 Parallel resistance, 17 Microcomputer (microcomputer), 18 Drive element, 30 O2 heater, 31 Bias circuit, 31a 1st resistance , 31b Second resistor, 60 Amplifier (op-amp), a, b Voltage detector

Claims (4)

電流検出を行う電流検出回路において、
ダイオードと、
前記ダイオードと並列接続される並列抵抗と、
第1の抵抗と第2の抵抗の直列体で構成され、前記並列抵抗にバイアス電流を供給するバイアス回路と、
前記並列抵抗の両端の電圧を検出する電圧検出部を有し、負荷に流れる電流を検出するマイクロコンピュータと、
前記マイクロコンピュータにより制御される駆動素子と、を備え、
前記第1の抵抗と前記第2の抵抗、及び前記並列抵抗の三者間の分圧を、前記駆動素子の駆動/非駆動の状態において、前記負荷の状態を識別できるように設定したことを特徴とする電流検出回路。
In the current detection circuit that performs current detection,
A diode,
A parallel resistor connected in parallel with the diode;
A bias circuit configured by a series body of a first resistor and a second resistor, and supplying a bias current to the parallel resistor;
A microcomputer having a voltage detector for detecting the voltage across the parallel resistor, and detecting a current flowing through the load;
A drive element controlled by the microcomputer ,
The partial pressure between the first resistor, the second resistor, and the parallel resistor is set so that the state of the load can be identified in the driving / non-driving state of the driving element. A characteristic current detection circuit.
前記電圧検出部で検出する電圧を増幅する増幅装置を備えたことを特徴とする請求項に記載の電流検出回路。 The current detection circuit according to claim 1 , further comprising an amplification device that amplifies a voltage detected by the voltage detection unit. 前記並列抵抗と前記ダイオードとの一方の接続部をグランドに接続すると共に、前記電圧検出部の一方の検出部をグランドに接続し、グランド基準の電圧で検出することを特徴とする請求項1または2に記載の電流検出回路。 With connecting one of the connection portion with the parallel resistor and the diode to ground, connect one detector of said voltage detecting unit to the ground, or claim 1, characterized in that detected by the voltage of the ground reference 3. The current detection circuit according to 2. 請求項1からの何れか一項に記載の電流検出回路を備えたことを特徴とする車両用電子制御装置。 Vehicle electronic control apparatus characterized by comprising a current detecting circuit according to any one of claims 1 to 3.
JP2015070655A 2015-03-31 2015-03-31 CURRENT DETECTION CIRCUIT AND ELECTRIC CONTROL DEVICE FOR VEHICLE HAVING THE CIRCUIT Active JP5989171B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015070655A JP5989171B1 (en) 2015-03-31 2015-03-31 CURRENT DETECTION CIRCUIT AND ELECTRIC CONTROL DEVICE FOR VEHICLE HAVING THE CIRCUIT

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015070655A JP5989171B1 (en) 2015-03-31 2015-03-31 CURRENT DETECTION CIRCUIT AND ELECTRIC CONTROL DEVICE FOR VEHICLE HAVING THE CIRCUIT

Publications (2)

Publication Number Publication Date
JP5989171B1 true JP5989171B1 (en) 2016-09-07
JP2016191575A JP2016191575A (en) 2016-11-10

Family

ID=56871758

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015070655A Active JP5989171B1 (en) 2015-03-31 2015-03-31 CURRENT DETECTION CIRCUIT AND ELECTRIC CONTROL DEVICE FOR VEHICLE HAVING THE CIRCUIT

Country Status (1)

Country Link
JP (1) JP5989171B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10502773B2 (en) * 2017-08-16 2019-12-10 Connaught Electronics Ltd. System and method for diagnosing electrical faults
CN117203092A (en) * 2021-05-31 2023-12-08 日立安斯泰莫株式会社 Vehicle-mounted control device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60239675A (en) * 1984-05-15 1985-11-28 Matsushita Electric Ind Co Ltd Sensor circuit
JPS6325543A (en) * 1986-07-17 1988-02-03 Kaneko Agricult Mach Co Ltd Moisture measuring apparatus for grain
JPH03289537A (en) * 1990-04-05 1991-12-19 Meidensha Corp Measuring circuit
JP2005006453A (en) * 2003-06-13 2005-01-06 Toshiba Corp Motor drive, washing machine, and driving control method for motor
JP2008269725A (en) * 2007-04-23 2008-11-06 Sharp Corp Electrical characteristics evaluation device
JP2012038509A (en) * 2010-08-05 2012-02-23 Sharp Corp Optical detector, lighting device and visible light communication device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60239675A (en) * 1984-05-15 1985-11-28 Matsushita Electric Ind Co Ltd Sensor circuit
JPS6325543A (en) * 1986-07-17 1988-02-03 Kaneko Agricult Mach Co Ltd Moisture measuring apparatus for grain
JPH03289537A (en) * 1990-04-05 1991-12-19 Meidensha Corp Measuring circuit
JP2005006453A (en) * 2003-06-13 2005-01-06 Toshiba Corp Motor drive, washing machine, and driving control method for motor
JP2008269725A (en) * 2007-04-23 2008-11-06 Sharp Corp Electrical characteristics evaluation device
JP2012038509A (en) * 2010-08-05 2012-02-23 Sharp Corp Optical detector, lighting device and visible light communication device

Also Published As

Publication number Publication date
JP2016191575A (en) 2016-11-10

Similar Documents

Publication Publication Date Title
US9024646B2 (en) Circuit for measuring insulation resistance
JP6478200B2 (en) Power supply voltage detector
JP5072561B2 (en) Current detection circuit
US10288694B2 (en) Secondary battery monitoring device and method for diagnosing failure
KR20070008143A (en) Over current detection apparatus of dual motor for car
EP3026446B1 (en) Electrical current system including voltage drop component
KR102431408B1 (en) Secondary battery monitoring apparatus and fault diagnosis method
US7994771B2 (en) Current measurement circuit, current detection circuit and saturation prevention and recovery circuit for operational amplifier
JP2011033632A (en) Stator of rotary electric machine
JP4743135B2 (en) Detection system
JP5989171B1 (en) CURRENT DETECTION CIRCUIT AND ELECTRIC CONTROL DEVICE FOR VEHICLE HAVING THE CIRCUIT
CN102057573B (en) Overcurrent protective device for load circuit
JP6011425B2 (en) Disconnection detection circuit
JP5022377B2 (en) Measurement circuit and test equipment
JP4246679B2 (en) Current detector
US20190235006A1 (en) Wiring line abnormality detecting device
JP6919628B2 (en) Current detection circuit and power supply
JP5426255B2 (en) Light source control circuit, light source control method, light source device
JP2007218664A (en) Electrical current detector
JP6239171B1 (en) Power converter
JP2015175759A (en) current measuring device
JP2014052192A (en) Current detection circuit
KR102086132B1 (en) Motor controller and short circuit diagnosis method thereof
JP4803161B2 (en) Power transistor circuit
JP2010206859A (en) Short-circuit detector

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160712

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160809

R151 Written notification of patent or utility model registration

Ref document number: 5989171

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250