JP2014052192A - Current detection circuit - Google Patents

Current detection circuit Download PDF

Info

Publication number
JP2014052192A
JP2014052192A JP2012194594A JP2012194594A JP2014052192A JP 2014052192 A JP2014052192 A JP 2014052192A JP 2012194594 A JP2012194594 A JP 2012194594A JP 2012194594 A JP2012194594 A JP 2012194594A JP 2014052192 A JP2014052192 A JP 2014052192A
Authority
JP
Japan
Prior art keywords
switching element
current detection
current
main switching
sub
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012194594A
Other languages
Japanese (ja)
Inventor
Kenichi Okayama
健一 岡山
Hiroshi Nakajima
洋至 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2012194594A priority Critical patent/JP2014052192A/en
Publication of JP2014052192A publication Critical patent/JP2014052192A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a current detection circuit which is capable of easily and highly accurately detecting a current flowing in a main switching element Qm by excluding an influence of current noise.SOLUTION: The current detection circuit includes: a plurality of sub-switching elements Qs1 and Qs2 which are provided in parallel with the main switching element Qm for large power which is driven to be turned on/off by application thereto of a control signal, and are driven to be turned on/off by application thereto of the control signal and are smaller than that of the main switching element and are mutually different in size; a plurality of current detection resistances R1 and R2 connected in series to the sub-switching elements respectively; and a differential amplifier Amp which detects a current flowing in the main switching element in accordance with a difference between voltages generated in respective current detection resistances.

Description

本発明は、IGBT等のスイッチング素子に流れる電流を高精度に検出することのできる電流検出回路に関する。   The present invention relates to a current detection circuit that can detect a current flowing in a switching element such as an IGBT with high accuracy.

内燃機関の点火装置やスイッチング電源等に用いられるIGBT等の大電力用のスイッチング素子の駆動回路には、前記スイッチング素子に定格以上の過電流が流れたとき、該スイッチング素子のみならず、スイッチング素子に接続された回路や負荷を保護する為の電流制限機能を組み込むことが多い。これ故、スイッチング素子に流れる電流を精度良く検出することが重要となる。   In a drive circuit for a switching element for high power such as an IGBT used for an ignition device of an internal combustion engine or a switching power supply, when an overcurrent exceeding a rating flows in the switching element, not only the switching element but also the switching element It often incorporates a current limiting function to protect the circuit and load connected to Therefore, it is important to accurately detect the current flowing through the switching element.

そこで従来では、例えば図5に示すように大電流をスイッチングする主スイッチング素子(IGBT)Qmと並列に、前記主スイッチング素子(IGBT)Qmに比較して、その素子面積(サイズ)が[1/M]と小さい電流検出用の副スイッチング素子(IGBT)Qsを設けている。そしてこの副スイッチング素子Qsに流れる電流を、該副スイッチング素子Qsのエミッタに直列接続された電流検出抵抗(センシング抵抗)Rを介して検出することが提唱されている(例えば特許文献1,2を参照)。尚、図中RLは前記主スイッチング素子Qmの負荷である。   Therefore, conventionally, for example, as shown in FIG. 5, the element area (size) of the main switching element (IGBT) Qm in parallel with the main switching element (IGBT) Qm for switching a large current is [1 / M] and a small sub-switching element (IGBT) Qs for current detection. And it is proposed to detect the current flowing through the sub-switching element Qs via a current detection resistor (sensing resistor) R connected in series to the emitter of the sub-switching element Qs (see, for example, Patent Documents 1 and 2). reference). In the figure, RL is a load of the main switching element Qm.

ちなみに前記主スイッチング素子Qmに流れる電流と副スイッチング素子Qsに流れる電流との比は、前記主スイッチング素子Qmと副スイッチング素子Qsとのサイズ比(素子面積比)により決定される。そして一般的には前記電流検出抵抗Rでの電力損失や発熱を抑え、また副スイッチング素子Qsを併設する為の面積的なデメリットを最小限に抑える為に、前記サイズ比を決定するM値は[M≫1]、具体的には数百〜数千程度に設定される。   Incidentally, the ratio of the current flowing through the main switching element Qm and the current flowing through the sub switching element Qs is determined by the size ratio (element area ratio) between the main switching element Qm and the sub switching element Qs. In general, in order to suppress power loss and heat generation in the current detection resistor R, and to minimize the area demerit for providing the auxiliary switching element Qs, the M value for determining the size ratio is [M >> 1], specifically, about several hundred to several thousand.

特開2006−271098号公報JP 2006-271098 A 特開2001−345686号公報JP 2001-345686 A

しかしながら上述した手法は、主スイッチング素子Qmに流れる電流を直接検出するものではなく、前記副スイッチング素子Qsを介して間接的に検出するものである。しかも前述したように前記副スイッチング素子Qsは、前記主スイッチング素子Qmの[1/M]のサイズとして実現される。これ故、前記副スイッチング素子Qsは、前記主スイッチング素子Qmに比較して周辺機器による電磁干渉や放射等による電流ノイズの影響を受け易く、前記主スイッチング素子Qmに流れる電流を正確に検出(推定)する上で課題が残される。   However, the above-described method does not directly detect the current flowing through the main switching element Qm, but indirectly detects the current through the sub-switching element Qs. Moreover, as described above, the sub-switching element Qs is realized as a size of [1 / M] of the main switching element Qm. Therefore, the sub-switching element Qs is more susceptible to current noise due to electromagnetic interference or radiation by peripheral devices than the main switching element Qm, and accurately detects (estimates) the current flowing through the main switching element Qm. ) Will leave challenges.

本発明はこのような事情を考慮してなされたもので、その目的は、主スイッチング素子Qmに流れる電流を、電流ノイズの影響を排除して簡易に、しかも高精度に検出することのできる電流検出回路を提供することにある。   The present invention has been made in consideration of such circumstances, and its purpose is to provide a current that can easily and accurately detect the current flowing through the main switching element Qm without the influence of current noise. It is to provide a detection circuit.

上述した目的を達成するべく本発明に係る電流検出回路は、制御信号が印加されてオン・オフ駆動される大電力用の主スイッチング素子に流れる電流を検出するに好適なものであって、
前記主スイッチング素子と並列に設けられて前記制御信号が印加されてオン・オフ駆動され、前記主スイッチング素子よりも小さいサイズで、且つ互いに異なるサイズの複数の副スイッチング素子と、
これらの各副スイッチング素子にそれぞれ直列接続された複数の電流検出抵抗と、
これらの各電流検出抵抗に生じる電圧の差から前記主スイッチング素子に流れる電流を検出する差動増幅器と
を具備したことを特徴としている。
In order to achieve the above-described object, the current detection circuit according to the present invention is suitable for detecting a current flowing in a main switching element for high power that is turned on / off by applying a control signal,
A plurality of sub-switching elements that are provided in parallel with the main switching element and are turned on / off by being applied with the control signal, and are smaller than the main switching element and different in size;
A plurality of current detection resistors connected in series to each of these sub-switching elements,
And a differential amplifier for detecting a current flowing through the main switching element from a difference in voltage generated in each of the current detection resistors.

好ましくは前記主スイッチング素子および前記複数の副スイッチング素子は、例えばIGBTまたはMOSFETからなり、同一の半導体基板上に形成される。また前記複数の電流検出抵抗は、好ましくは同一の抵抗値を有する。   Preferably, the main switching element and the plurality of sub switching elements are made of, for example, IGBT or MOSFET, and are formed on the same semiconductor substrate. The plurality of current detection resistors preferably have the same resistance value.

また前記主スイッチング素子を、その制御端子に入力抵抗を介して前記制御信号が印加してオン・オフ起動し、前記複数の副スイッチング素子については、その制御端子に前記制御信号がそれぞれ直接印加してオン・オフ駆動するように構成することが好ましい。   The main switching element is turned on / off by applying the control signal to the control terminal via an input resistor, and the control signal is directly applied to the control terminal of the plurality of sub-switching elements. It is preferable to configure such that the on / off driving is performed.

上記構成の電流検出回路によれば、主スイッチング素子に流れる電流を前記複数の副スイッチング素子を介して前記各電流検出抵抗にそれぞれ流れる電流として並列に検出することができる。そしてこれらの各電流検出抵抗を介して検出された電流検出信号(電圧)の差分を求めるもので、前記複数の副スイッチング素子のそれぞれに入り込む同相の電流ノイズの影響を除去、または減少させることができる。従って耐ノイズ性に優れた電流検出回路を提供することが可能となる。   According to the current detection circuit configured as described above, the current flowing through the main switching element can be detected in parallel as the current flowing through each of the current detection resistors via the plurality of sub switching elements. The difference between the current detection signals (voltages) detected through each of these current detection resistors is obtained, and the influence of in-phase current noise entering each of the plurality of sub-switching elements can be removed or reduced. it can. Therefore, it is possible to provide a current detection circuit having excellent noise resistance.

本発明の一実施形態に係る電流検出回路の概略的な構成を示す図。The figure which shows schematic structure of the current detection circuit which concerns on one Embodiment of this invention. 本発明の別の実施形態に係る電流検出回路の概略的な構成を示す図。The figure which shows schematic structure of the current detection circuit which concerns on another embodiment of this invention. 本発明に係る電流検出回路を用いた内燃機関用点火装置の構成例を示す図。The figure which shows the structural example of the ignition device for internal combustion engines using the electric current detection circuit which concerns on this invention. 本発明の更に別の実施形態に係る電流検出回路の概略的な構成を示す図。The figure which shows schematic structure of the current detection circuit which concerns on another embodiment of this invention. 従来の電流検出回路の構成例を示す図。The figure which shows the structural example of the conventional electric current detection circuit.

以下、図面を参照して本発明の実施形態に係る電流検出回路について説明する。
図1は本発明の一実施形態に係る電流検出回路の概略的な構成を示す図で、Qmは、例えばIGBTからなる大電力用の主スイッチング素子、RLは該主スイッチング素子Qmのコレクタに接続された負荷である。この主スイッチング素子Qmは、そのゲートに駆動回路(図示せず)からのゲート制御信号を受けてオン・オフ動作し、前記負荷RLに所定の電力を供給する。
Hereinafter, a current detection circuit according to an embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is a diagram showing a schematic configuration of a current detection circuit according to an embodiment of the present invention. Qm is a main switching element for high power made of, for example, IGBT, and RL is connected to a collector of the main switching element Qm. Load. The main switching element Qm receives a gate control signal from a drive circuit (not shown) at its gate and is turned on / off to supply predetermined power to the load RL.

このような主スイッチング素子Qmに対して、この実施形態においては前記主スイッチング素子Qmの[1/M]のサイズの第1の副スイッチング素子Qs1と、[1/N]のサイズの第2の副スイッチング素子Qs2とがそれぞれ並列に接続して設けられる。これらの第1および第2の副スイッチング素子Qs1,Qs2は、前記主スイッチング素子Qmと同一の半導体基板(図示せず)上に形成されたIGBTからなり、そのゲートおよびコレクタを相互に共通接続することで並列に設けられる。   In contrast to such a main switching element Qm, in this embodiment, a first sub-switching element Qs1 having a size of [1 / M] of the main switching element Qm and a second having a size of [1 / N] are used. Sub-switching elements Qs2 are provided in parallel with each other. These first and second sub-switching elements Qs1 and Qs2 are made of IGBTs formed on the same semiconductor substrate (not shown) as the main switching element Qm, and their gates and collectors are mutually connected in common. Are provided in parallel.

そして前記第1および第2の副スイッチング素子Qs1,Qs2の各エミッタには、それぞれ電流検出抵抗R1,R2が直列接続され、これらの各電流検出抵抗R1,R2にそれぞれ生じた電流検出信号(電圧)は、差動増幅器Ampに入力される。この差動増幅器Ampは、前記電流検出信号(電圧)の差分を求めることで、前記各副スイッチング素子Qs1,Qs2にそれぞれ混入した同相の電流ノイズを除去し、或いは低減して前記主スイッチング素子Qmに流れる電流に相当する電流検出信号を求める役割を担う。   Current detection resistors R1 and R2 are connected in series to the emitters of the first and second sub-switching elements Qs1 and Qs2, respectively, and current detection signals (voltages) generated in the current detection resistors R1 and R2, respectively. ) Is input to the differential amplifier Amp. The differential amplifier Amp removes or reduces in-phase current noise mixed in each of the sub-switching elements Qs1 and Qs2 by obtaining a difference between the current detection signals (voltages), thereby reducing the main switching element Qm. It plays a role of obtaining a current detection signal corresponding to the current flowing through the.

尚、前記第1および第2の副スイッチング素子Qs1,Qs2については、周辺機器による電磁干渉や放射に起因する電流ノイズの影響ができる限り共通になるように、好ましくは前記半導体基板上の互いに近接した位置に設けることが望ましい。また前記各電流検出抵抗R1,R2の抵抗値については、後述するようにその差ができる限り小さいこと、好ましくは同じ値であることが望ましい。   The first and second sub-switching elements Qs1 and Qs2 are preferably close to each other on the semiconductor substrate so that the effects of current noise caused by electromagnetic interference and radiation by peripheral devices are as common as possible. It is desirable to provide in the position. The resistance values of the current detection resistors R1 and R2 are desirably as small as possible, preferably the same value, as will be described later.

ここで前記主スイッチング素子Qmに流れる電流をIとすると、[1/M]のサイズの前記第1の副スイッチング素子Qs1には[I/M]なる電流が流れ、また[1/N]のサイズの前記第2の副スイッチング素子Qs2には[I/N]なる電流が流れる。また前記各電流検出抵抗R1,R2にそれぞれ混入する電流ノイズに起因する電流変動量がΔInであり、前記電流検出抵抗R1,R2の抵抗値をr1,r2とすると、前記各電流検出抵抗R1,R2には
V1=(I/M)×r1+ΔIn×r1
V2=(I/N)×r2+ΔIn×r2
なる電圧がそれぞれ生じる。
Here, when the current flowing through the main switching element Qm is I, a current of [I / M] flows through the first sub-switching element Qs1 having a size of [1 / M], and the current of [1 / N] A current of [I / N] flows through the second sub-switching element Qs2 having the size. Further, if the current fluctuation amount due to the current noise mixed in each of the current detection resistors R1 and R2 is ΔIn, and the resistance values of the current detection resistors R1 and R2 are r1 and r2, the current detection resistors R1 and R2 In R2, V1 = (I / M) × r1 + ΔIn × r1
V2 = (I / N) × r2 + ΔIn × r2
Each produces a voltage.

尚、ここでは前記各電流検出抵抗R1,R2に生じた電圧降下に起因する前記第1および第2の副スイッチング素子Qs1,Qs2のゲート・エミッタ間電圧の低下による前記主スイッチング素子Qmに流れる電流Iの分流比に変化が生じないものと仮定している。また前記サイズを示すM,N値については[1/M>1/N]であり、前記抵抗値が[r1≧r2]であるとする。すると前記差動増幅器AmpのゲインをGとすると、該差動増幅器Ampの出力として
Vsense=G(V1−V2)
=G{(r1/M−r2/N)I+(r1−r2)ΔIn}
なる電流検出信号Vsenseが得られることになる。
Here, the current flowing through the main switching element Qm due to the decrease in the gate-emitter voltage of the first and second sub-switching elements Qs1, Qs2 due to the voltage drop generated in the current detection resistors R1, R2. It is assumed that there is no change in the shunt ratio of I. The M and N values indicating the size are [1 / M> 1 / N], and the resistance value is [r1 ≧ r2]. Then, if the gain of the differential amplifier Amp is G, the output of the differential amplifier Amp is Vsense = G (V1-V2)
= G {(r1 / M-r2 / N) I + (r1-r2) ΔIn}
A current detection signal Vsense is obtained.

従って上記電流検出信号Vsenseから前記主スイッチング素子Qmに流れる電流Iを、
I={MN/(N・r1−M・r2)}
×{(Vsense/G)−(r1−r2)ΔIn}
として求めることが可能となる。この式に示されるように前記電流ノイズに起因する電流変動量ΔInの項は、前記電流検出抵抗R1,R2の抵抗値r1,r2の差が小さい程小さくなり、特にその値が等しい場合には実質的に無視することが可能となる。
Therefore, the current I flowing from the current detection signal Vsense to the main switching element Qm is
I = {MN / (N · r1−M · r2)}
X {(Vsense / G)-(r1-r2) ΔIn}
Can be obtained as As shown in this equation, the term of the current fluctuation amount ΔIn due to the current noise becomes smaller as the difference between the resistance values r1 and r2 of the current detection resistors R1 and R2 becomes smaller, and particularly when the values are equal. It can be virtually ignored.

従って上述した如く構成された電流検出回路によれば、周辺機器による電磁干渉や放射に起因する電流ノイズの影響を除去し、若しくは低減して主スイッチング素子Qmに流れる電流Iを精度良く検出することができる。しかもサイズの異なる第1および第2の副スイッチング素子Qs1,Qs2を用いることで、これらの各副スイッチング素子Qs1,Qs2にそれぞれ流れる電流に差を付けながら、電流検出抵抗R1,R2にそれぞれ流入する電流ノイズの量を等しくし、これらの電流ノイズを打ち消すように動作するので、前記主スイッチング素子Qmに流れる電流Iを簡易に、しかも精度良く検出することができる等の効果が奏せられる。   Therefore, according to the current detection circuit configured as described above, the current I flowing through the main switching element Qm can be accurately detected by removing or reducing the influence of current noise caused by electromagnetic interference and radiation by peripheral devices. Can do. In addition, by using the first and second sub-switching elements Qs1 and Qs2 having different sizes, the currents flowing through the sub-switching elements Qs1 and Qs2 are made to flow into the current detection resistors R1 and R2, respectively. Since the operation is performed so that the amounts of current noise are equalized and these current noises are canceled out, the effects of being able to easily and accurately detect the current I flowing through the main switching element Qm are exhibited.

ところで図2に示すようにサイズの異なる3個の副スイッチング素子Qs1,Qs2,Qs3を前記主スイッチング素子Qmに並列接続して、該主スイッチング素子Qmに流れる電流Iを検出するようにしても良い。この場合には、3個の副スイッチング素子Qs1,Qs2,Qs3のサイズを[1/M],[1/N],[1/L]として互いに異ならせ、副スイッチング素子Qs1,Qs2,Qs3の各エミッタに直列接続した電流検出抵抗R1,R2,R3に生じた電圧の差を求めるように構成すれば良い。   Incidentally, as shown in FIG. 2, three sub-switching elements Qs1, Qs2, and Qs3 having different sizes may be connected in parallel to the main switching element Qm to detect the current I flowing through the main switching element Qm. . In this case, the sizes of the three sub-switching elements Qs1, Qs2, and Qs3 are made different as [1 / M], [1 / N], and [1 / L], and the sub-switching elements Qs1, Qs2, and Qs3 What is necessary is just to comprise so that the difference of the voltage which generate | occur | produced in current detection resistance R1, R2, R3 connected in series with each emitter may be calculated | required.

具体的には、例えば第1の差動増幅器Amp1にて前記電流検出抵抗R1,R2に生じた電圧の差を求め、更に第2の差動増幅器Amp2にて上記第1の差動増幅器Amp1の出力電圧と前記電流検出抵抗R3に生じた電圧の差を求めるようにすれば良い。即ち、この場合には、前記各電流検出抵抗R1,R2,R3には
V1=(I/M)×r1+ΔIn×r1
V2=(I/N)×r2+ΔIn×r2
V3=(I/L)×r3+ΔIn×r3
なる電圧がそれぞれ生じる。
Specifically, for example, a difference between voltages generated in the current detection resistors R1 and R2 is obtained by the first differential amplifier Amp1, and further, the second differential amplifier Amp2 determines the first differential amplifier Amp1. The difference between the output voltage and the voltage generated in the current detection resistor R3 may be obtained. That is, in this case, the current detection resistors R1, R2, and R3 have V1 = (I / M) × r1 + ΔIn × r1.
V2 = (I / N) × r2 + ΔIn × r2
V3 = (I / L) × r3 + ΔIn × r3
Each produces a voltage.

従って、例えば前記第1の差動増幅器Amp1のゲインを[1]としておけば、該第1の差動増幅器Amp1の出力として
Vamp=(V1−V2)
=(r1/M−r2/N)I+(r1−r2)ΔIn
が得られる。
Therefore, for example, if the gain of the first differential amplifier Amp1 is set to [1], the output of the first differential amplifier Amp1 is Vamp = (V1-V2)
= (R1 / M-r2 / N) I + (r1-r2) ΔIn
Is obtained.

そしてこの第1の差動増幅器Amp1の出力電圧Vampと前記電流検出抵抗R3に生じる電圧V3との差を前記第2の差動増幅器Amp2にて求めれば、該第2の差動増幅器Amp2の出力として
Vsense=G(Vamp−V3)
=G(V1−V2−V3)
=G(r1/M−r2/N−r3/L)I+G(r1−r2−r3)ΔIn
なる電流検出信号Vsenseが得られることになる。
If the difference between the output voltage Vamp of the first differential amplifier Amp1 and the voltage V3 generated in the current detection resistor R3 is obtained by the second differential amplifier Amp2, the output of the second differential amplifier Amp2 is obtained. As Vsense = G (Vamp−V3)
= G (V1-V2-V3)
= G (r1 / M-r2 / N-r3 / L) I + G (r1-r2-r3) ΔIn
A current detection signal Vsense is obtained.

従って前記電流検出抵抗R2,R3の抵抗値r2,r3を、例えば前記電流検出抵抗R1の抵抗値r1の[1/2]にそれぞれ設定しておけば、先の実施形態と同様に電流ノイズの影響を除去、若しくは低減して主スイッチング素子Qmに流れる電流Iを精度良く検出することができる。但し、この場合、前述した2個の副スイッチング素子Qs1,Qs2を用いた場合よりも構成が複雑化し、電流ノイズの影響も受け易くなることが否めない。従って実用的には先に説明した実施形態の方が好ましい。   Therefore, if the resistance values r2 and r3 of the current detection resistors R2 and R3 are set to [1/2] of the resistance value r1 of the current detection resistor R1, for example, current noise is reduced as in the previous embodiment. The current I flowing through the main switching element Qm can be detected with high accuracy by removing or reducing the influence. However, in this case, it cannot be denied that the configuration is more complicated than the case where the two sub-switching elements Qs1 and Qs2 described above are used, and the influence of current noise is more likely to occur. Therefore, the embodiment described above is preferable in practical use.

図3は上述した電流検出回路を用いて構成した内燃機関用点火装置の要部概略構成図である。この内燃機関用点火装置は、前記主スイッチング素子Qmにてイグニッションコイル10の一次コイル11に流れる電流をパルス的に制御し、該イグニッションコイル10の二次コイル12に接続された点火プラグ13を点火制御するものである。具体的には車載用制御ユニット(ECU)20からの点火制御信号を入力するゲートドライブ回路21にて前記主スイッチング素子Qmのゲートにゲート抵抗22を介してゲート駆動信号を印加し、これによって前記点火プラグ13を点火するように構成される。   FIG. 3 is a schematic configuration diagram of a main part of an internal combustion engine ignition device configured using the above-described current detection circuit. In this internal combustion engine ignition device, the main switching element Qm controls the current flowing through the primary coil 11 of the ignition coil 10 in a pulsed manner, and the ignition plug 13 connected to the secondary coil 12 of the ignition coil 10 is ignited. It is something to control. Specifically, a gate drive circuit 21 for inputting an ignition control signal from an in-vehicle control unit (ECU) 20 applies a gate drive signal to the gate of the main switching element Qm via a gate resistor 22, thereby The spark plug 13 is configured to ignite.

このように機能する前記主スイッチング素子Qmに流れる電流Iを検出する電流検出回路は、前述したように前記主スイッチング素子Qmに並列に設けた2つの副スイッチング素子Qs1,Qs2を備え、これらの各副スイッチング素子Qs1,Qs2のエミッタにそれぞれ接続された電流検出抵抗R1,R2を介して前記電流Iに比例する電圧をそれぞれ検出する。   The current detection circuit for detecting the current I flowing through the main switching element Qm functioning as described above includes two sub-switching elements Qs1 and Qs2 provided in parallel to the main switching element Qm as described above. Voltages proportional to the current I are detected via current detection resistors R1 and R2 connected to the emitters of the sub-switching elements Qs1 and Qs2, respectively.

そして各電流検出抵抗R1,R2に生じた電圧を前記差動増幅器Ampを介して検出し、該差動増幅器Ampの出力である電流検出信号Vsenseを過電流検出回路23に入力して過電流の発生を検出する。具体的には前記過電流検出回路23においては、前記電流検出信号Vsenseと予め設定した基準電圧Vrefとを比較し、該電流検出信号Vsenseが基準電圧Vrefを超えたとき、これを前記主スイッチング素子Qmに過電流が流れたとして検出する。そして過電流検出回路23の出力にて前記ゲートドライブ回路21の作動を制御し、例えば前記主スイッチング素子Qmに対するゲート駆動電圧を低下させることにより該主スイッチング素子Qmに流れる電流Iを低下させる。これによって該主スイッチング素子Qmのみならず、前記イグニッションコイル10および点火プラグ13がそれぞれ過電流から保護される。   The voltage generated in each of the current detection resistors R1 and R2 is detected via the differential amplifier Amp, and the current detection signal Vsense which is the output of the differential amplifier Amp is input to the overcurrent detection circuit 23 to detect the overcurrent. Detect outbreaks. Specifically, in the overcurrent detection circuit 23, the current detection signal Vsense is compared with a preset reference voltage Vref, and when the current detection signal Vsense exceeds the reference voltage Vref, this is detected as the main switching element. It is detected that an overcurrent flows in Qm. The operation of the gate drive circuit 21 is controlled by the output of the overcurrent detection circuit 23, and the current I flowing through the main switching element Qm is reduced by, for example, reducing the gate drive voltage for the main switching element Qm. As a result, not only the main switching element Qm but also the ignition coil 10 and the spark plug 13 are protected from overcurrent.

ちなみにこのようなゲート駆動電圧の低減による前記主スイッチング素子Qmに流れる電流Iの低減制御、つまり電流のフィードバック制御を実行する場合、前述した主スイッチング素子Qmと2つの副スイッチング素子Qs1,Qs2のサイズの違いにより、前記主スイッチング素子Qmが、そのゲート制御信号の変化に対する応答遅れが生じ易い。すると上述したフィードバック制御によって前記主スイッチング素子Qmに流れる電流を一定に保とうとした場合、主スイッチング素子Qmがゲート制御信号の変化に追従できず、発振を誘発することが懸念される。   Incidentally, when the reduction control of the current I flowing through the main switching element Qm by the reduction of the gate drive voltage, that is, the feedback control of the current is executed, the size of the main switching element Qm and the two sub-switching elements Qs1 and Qs2 described above. Due to the difference, the main switching element Qm tends to have a response delay with respect to a change in its gate control signal. Then, when the current flowing through the main switching element Qm is kept constant by the feedback control described above, there is a concern that the main switching element Qm cannot follow the change in the gate control signal and induce oscillation.

前述したゲート抵抗22は、前記主スイッチング素子Qmの入力寄生容量(図示せず)とによりローパスフィルタを形成し、前記ゲート制御信号を前記主スイッチング素子Qmに対してだけ緩やかに変化させる役割を担う。換言すれば前記ゲート制御信号は、前記2つの副スイッチング素子Qs1,Qs2の各ゲートに直接印加されることで、その高速応答性が確保される。この結果、前記ゲート制御信号のフィードバック制御が速やかに実行され、過電流に対する保護動作が確実に実行される。   The gate resistor 22 described above forms a low-pass filter with the input parasitic capacitance (not shown) of the main switching element Qm, and plays a role of changing the gate control signal only slowly with respect to the main switching element Qm. . In other words, the gate control signal is directly applied to the gates of the two sub-switching elements Qs1 and Qs2, thereby ensuring high-speed response. As a result, the feedback control of the gate control signal is promptly executed, and the protection operation against the overcurrent is reliably executed.

また上述した構成によれば、前記主スイッチング素子Qmおよび電流検出回路が、車両におけるノイズの発生源となるエンジン(内燃機関)や各種のモータが設けられた部位の近傍に搭載されることが多いので、前述した耐ノイズ性の向上は実用的に多大な効果を奏する。   Further, according to the above-described configuration, the main switching element Qm and the current detection circuit are often mounted in the vicinity of a site where an engine (internal combustion engine) that is a noise generation source in the vehicle and various motors are provided. Therefore, the improvement in noise resistance described above has a great practical effect.

ところで、例えば前述したようにサイズの異なる3個の副スイッチング素子Qs1,Qs2,Qs3を用いる場合、図4に示すように第1の差動増幅器Amp1にて前記電流検出抵抗R1,R2に生じた電圧の差を求めると共に、第2の差動増幅器Amp2にて前記電流検出抵抗R3,R1に生じた電圧の差を求める。そして第3の差動増幅器Amp3により上記各差動増幅器Amp1,Amp2の出力電圧の差を求めるようにすれば良い。   By the way, for example, when three sub-switching elements Qs1, Qs2, and Qs3 having different sizes are used as described above, they are generated in the current detection resistors R1 and R2 in the first differential amplifier Amp1 as shown in FIG. The difference between the voltages is obtained, and the difference between the voltages generated in the current detection resistors R3 and R1 is obtained by the second differential amplifier Amp2. Then, the difference between the output voltages of the differential amplifiers Amp1 and Amp2 may be obtained by the third differential amplifier Amp3.

この場合、前記差動増幅器Amp1,Amp2の各ゲインをそれぞれ[1]としておけば、第1の差動増幅器Amp1の出力として
Vamp1=(V1−V2)
=(r1/M−r2/N)I+(r1−r2)ΔIn
が得られる。
In this case, if each gain of the differential amplifiers Amp1 and Amp2 is set to [1], the output of the first differential amplifier Amp1 is Vamp1 = (V1−V2)
= (R1 / M-r2 / N) I + (r1-r2) ΔIn
Is obtained.

また第2の差動増幅器Amp2の出力として
Vamp2=(V3−V1)
=(r3/L−r1/M)I+(r3−r1)ΔIn
が得られる。
Further, as the output of the second differential amplifier Amp2, Vamp2 = (V3-V1)
= (R3 / L-r1 / M) I + (r3-r1) ΔIn
Is obtained.

そして前記差動増幅器Amp3のゲインを[G]としておけば、該第3の差動増幅器Amp3の出力として
Vsense=G(Vamp1−Vamp2)
=G{(V1−V2−(V3−V1))
=G(2・V1−V3−V2)
=G(2・r1/M−r2/N−r3/L)I
+G(2・r1−r2−r3)ΔIn
なる電流検出信号Vsenseが得られることになる。
If the gain of the differential amplifier Amp3 is set to [G], the output of the third differential amplifier Amp3 is Vsense = G (Vamp1-Vamp2)
= G {(V1-V2- (V3-V1))
= G (2.V1-V3-V2)
= G (2 · r1 / M−r2 / N−r3 / L) I
+ G (2 · r1-r2-r3) ΔIn
A current detection signal Vsense is obtained.

従って、例えば前記電流検出抵抗R2,R3の抵抗値r2,r3を、それぞれ前記電流検出抵抗R1の抵抗値r1と等しくなるように設定しておけば、先の各実施形態と同様に電流ノイズの影響を除去、若しくは低減して主スイッチング素子Qmに流れる電流Iを精度良く検出することができる。しかもこのような構成であれば、前記第1の副スイッチング素子Qs1に流れる電流から前記第2および3の副スイッチング素子Qs2,Qs3にそれぞれ流れる電流の同相成分を除去した後、前記第3の差動増幅器Amp3においてその検出誤差を打ち消すことが可能となるので、前記主スイッチング素子Qmに流れる電流Iの検出精度をより高くすることが可能となる。   Therefore, for example, if the resistance values r2 and r3 of the current detection resistors R2 and R3 are set to be equal to the resistance value r1 of the current detection resistor R1, respectively, the current noise is reduced as in the previous embodiments. The current I flowing through the main switching element Qm can be detected with high accuracy by removing or reducing the influence. In addition, with such a configuration, after removing in-phase components of the currents flowing through the second and third sub-switching elements Qs2 and Qs3 from the current flowing through the first sub-switching element Qs1, the third difference Since the detection error can be canceled in the dynamic amplifier Amp3, the detection accuracy of the current I flowing through the main switching element Qm can be further increased.

尚、本発明は上述した実施形態に限定されるものではない。例えば副スイッチング素子Qs1,Qs2のサイズ[1/M],[1/N]の値M,Nについては、前述したように数百〜数千程度に設定すれば良いものであるが、各種仕様に合わせて定めれば良いことは言うまでもない。また前記差動増幅器AmpのゲインGについても制御仕様に応じて定めれば十分である。更には前記各スイッチング素子Qm,Qs1,Qs2としては、前述したIGBTに限らず、MOSFETやバイポーラトランジスタであっても良いことは勿論のことである。その他、本発明はその要旨を逸脱しない範囲で種々変形して実施することができる。   The present invention is not limited to the embodiment described above. For example, the values M and N of the sizes [1 / M] and [1 / N] of the sub-switching elements Qs1 and Qs2 may be set to about several hundred to several thousand as described above. Needless to say, it should be determined in accordance with. It is sufficient to determine the gain G of the differential amplifier Amp according to the control specifications. Furthermore, the switching elements Qm, Qs1, and Qs2 are not limited to the IGBTs described above, but may be MOSFETs or bipolar transistors. In addition, the present invention can be variously modified and implemented without departing from the scope of the invention.

Qm 主スイッチング素子
Qs1,Qs2 副スイッチング素子
R1,R2 電流検出抵抗
Amp 差動増幅器
RL 負荷
10 イグニッションコイル
13 点火プラグ
20 車載用制御ユニット(ECU)
21 ゲートドライブ回路
22 ゲート抵抗
23 過電流検出回路
Qm Main switching element Qs1, Qs2 Sub switching element R1, R2 Current detection resistor Amp Differential amplifier RL Load 10 Ignition coil 13 Spark plug 20 On-vehicle control unit (ECU)
21 Gate drive circuit 22 Gate resistance 23 Overcurrent detection circuit

Claims (5)

制御信号が印加されてオン・オフ駆動される主スイッチング素子に流れる電流を検出する電流検出回路であって、
前記主スイッチング素子と並列に設けられて前記制御信号が印加されてオン・オフ駆動され、前記主スイッチング素子よりも小さいサイズで、且つ互いに異なるサイズの複数の副スイッチング素子と、
これらの各副スイッチング素子にそれぞれ直列接続された複数の電流検出抵抗と、
これらの各電流検出抵抗に生じる電圧の差から前記主スイッチング素子に流れる電流を検出する差動増幅器と
を具備したことを特徴とする電流検出回路。
A current detection circuit for detecting a current flowing in a main switching element that is driven on and off by applying a control signal;
A plurality of sub-switching elements that are provided in parallel with the main switching element and are turned on / off by being applied with the control signal, and are smaller than the main switching element and different in size;
A plurality of current detection resistors connected in series to each of these sub-switching elements,
A current detection circuit comprising: a differential amplifier that detects a current flowing through the main switching element from a difference in voltage generated in each of the current detection resistors.
前記主スイッチング素子および前記複数の副スイッチング素子は、同一の半導体基板上に形成されたものである請求項1に記載の電流検出回路。   The current detection circuit according to claim 1, wherein the main switching element and the plurality of sub switching elements are formed on the same semiconductor substrate. 前記複数の電流検出抵抗は、同一の抵抗値を有するものである請求項1に記載の電流検出回路。   The current detection circuit according to claim 1, wherein the plurality of current detection resistors have the same resistance value. 前記主スイッチング素子は、その制御端子に入力抵抗を介して前記制御信号が印加されてオン・オフ起動され、前記複数の副スイッチング素子は、その制御端子に前記制御信号がそれぞれ直接印加されてオン・オフ駆動されるものである請求項1に記載の電流検出回路。   The main switching element is turned on / off by applying the control signal to the control terminal via an input resistor, and the plurality of sub switching elements are turned on by directly applying the control signal to the control terminal. The current detection circuit according to claim 1, which is driven off. 前記主スイッチング素子および前記複数の副スイッチング素子は、それぞれIGBTまたはMOSFETからなる請求項1に記載の電流検出回路。   The current detection circuit according to claim 1, wherein the main switching element and the plurality of sub switching elements are each formed of an IGBT or a MOSFET.
JP2012194594A 2012-09-04 2012-09-04 Current detection circuit Pending JP2014052192A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012194594A JP2014052192A (en) 2012-09-04 2012-09-04 Current detection circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012194594A JP2014052192A (en) 2012-09-04 2012-09-04 Current detection circuit

Publications (1)

Publication Number Publication Date
JP2014052192A true JP2014052192A (en) 2014-03-20

Family

ID=50610801

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012194594A Pending JP2014052192A (en) 2012-09-04 2012-09-04 Current detection circuit

Country Status (1)

Country Link
JP (1) JP2014052192A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020123929A (en) * 2019-01-31 2020-08-13 トヨタ自動車株式会社 Switching circuit
CN116886087A (en) * 2023-07-31 2023-10-13 北京中科格励微科技有限公司 Switching circuit for reducing load radiation

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002300017A (en) * 2001-04-03 2002-10-11 Mitsubishi Electric Corp Semiconductor device
US20060181289A1 (en) * 2002-09-04 2006-08-17 Gerald Deboy Circuit configuration having a load transistor and a current measuring configuration, method for ascertaining the load current in a load transistor, semiconductor component, and measuring configuration
JP2007093290A (en) * 2005-09-27 2007-04-12 Sanyo Electric Co Ltd Current sensing circuit

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002300017A (en) * 2001-04-03 2002-10-11 Mitsubishi Electric Corp Semiconductor device
US20060181289A1 (en) * 2002-09-04 2006-08-17 Gerald Deboy Circuit configuration having a load transistor and a current measuring configuration, method for ascertaining the load current in a load transistor, semiconductor component, and measuring configuration
JP2007093290A (en) * 2005-09-27 2007-04-12 Sanyo Electric Co Ltd Current sensing circuit

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020123929A (en) * 2019-01-31 2020-08-13 トヨタ自動車株式会社 Switching circuit
CN116886087A (en) * 2023-07-31 2023-10-13 北京中科格励微科技有限公司 Switching circuit for reducing load radiation
CN116886087B (en) * 2023-07-31 2024-02-02 北京中科格励微科技有限公司 Switching circuit for reducing load radiation

Similar Documents

Publication Publication Date Title
JP4924086B2 (en) Semiconductor device
JP4705495B2 (en) Leakage detection circuit and battery electronic control device
EP2444817B1 (en) Current detection circuit for a power semiconductor device
JP5477407B2 (en) Gate drive circuit
JP2020036530A (en) Drive control apparatus of switching element
CN102057574B (en) Load circuit overcurrent protection device
JP2006229864A (en) Overcurrent detector
JPH10323016A (en) Device steady current balance control circuit of power converter
KR20070008143A (en) Over current detection apparatus of dual motor for car
JP2006197768A (en) Overcurrent detector
JP2008079379A (en) Method for driving voltage-driven type semiconductor element, and gate drive circuit
JP2014052192A (en) Current detection circuit
JP2011149926A (en) Current detection circuit of power semiconductor device
JP5720259B2 (en) Current detection circuit
CN102057573A (en) Overcurrent protective device for load circuit
JP5126536B2 (en) Magnetic proportional current sensor gain adjustment method
JP2009064396A (en) Differential amplification circuit and current controller
US9213055B2 (en) Semiconductor device
JP5989171B1 (en) CURRENT DETECTION CIRCUIT AND ELECTRIC CONTROL DEVICE FOR VEHICLE HAVING THE CIRCUIT
US9124094B2 (en) Current saturation detection and clamping circuit and method
JP5929817B2 (en) Drive control circuit and internal combustion engine ignition device
JP5827176B2 (en) Voltage follower input type differential amplifier
JP6234729B2 (en) Sensor device
JP4517901B2 (en) Power semiconductor module and drive circuit thereof
JP5293083B2 (en) Semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150615

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160408

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160419

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20161115