JP2009180693A - Detection system of disconnection between current sensor and electronic control unit - Google Patents

Detection system of disconnection between current sensor and electronic control unit Download PDF

Info

Publication number
JP2009180693A
JP2009180693A JP2008022285A JP2008022285A JP2009180693A JP 2009180693 A JP2009180693 A JP 2009180693A JP 2008022285 A JP2008022285 A JP 2008022285A JP 2008022285 A JP2008022285 A JP 2008022285A JP 2009180693 A JP2009180693 A JP 2009180693A
Authority
JP
Japan
Prior art keywords
terminal
voltage
power supply
current
disconnection detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008022285A
Other languages
Japanese (ja)
Other versions
JP4761080B2 (en
Inventor
Takashi Urano
高志 浦野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2008022285A priority Critical patent/JP4761080B2/en
Publication of JP2009180693A publication Critical patent/JP2009180693A/en
Application granted granted Critical
Publication of JP4761080B2 publication Critical patent/JP4761080B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To detect disconnection between a current sensor and an electronic control unit that supplies power to the current sensor, while the current to be measured flows. <P>SOLUTION: An N channel junction type FET (Field-Effect Transistor) 133 is disposed between a power supply input terminal 111 and a sensor output terminal 113, and a gate of the N channel junction type FET 133 is connected to the node between of a bias resistor R<SB>5</SB>and a second ground terminal 112. The anode of a positive-side diode D<SB>1</SB>is connected to a power supply input terminal 111, and the cathode thereof is connected to a positive-side power source terminal of an operational amplifier 118. A first constant current circuit 131 is disposed between the cathode of the positive-side diode D<SB>1</SB>and the second ground terminal 112. The anode of a negative-side diode D<SB>2</SB>is connected to a negative-side power source terminal of the operational amplifier 118, and the cathode thereof is connected to the second ground terminal 112. A second constant current circuit 132 is disposed between the power supply input terminal 111 and the anode of the negative-side diode D<SB>2</SB>. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、被測定電流に応じた検出電圧を出力する電流センサと、この電流センサに電源を供給する電子制御ユニットとの間の断線検知システムに関する。   The present invention relates to a disconnection detection system between a current sensor that outputs a detection voltage corresponding to a current to be measured and an electronic control unit that supplies power to the current sensor.

導線に流れる被測定電流を非接触状態で検出する電流センサとして、磁気比例式や磁気平衡式のものが従来から知られている。   2. Description of the Related Art Conventionally, as a current sensor for detecting a current to be measured flowing through a conductive wire in a non-contact state, a magnetic proportional type or a magnetic balanced type is known.

磁気比例式電流センサは、図10(A)に例示のように、ギャップGを有するリング状の磁気コア20(高透磁率で残留磁気が少ない珪素鋼板やパーマロイコア等)と、ギャップGに配置されたホール素子116(磁気検出素子の例示)とを有する。磁気コア20は、被測定電流Iinの流れるバスバー10が貫通する配置である。したがって、被測定電流IinによってギャップG内に磁界が発生し、これがホール素子116の感磁面に印加される。磁界の強さは被測定電流Iinに比例するので、ホール素子116の出力電圧から被測定電流Iinが求められる。 As shown in FIG. 10A, the magnetic proportional current sensor is arranged in the gap G with a ring-shaped magnetic core 20 having a gap G (such as a silicon steel plate or a permalloy core having a high magnetic permeability and little residual magnetism). Hall element 116 (an example of a magnetic detection element). The magnetic core 20 is an arrangement in which the bus bar 10 of the flow of the current I in the measurement through. Therefore, a magnetic field is generated in the gap G by the current I in to be measured, and this is applied to the magnetic sensitive surface of the Hall element 116. Since the intensity of the magnetic field is proportional to the measured current I in, the measured current I in is determined from the output voltage of the Hall element 116.

磁気平衡式電流センサは、磁気比例式電流センサの構成に加えて、図10(B)に例示のように、磁気コア20に巻線を設けてなる負帰還用コイルLFBを有する。そして被測定電流IinによってギャップG内に磁界(以下「第1の磁界」とも表記)が発生してこれがホール素子116の感磁面に印加され、印加された前記第1の磁界を相殺する(ゼロにする)磁界(以下「第2の磁界」とも表記)を発生するように負帰還用コイルLFBに電流が供給される。前記第2の磁界を発生するために負帰還用コイルLFBに供給される電流から被測定電流Iinが求められる。 In addition to the configuration of the magnetic proportional current sensor, the magnetic balanced current sensor has a negative feedback coil L FB in which a winding is provided on the magnetic core 20 as illustrated in FIG. 10B. Then, a magnetic field (hereinafter also referred to as “first magnetic field”) is generated in the gap G by the measured current I in , and this is applied to the magnetosensitive surface of the Hall element 116 to cancel the applied first magnetic field. A current is supplied to the negative feedback coil L FB so as to generate a magnetic field (hereinafter also referred to as “second magnetic field”). The current to be measured I in is obtained from the current supplied to the negative feedback coil L FB to generate the second magnetic field.

上記のような電流センサは例えば、工作機械に使用される電気モータや一般車に使用される電動パワーステアリング装置のブラシレスモータの駆動電流の計測、あるいはハイブリッドカーや電気自動車等のバッテリー充放電電流等の計測に用いられる。   The current sensor as described above is, for example, measurement of driving current of an electric motor used in a machine tool or a brushless motor of an electric power steering device used in a general vehicle, or a battery charging / discharging current of a hybrid car or an electric vehicle. Used for measurement.

ところで、電流センサは一般に、電子制御ユニット(ECU:Electronic Control Unit)から電源を供給されて動作する。電流センサと電子制御ユニットとを接続する経路で断線が生じると、電流センサからの出力される検出電圧は被測定電流に応じたものとならず、正常な電流検出ができない。電流センサが例えば車載用のバッテリ電流モニタシステムに使用される場合、電流センサによって正常な電流検出ができないと、バッテリの過充電又は過放電を招いてバッテリの寿命が短くなる恐れがある。さらにバッテリの炎上等の危険な状態に陥る可能性もある。このため、電流センサと電子制御ユニットとの接続経路における断線を検知することが要求される。   By the way, the current sensor generally operates with power supplied from an electronic control unit (ECU). If a disconnection occurs in the path connecting the current sensor and the electronic control unit, the detection voltage output from the current sensor does not correspond to the current to be measured, and normal current detection cannot be performed. When the current sensor is used in, for example, an in-vehicle battery current monitoring system, if normal current detection cannot be performed by the current sensor, the battery may be overcharged or overdischarged to shorten the battery life. Furthermore, there is a possibility of falling into a dangerous state such as a battery flame. For this reason, it is required to detect a disconnection in the connection path between the current sensor and the electronic control unit.

電流センサの故障を判定する装置として下記特許文献1に記載されたものが知られている。
特開2006−145426号公報(特に図1)
A device described in Patent Document 1 below is known as a device for determining a failure of a current sensor.
JP 2006-145426 A (particularly FIG. 1)

特許文献1の装置は、被測定電流の停止時にコイルに検査電流を流し、この時にホール素子により検出された電流値に基づいて電流センサの故障を判定するものである。   The device of Patent Document 1 is configured to pass a test current through a coil when a current to be measured is stopped, and to determine a failure of the current sensor based on a current value detected by a Hall element at this time.

特許文献1の装置を用いて電流センサと電子制御ユニットとの間の断線を検知しようとする場合、上記のとおり被測定電流の停止時にコイルに検査電流を流す必要があるため、例えばハイブリッドカーの運転中や工作機械の動作中には断線を検知することができないという問題がある。   When the disconnection between the current sensor and the electronic control unit is to be detected using the apparatus of Patent Document 1, it is necessary to flow an inspection current to the coil when the current to be measured is stopped as described above. There is a problem that the disconnection cannot be detected during operation or operation of the machine tool.

本発明はこうした状況を認識してなされたものであり、その目的は、電流センサと、この電流センサに電源を供給する電子制御ユニットとの間の断線を、被測定電流の流れている時に検知することの可能な、電流センサと電子制御ユニットとの間の断線検知システムを提供することにある。   The present invention has been made in view of such a situation, and its purpose is to detect a disconnection between a current sensor and an electronic control unit that supplies power to the current sensor when a current to be measured flows. It is an object of the present invention to provide a disconnection detection system between a current sensor and an electronic control unit.

本発明の第1の態様は、電流センサと電子制御ユニットとの間の断線検知システムである。この断線検知システムは、
電流センサと、前記電流センサに電源を供給する電子制御ユニットとを備え、
前記電子制御ユニットは、電源供給端子と、第1接地端子と、検出電圧入力端子と、前記検出電圧入力端子に接続された断線検知部とを有し、
前記電流センサは、前記電源供給端子に接続された電源入力端子と、前記第1接地端子に接続された第2接地端子と、前記検出電圧入力端子に接続されたセンサ出力端子と、被測定電流に応じた検出電圧を出力する電流検出部と、前記検出電圧を増幅して前記センサ出力端子に出力する出力用増幅器と、前記電源入力端子と前記センサ出力端子との間に設けられたNチャンネル接合形FETと、前記電源入力端子と前記第2接地端子との間に設けられたバイアス抵抗とを有し、前記バイアス抵抗と前記第2接地端子との接続点に前記Nチャンネル接合形FETのゲートが接続され、前記出力用増幅器の正側電源端子に供給される電圧を前記電源入力端子の電圧よりも小さくするための電源側降圧手段が前記電源入力端子と前記正側電源端子との間に設けられている。
A first aspect of the present invention is a disconnection detection system between a current sensor and an electronic control unit. This disconnection detection system
A current sensor, and an electronic control unit that supplies power to the current sensor,
The electronic control unit includes a power supply terminal, a first ground terminal, a detection voltage input terminal, and a disconnection detection unit connected to the detection voltage input terminal,
The current sensor includes a power input terminal connected to the power supply terminal, a second ground terminal connected to the first ground terminal, a sensor output terminal connected to the detection voltage input terminal, and a current to be measured. A current detection unit that outputs a detection voltage according to the output, an output amplifier that amplifies the detection voltage and outputs the detection voltage to the sensor output terminal, and an N channel provided between the power input terminal and the sensor output terminal A junction-type FET, and a bias resistor provided between the power input terminal and the second ground terminal, and a connection point between the bias resistor and the second ground terminal of the N-channel junction FET. A power supply side step-down means for connecting a gate and making the voltage supplied to the positive power supply terminal of the output amplifier smaller than the voltage of the power supply input terminal comprises the power supply input terminal and the positive power supply terminal. It is provided between.

第1の態様の断線検知システムにおいて、前記Nチャンネル接合形FETがオンしたときの前記Nチャンネル接合形FETによる電圧降下が前記電源側降圧手段による電圧降下よりも小さいとよい。   In the disconnection detection system according to the first aspect, it is preferable that a voltage drop caused by the N-channel junction FET when the N-channel junction FET is turned on is smaller than a voltage drop caused by the power supply side step-down means.

第1の態様の断線検知システムにおいて、前記出力用増幅器の前記正側電源端子に供給される電圧よりも大きな電圧が前記断線検知部に入力されたときに前記断線検知部が断線異常と検知するとよい。   In the disconnection detection system according to the first aspect, when the disconnection detection unit detects a disconnection abnormality when a voltage larger than the voltage supplied to the positive power supply terminal of the output amplifier is input to the disconnection detection unit. Good.

この場合、前記被測定電流の定格範囲に対応する電圧範囲の中の最大電圧よりも大きくかつ前記出力用増幅器の前記正側電源端子に供給される電圧よりも小さな電圧が前記断線検知部に入力されたときに前記断線検知部が過電流異常と検知してもよい。   In this case, a voltage larger than the maximum voltage in the voltage range corresponding to the rated range of the current to be measured and smaller than the voltage supplied to the positive power supply terminal of the output amplifier is input to the disconnection detector. When this is done, the disconnection detection unit may detect an overcurrent abnormality.

第1の態様の断線検知システムにおいて、
前記電源側降圧手段は、アノードが前記電源入力端子に接続され、カソードが前記出力用増幅器の前記正側電源端子に接続された正側ダイオードを含み、
前記正側ダイオードの前記カソードと前記第2接地端子との間に正側定電流回路又は正側抵抗が設けられていてもよい。
In the disconnection detection system according to the first aspect,
The power supply side step-down means includes a positive side diode having an anode connected to the power supply input terminal and a cathode connected to the positive power supply terminal of the output amplifier,
A positive-side constant current circuit or a positive-side resistor may be provided between the cathode of the positive-side diode and the second ground terminal.

第1の態様の断線検知システムにおいて、前記正側定電流回路に流れる電流量又は前記正側抵抗の抵抗値が可変調整自在であってもよい。   In the disconnection detection system according to the first aspect, the amount of current flowing through the positive-side constant current circuit or the resistance value of the positive-side resistor may be variably adjustable.

第1の態様の断線検知システムにおいて、前記電流センサはさらに、前記出力用増幅器の負側電源端子に供給される電圧を前記第2接地端子の電圧よりも大きくするための接地側降圧手段が前記第2接地端子と前記負側電源端子との間に設けられていてもよい。   In the disconnection detection system according to the first aspect, the current sensor further includes a ground side step-down means for making the voltage supplied to the negative power supply terminal of the output amplifier larger than the voltage of the second ground terminal. It may be provided between the second ground terminal and the negative power supply terminal.

本発明の第2の態様も、電流センサと電子制御ユニットとの間の断線検知システムである。この断線検知システムは、
電流センサと、前記電流センサに電源を供給する電子制御ユニットとを備え、
前記電子制御ユニットは、電源供給端子と、第1接地端子と、検出電圧入力端子と、前記検出電圧入力端子に接続された断線検知部とを有し、
前記電流センサは、前記電源供給端子に接続された電源入力端子と、前記第1接地端子に接続された第2接地端子と、前記検出電圧入力端子に接続されたセンサ出力端子と、被測定電流に応じた検出電圧を出力する電流検出部と、前記検出電圧を増幅して前記センサ出力端子に出力する出力用増幅器と、前記センサ出力端子と前記第2接地端子との間に設けられたPチャンネル接合形FETと、前記電源入力端子と前記第2接地端子との間に設けられたバイアス抵抗とを有し、前記電源入力端子と前記バイアス抵抗との接続点に前記Pチャンネル接合形FETのゲートが接続され、前記出力用増幅器の負側電源端子に供給される電圧を前記第2接地端子の電圧よりも大きくするための接地側降圧手段が前記負側電源端子と前記第2接地端子との間に設けられている。
The second aspect of the present invention is also a disconnection detection system between the current sensor and the electronic control unit. This disconnection detection system
A current sensor, and an electronic control unit that supplies power to the current sensor,
The electronic control unit includes a power supply terminal, a first ground terminal, a detection voltage input terminal, and a disconnection detection unit connected to the detection voltage input terminal,
The current sensor includes a power input terminal connected to the power supply terminal, a second ground terminal connected to the first ground terminal, a sensor output terminal connected to the detection voltage input terminal, and a current to be measured. A current detection unit that outputs a detection voltage corresponding to the output voltage, an output amplifier that amplifies the detection voltage and outputs the detection voltage to the sensor output terminal, and a P provided between the sensor output terminal and the second ground terminal. A channel junction FET, and a bias resistor provided between the power input terminal and the second ground terminal, and a connection point between the power input terminal and the bias resistor is connected to the P channel junction FET. A ground side step-down means for connecting a gate and making the voltage supplied to the negative power supply terminal of the output amplifier larger than the voltage of the second ground terminal includes the negative power supply terminal and the second ground terminal. It is provided between.

第2の態様の断線検知システムにおいて、前記Pチャンネル接合形FETがオンしたときの前記Pチャンネル接合形FETによる電圧降下が前記接地側降圧手段による電圧降下よりも小さいとよい。   In the disconnection detection system according to the second aspect, it is preferable that a voltage drop caused by the P-channel junction FET when the P-channel junction FET is turned on is smaller than a voltage drop caused by the ground side step-down means.

第2の態様の断線検知システムにおいて、前記出力用増幅器の前記負側電源端子に供給される電圧よりも小さな電圧が前記断線検知部に入力されたときに前記断線検知部が断線異常と検知するとよい。   In the disconnection detection system of the second aspect, when the disconnection detection unit detects a disconnection abnormality when a voltage smaller than the voltage supplied to the negative power supply terminal of the output amplifier is input to the disconnection detection unit. Good.

第2の態様の断線検知システムにおいて、
前記接地側降圧手段は、アノードが前記出力用増幅器の前記負側電源端子に接続され、カソードが前記第2接地端子に接続された負側ダイオードを含み、
前記電源入力端子と前記負側ダイオードの前記アノードとの間に負側定電流回路又は負側抵抗が設けられていてもよい。
In the disconnection detection system according to the second aspect,
The ground-side step-down means includes a negative diode having an anode connected to the negative power supply terminal of the output amplifier and a cathode connected to the second ground terminal;
A negative constant current circuit or a negative resistance may be provided between the power input terminal and the anode of the negative diode.

本発明の第3の態様も、電流センサと電子制御ユニットとの間の断線検知システムである。この断線検知システムは、
被測定電流に応じた電圧を出力する電流センサと、前記電流センサに電源を供給する電子制御ユニットとを備え、
前記電子制御ユニットは、電源供給端子と、第1接地端子と、検出電圧入力端子と、前記検出電圧入力端子に接続された断線検知部とを有し、
前記電流センサは、前記電源供給端子に接続された電源入力端子と、前記第1接地端子に接続された第2接地端子と、前記検出電圧入力端子に接続されたセンサ出力端子と、前記センサ出力端子と前記第2接地端子との間に設けられたPチャンネル接合形FETと、前記電源入力端子と前記第2接地端子との間に設けられたバイアス抵抗とを有し、前記電源入力端子と前記バイアス抵抗との接続点に前記Pチャンネル接合形FETのゲートが接続されている。
The third aspect of the present invention is also a disconnection detection system between the current sensor and the electronic control unit. This disconnection detection system
A current sensor that outputs a voltage corresponding to the current to be measured, and an electronic control unit that supplies power to the current sensor;
The electronic control unit includes a power supply terminal, a first ground terminal, a detection voltage input terminal, and a disconnection detection unit connected to the detection voltage input terminal,
The current sensor includes a power input terminal connected to the power supply terminal, a second ground terminal connected to the first ground terminal, a sensor output terminal connected to the detection voltage input terminal, and the sensor output. A P-channel junction FET provided between the terminal and the second ground terminal, and a bias resistor provided between the power input terminal and the second ground terminal, and the power input terminal A gate of the P-channel junction FET is connected to a connection point with the bias resistor.

なお、以上の構成要素の任意の組合せ、本発明の表現を方法や装置などの間で変換したものもまた、本発明の態様として有効である。   It should be noted that any combination of the above-described constituent elements and a representation obtained by converting the expression of the present invention between methods and apparatuses are also effective as an aspect of the present invention.

本発明の第1の態様によれば、第1接地端子と第2接地端子との間が断線したとき、Nチャンネル接合形FETがオンとなり、被測定電流に関わらず検出電圧入力端子の電圧は電源供給端子の電圧に極めて近くなる。このため、検出電圧入力端子に接続された断線検知部により、被測定電流が流れている時に断線異常を検知することができる。   According to the first aspect of the present invention, when the first ground terminal and the second ground terminal are disconnected, the N-channel junction FET is turned on, and the voltage at the detection voltage input terminal is set regardless of the current to be measured. Very close to the voltage at the power supply terminal. For this reason, the disconnection detection unit connected to the detection voltage input terminal can detect disconnection abnormality when the current to be measured flows.

本発明の第2及び第3の態様によれば、電源供給端子と電源入力端子との間が断線したとき、Pチャンネル接合形FETがオンとなり、被測定電流に関わらず検出電圧入力端子の電圧は第1接地端子の電圧に極めて近くなる。このため、検出電圧入力端子に接続された断線検知部により、被測定電流が流れている時に断線異常を検知することができる。   According to the second and third aspects of the present invention, when the power supply terminal and the power supply input terminal are disconnected, the P-channel junction FET is turned on, and the voltage of the detection voltage input terminal regardless of the current to be measured. Becomes very close to the voltage of the first ground terminal. For this reason, the disconnection detection unit connected to the detection voltage input terminal can detect disconnection abnormality when the current to be measured flows.

以下、図面を参照しながら本発明の好適な実施の形態を詳述する。なお、各図面に示される同一または同等の構成要素、部材等には同一の符号を付し、適宜重複した説明は省略する。また、実施の形態は発明を限定するものではなく例示であり、実施の形態に記述されるすべての特徴やその組み合わせは必ずしも発明の本質的なものであるとは限らない。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings. In addition, the same code | symbol is attached | subjected to the same or equivalent component, member, etc. which are shown by each drawing, and the overlapping description is abbreviate | omitted suitably. In addition, the embodiments do not limit the invention but are exemplifications, and all features and combinations thereof described in the embodiments are not necessarily essential to the invention.

(第1の実施の形態)
図1は、本発明の第1の実施の形態に係る断線検知システム100の例示的な構成図である。断線検知システム100は、電流センサ110と、電子制御ユニット120とを備える。電流センサ110は、本実施の形態では図10(B)に例示の磁気平衡式のものとする。電子制御ユニット120は、電流センサ110に電源を供給する。
(First embodiment)
FIG. 1 is an exemplary configuration diagram of a disconnection detection system 100 according to the first embodiment of the present invention. The disconnection detection system 100 includes a current sensor 110 and an electronic control unit 120. In this embodiment, the current sensor 110 is of the magnetic balance type illustrated in FIG. The electronic control unit 120 supplies power to the current sensor 110.

電子制御ユニット120は、電源供給端子121と、第1接地端子122と、検出電圧入力端子123と、定電圧源125と、断線検知部126と、プルダウン抵抗Rとを有する。定電圧源125の高電位側が電源供給端子121、低電位側が第1接地端子122である。検出電圧入力端子123と第1接地端子122との間に、断線検知部126とプルダウン抵抗Rとが並列に接続される。 The electronic control unit 120 includes a power supply terminal 121, a first ground terminal 122, a detection voltage input terminal 123, a constant voltage source 125, a disconnection detection unit 126, and a pull-down resistor R 6. A high potential side of the constant voltage source 125 is a power supply terminal 121, and a low potential side is a first ground terminal 122. Between the detection voltage input terminal 123 and the first ground terminal 122, a disconnection detecting section 126 and the pull-down resistor R 6 is connected in parallel.

電流センサ110は、電源入力端子111と、第2接地端子112と、センサ出力端子113と、電流検出部114と、出力用差動増幅器115と、基準電圧源119と、Nチャンネル接合形FET133(FET:Field-Effect Transistor)と、バイアス抵抗Rと、電源側降圧手段の例示である正側ダイオードDと、正側定電流回路としての第1定電流回路131と、接地側降圧手段の例示である負側ダイオードDと、負側定電流回路としての第2定電流源132とを有する。電流検出部114は、磁気検出素子の例示であるホール素子116と、負帰還用差動増幅器117と、負帰還用コイルLFBと、電流電圧変換器の例示である検出抵抗Rとを含む。出力用差動増幅器115は、オペアンプ118と、抵抗R〜Rとを含む。 The current sensor 110 includes a power input terminal 111, a second ground terminal 112, a sensor output terminal 113, a current detection unit 114, an output differential amplifier 115, a reference voltage source 119, and an N-channel junction FET 133 ( FET: Field-Effect Transistor), bias resistor R 5 , positive side diode D 1 as an example of the power source side step-down means, first constant current circuit 131 as a positive side constant current circuit, and ground side step-down means having a negative-side diode D 2 is an illustration, and a second constant-current source 132 as the negative side constant current circuit. The current detection unit 114 includes a Hall element 116 that is an example of a magnetic detection element, a negative feedback differential amplifier 117, a negative feedback coil LFB, and a detection resistor R S that is an example of a current-voltage converter. . The output differential amplifier 115 includes an operational amplifier 118 and resistors R 1 to R 4 .

電源入力端子111は電源供給端子121に接続され、第2接地端子112は第1接地端子122に接続され、センサ出力端子113は検出電圧入力端子123に接続される。電流検出部114は、被測定電流Iin(図10(B)参照)に応じた検出電圧Vを出力する。出力用差動増幅器115は、検出電圧Vを増幅してセンサ出力端子に出力する(図中、Vと表記)。電源入力端子111とセンサ出力端子113との間にはNチャンネル接合形FET133が設けられ、電源入力端子111と第2接地端子112との間にはバイアス抵抗Rが設けられる。バイアス抵抗Rと第2接地端子112との接続点にNチャンネル接合形FET133のゲートが接続される。図2に例示のように、Nチャンネル接合形FETは、VGSが0のときはオンし、VGSが0より十分小さい(VGS≦V)ときはオフする。ここで、Nチャンネル接合形FET133がオンしたときのNチャンネル接合形FET133による電圧降下VDSは正側ダイオードDの順方向電圧降下VF1よりも小さいものとする。このような設計は、図1において例えばプルダウン抵抗RをNチャンネル接合形FET133のオン抵抗よりも十分大きな抵抗値とすることで実現される。 The power input terminal 111 is connected to the power supply terminal 121, the second ground terminal 112 is connected to the first ground terminal 122, and the sensor output terminal 113 is connected to the detection voltage input terminal 123. The current detection unit 114 outputs a detection voltage V S corresponding to the measured current I in (see FIG. 10B). The output differential amplifier 115 amplifies the detection voltage V S and outputs it to the sensor output terminal (denoted as V O in the figure). An N-channel junction FET 133 is provided between the power input terminal 111 and the sensor output terminal 113, and a bias resistor R 5 is provided between the power input terminal 111 and the second ground terminal 112. The gate of the N-channel junction FET 133 is connected to the connection point between the bias resistor R 5 and the second ground terminal 112. As illustrated in FIG. 2, N-channel junction type FET is, when V GS is 0 turned, V GS is turned off when sufficiently smaller than 0 (V GS ≦ V P) . Here, the voltage drop V DS by N-channel junction form FET133 when N-channel Junction Type FET133 is turned on is assumed to be smaller than the forward voltage drop V F1 of the positive side diodes D 1. Such a design is realized, for example, by setting the pull-down resistor R 6 in FIG. 1 to a resistance value sufficiently larger than the ON resistance of the N-channel junction FET 133.

正側ダイオードDは、アノードが電源入力端子111に接続され、カソードがオペアンプ118の正側電源端子(すなわち出力用差動増幅器115の正側電源端子)に接続される。第1定電流回路131は、正側ダイオードDのカソードと第2接地端子112との間に設けられる。好ましくは第1定電流回路131に流れる電流量は可変調整自在とする。正側ダイオードDの順方向電圧降下VF1により、オペアンプ118の正側電源端子に供給される電圧は電源入力端子111の電圧(すなわち定電圧源125の電圧VCC)よりも小さくなる。 The positive diode D 1 has an anode connected to the power input terminal 111 and a cathode connected to the positive power terminal of the operational amplifier 118 (that is, the positive power terminal of the output differential amplifier 115). The first constant current circuit 131 is provided between the cathode of the positive diode D 1 and the second ground terminal 112. Preferably, the amount of current flowing through the first constant current circuit 131 is variably adjustable. The forward voltage drop V F1 of the positive-side diodes D 1, the voltage supplied to the positive power supply terminal of the operational amplifier 118 is smaller than the voltage of the power supply input terminal 111 (that is, the voltage V CC of the constant voltage source 125).

負側ダイオードDは、アノードがオペアンプ118の負側電源端子(すなわち出力用差動増幅器115の負側電源端子)に接続され、カソードが第2接地端子112に接続される。第2定電流回路132は、電源入力端子111と負側ダイオードDのアノードとの間に設けられる。好ましくは第2定電流回路132に流れる電流量は可変調整自在とする。負側ダイオードDの順方向電圧降下VF2により、オペアンプ118の負側電源端子に供給される電圧は第2接地端子112の電圧(すなわち接地電位)よりも大きくなる。 The negative diode D 2 has an anode connected to the negative power supply terminal of the operational amplifier 118 (that is, the negative power supply terminal of the output differential amplifier 115) and a cathode connected to the second ground terminal 112. The second constant current circuit 132 is provided between the anode power supply terminal 111 and the negative-side diode D 2. Preferably, the amount of current flowing through the second constant current circuit 132 is variably adjustable. The forward voltage drop V F2 of the negative-side diode D 2, the voltage supplied to the negative power supply terminal of the operational amplifier 118 is greater than the voltage of the second ground terminal 112 (i.e., ground potential).

正側ダイオードD及び負側ダイオードDとしては、例えばショットキーバリアダイオードが用いられる。図3にショットキーバリアダイオードの順方向電流対順方向電圧特性(VF−IF特性)を例示する。順方向電流IFが増加すると順方向電圧VFは大きくなり、また、同じ順方向電流IFであれば低温では順方向電圧VFは大、高温では順方向電圧VFは小となる。この例では、順方向電流IFを0.01Aとすれば、−30℃〜80℃の温度範囲において順方向電圧VFが0.45V〜0.2Vとなる。本実施の形態では例示的にこの範囲で正側ダイオードD及び負側ダイオードDを駆動する。 The positive diode D 1 and the negative-side diode D 2, for example a Schottky barrier diode is used. It illustrates the forward current versus forward voltage characteristics of the Schottky barrier diode (V F -I F characteristics) in FIG. Forward current I F is the forward voltage V F Increasing becomes large, the forward voltage V F at low temperature if the same forward current I F is large, the forward voltage V F at high temperatures is small. In this example, if the forward current I F and 0.01 A, the forward voltage V F in a temperature range from -30 ° C. to 80 ° C. the 0.45V~0.2V. In this embodiment drives the positive side diodes D 1 and the negative-side diode D 2 in an illustrative manner this range.

図4は、図1に示される第1定電流回路131及び第2定電流回路132の具体的構成例を示す回路図である。第1定電流回路131は、第1ツェナーダイオードDZ1と、抵抗RZ1と、第1トランジスタQD1(PNP形)と、第1抵抗R11とを有する。抵抗RZ1は、第1ツェナーダイオードDZ1に流れる電流を制限する。第1ツェナーダイオードDZ1の両端の電圧は一定であり、第1トランジスタQD1のベース・エミッタ間電圧も一定(シリコントランジスタの場合は約0.6V)であるから、電源電圧VCCが変動しても第1抵抗R11両端の電圧は一定となって定電流が流れる。第1抵抗R11の抵抗値を可変調整自在とすれば、第1定電流回路131に流れる電流量が可変調整自在となる。第2定電流回路132は、第2ツェナーダイオードDZ2と、抵抗RZ2と、第2トランジスタQD2(NPN形)と、第2抵抗R22とを有する。第2定電流回路132についても第1定電流回路131と同様のことがいえる。なお、オペアンプ118に流れる電流は第1定電流回路131及び第2定電流回路132に流れる電流と比較して無視できる程度に小さいので、正側ダイオードD及び負側ダイオードDに流れる電流は、第1定電流回路131及び第2定電流回路132に流れる電流とほぼ一致する。図1に戻る。 FIG. 4 is a circuit diagram showing a specific configuration example of the first constant current circuit 131 and the second constant current circuit 132 shown in FIG. The first constant current circuit 131 includes a first Zener diode D Z1 , a resistor R Z1 , a first transistor Q D1 (PNP type), and a first resistor R 11 . The resistor R Z1 limits the current flowing through the first Zener diode D Z1 . Since the voltage across the first Zener diode D Z1 is constant and the base-emitter voltage of the first transistor Q D1 is also constant (about 0.6 V in the case of a silicon transistor), the power supply voltage V CC varies. first voltage across the resistor R 11 ends also a constant current flows is constant. If the resistance value of the first resistor R 11 is variably adjustable, the amount of current flowing through the first constant current circuit 131 can be variably adjusted. The second constant current circuit 132 includes a second Zener diode D Z2 , a resistor R Z2 , a second transistor Q D2 (NPN type), and a second resistor R 22 . The same can be said for the second constant current circuit 132 as for the first constant current circuit 131. Since the current flowing through the operational amplifier 118 is negligibly small compared to the current flowing through the first constant current circuit 131 and the second constant current circuit 132, the current flowing through the positive-side diodes D 1 and the negative-side diode D 2 is The currents flowing through the first constant current circuit 131 and the second constant current circuit 132 substantially coincide with each other. Returning to FIG.

電流検出部114において、ホール素子116は等価的に4つの抵抗のブリッジ接続で表され、端子a,b間に一定のホール素子駆動電流を流しておくことにより出力端子c,d間にホール素子116に印加された磁界に比例した(換言すれば被測定電流Iinに比例した)電圧を得る構成としている。ホール素子116の出力端子c,dは、負帰還用差動増幅器117の入力端子にそれぞれ接続される。負帰還用差動増幅器117の出力端子と基準電圧源119(約2.5Vの基準電圧Vrefを出力)の出力端子とを接続する経路に負帰還用コイルLFBと検出抵抗Rとが直列接続される。検出抵抗Rの両端は出力用差動増幅器115の入力端子にそれぞれ接続され、出力用差動増幅器115の出力端子がセンサ出力端子113に接続される。なお、検出抵抗Rは負帰還用コイルLFBへの供給電流を電圧に変換するための微小抵抗であり、その抵抗値は出力用差動増幅器115の入力インピーダンスよりも十分小さいものとする。 In the current detection unit 114, the Hall element 116 is equivalently represented by a bridge connection of four resistors, and a constant Hall element drive current is allowed to flow between the terminals a and b so that the Hall element is connected between the output terminals c and d. A voltage proportional to the magnetic field applied to 116 (in other words, proportional to the measured current I in ) is obtained. The output terminals c and d of the Hall element 116 are connected to the input terminal of the negative feedback differential amplifier 117, respectively. A negative feedback coil L FB and a detection resistor R S are connected to a path connecting the output terminal of the negative feedback differential amplifier 117 and the output terminal of the reference voltage source 119 (outputs a reference voltage V ref of about 2.5 V). Connected in series. Both ends of the detection resistor RS are connected to the input terminal of the output differential amplifier 115, and the output terminal of the output differential amplifier 115 is connected to the sensor output terminal 113. The detection resistor R S is a very small resistor for converting the current supplied to the negative feedback coil L FB into a voltage, and its resistance value is sufficiently smaller than the input impedance of the output differential amplifier 115.

ホール素子116の出力電圧は負帰還用差動増幅器117に入力される。負帰還用差動増幅器117は、出力端子から電流を吸い込む又は吐き出すことにより、端子c、d間の電位差が常にゼロとなるように、すなわちホール素子116の感磁面において上述の第1の磁界と第2の磁界とが相殺するように、負帰還用コイルLFBに負帰還電流IFBを供給する(図中、IFBの向きは被測定電流Iinが正の場合)。ここで、例えば負帰還用コイルLFBの巻き数を4,000ターン、被測定電流Iinを200Aとすれば、「等アンペアターンの原理」より負帰還電流IFB=200/4,000=0.05Aとなる。負帰還電流IFBは、検出抵抗Rによって検出電圧Vに変換され、検出電圧Vは出力用差動増幅器115によって増幅されてセンサ出力端子16から出力される。検出電圧Vは、−IFB×Rであり、例えば検出抵抗Rを4Ωとすれば、検出電圧Vは−0.05A×4Ω=−0.2Vである。 The output voltage of the Hall element 116 is input to the negative feedback differential amplifier 117. The negative feedback differential amplifier 117 sucks or discharges current from the output terminal so that the potential difference between the terminals c and d is always zero, that is, the first magnetic field described above on the magnetic sensitive surface of the Hall element 116. The negative feedback current I FB is supplied to the negative feedback coil L FB so that the second magnetic field and the second magnetic field cancel each other (in the figure, the direction of I FB is when the measured current I in is positive). Here, for example, if the number of turns of the negative feedback coil L FB is 4,000 turns and the measured current I in is 200 A, the negative feedback current I FB = 200 / 4,000 = It becomes 0.05A. Negative feedback current I FB is converted to a detected voltage V S by the detection resistor R S, the detected voltage V S is output after being amplified by the output differential amplifier 115 from the sensor output terminal 16. The detection voltage V S is −I FB × R S. For example, if the detection resistance R S is 4Ω, the detection voltage V S is −0.05 A × 4Ω = −0.2V.

出力用差動増幅器115の抵抗R〜Rは、抵抗値がR=R、R=Rであり、出力用差動増幅器115の増幅度はR/R(=R/R)である。増幅度は例えば10程度とする。出力用差動増幅器115の出力電圧V(すなわち電流センサ110の出力電圧)は
=−(R/R)V+Vref[V] (式1) ただし、Vrefは約2.5V
被測定電流Iinを使って表せば出力電圧V
=−(R/R)×(−Iin/4000)×R+Vref[V]
=−10×(−Iin/4000)×4Ω+2.5V[V]
=Iin/100+2.5V[V] (式2)
となる。
The resistors R 1 to R 4 of the output differential amplifier 115 have resistance values R 1 = R 2 and R 3 = R 4 , and the amplification degree of the output differential amplifier 115 is R 3 / R 1 (= R 4 / R 2 ). The amplification degree is about 10, for example. The output voltage V O of the output differential amplifier 115 (that is, the output voltage of the current sensor 110) is V O = − (R 3 / R 1 ) V S + V ref [V] (Equation 1) where V ref is about 2 .5V
When expressed using the measured current I in , the output voltage V O is V O = − (R 3 / R 1 ) × (−I in / 4000) × R S + V ref [V]
= −10 × (−I in /4000)×4Ω+2.5V [V]
= I in /100+2.5V[V] (Equation 2)
It becomes.

図5は、図1の出力用差動増幅器115の出力電圧V(すなわち電流センサ110の出力電圧)と被測定電流Iinとの関係を示す例示的な出力特性図である。以下、5つのケースに分けて説明する。 FIG. 5 is an exemplary output characteristic diagram showing a relationship between the output voltage V O of the output differential amplifier 115 of FIG. 1 (that is, the output voltage of the current sensor 110) and the measured current I in . Hereinafter, the description will be divided into five cases.

・ケース1:正常動作時
被測定電流Iinの−200A〜+200A(定格電流)のレンジに対して出力電圧Vが0.5V〜4.5Vの範囲で直線的に変化する。このとき、バイアス抵抗Rにおける電圧降下によりNチャンネル接合形FET133のVGSは0より十分小さいので、Nチャンネル接合形FET133はオフである。
Case 1: the output voltage V O varies linearly in the range of 0.5V~4.5V relative range -200A~ + 200A (rated current) of the normal operation current to be measured I in. At this time, the V GS of the N-channel junction FET 133 is sufficiently smaller than 0 due to the voltage drop in the bias resistor R 5, so the N-channel junction FET 133 is off.

・ケース2:過電流時
最近のオペアンプは、レール・トゥー・レール特性により、出力電圧は電源電圧のほぼ一杯まで、すなわち0V〜5Vにほぼ近い範囲(例えば0.05V〜4.95V)でスウィングする。このため、被測定電流Iinが200Aを超えるレンジでは出力電圧Vは4.5Vより大きくなる。ただし、本実施の形態では上述のとおり正側ダイオードDの順方向電圧降下VF1によりオペアンプ118の正側電源端子に供給される電圧が電源入力端子111の電圧(+5V)よりも0.2V〜0.45V程度小さくなるので、出力電圧Vの上限は4.55V〜4.8Vとなる。同様に、被測定電流Iinが−200Aを下回るレンジでは出力電圧Vは0.5V未満となるものの、本実施の形態では上述のとおり負側ダイオードDの順方向電圧降下VF2によりオペアンプ118の負側電源端子に供給される電圧は第2接地端子112の電圧(すなわち接地電位)よりも0.2V〜0.45V程度大きくなっているので、出力電圧Vの下限は0.2V〜0.45Vとなる。このとき、ケース1と同様にNチャンネル接合形FET133はオフである。
・ Case 2: Overcurrent Due to the rail-to-rail characteristics of recent op amps, the output voltage swings to almost full power supply voltage, that is, in a range close to 0V to 5V (eg 0.05V to 4.95V). To do. For this reason, the output voltage V O becomes larger than 4.5 V in the range where the measured current I in exceeds 200 A. However, 0.2V than the voltage of the positive-side power source terminal voltage supplied to the power input terminal 111 of the forward voltage drop V F1 operational amplifier 118 of the above as the positive side diode D 1 in the present embodiment (+ 5V) Since it becomes about 0.45 V smaller, the upper limit of the output voltage V O is 4.55 V to 4.8 V. Similarly, in the range where the measured current I in is less than −200 A, the output voltage V O is less than 0.5 V. However, in this embodiment, the operational amplifier is operated by the forward voltage drop V F2 of the negative diode D 2 as described above. Since the voltage supplied to the negative power supply terminal 118 is about 0.2 V to 0.45 V higher than the voltage of the second ground terminal 112 (that is, the ground potential), the lower limit of the output voltage V O is 0.2 V. ~ 0.45V. At this time, like the case 1, the N-channel junction FET 133 is off.

・ケース3:接地端子間の断線時
第1接地端子122と第2接地端子112との間が断線すると(SW1がオフした場合に相当)、電流センサ110は非アクティブとなる。また、バイアス抵抗Rに電流が流れなくなってNチャンネル接合形FET133のVGSは0となり、Nチャンネル接合形FET133はオンとなる。したがって、被測定電流Iinに関わらず出力電圧Vは定電圧源125の電圧(5V)に極めて近くなる。ただし、Nチャンネル接合形FET133のオン抵抗による電圧降下があるので、出力電圧Vは定電圧源125の電圧(5V)に厳密には一致せず、例えば4.9V程度となる。
Case 3: When the ground terminal is disconnected When the first ground terminal 122 and the second ground terminal 112 are disconnected (corresponding to the case where SW1 is turned off), the current sensor 110 becomes inactive. Also, no current flows through the bias resistor R 5 , so that V GS of the N-channel junction FET 133 becomes 0, and the N-channel junction FET 133 is turned on. Therefore, the output voltage V O is very close to the voltage (5 V) of the constant voltage source 125 regardless of the current I in to be measured. However, since there is a voltage drop due to the ON resistance of the N-channel junction FET 133, the output voltage V O does not exactly match the voltage (5V) of the constant voltage source 125, and is about 4.9V, for example.

・ケース4:電源端子間の断線時
電源供給端子121と電源入力端子111との間が断線すると(SW3がオフした場合に相当)、電流センサ110は非アクティブとなってプルダウン抵抗Rに電流は流れない。したがって、出力電圧Vは接地電位(0V)となる。
Case 4: (corresponds to a case where the SW3 is turned off) between the disconnection power supply terminal 121 and the power input terminal 111 between the power supply terminals when disconnected, the current current sensor 110 becomes inactive pull-down resistor R 6 Does not flow. Therefore, the output voltage V O becomes the ground potential (0 V).

・ケース5:センサ出力端子の断線時
検出電圧入力端子123とセンサ出力端子113との間が断線すると(SW2がオフした場合に相当)、出力電圧Vは電子制御ユニット120側に伝達されない。なお、このとき検出電圧入力端子123は接地電位(0V)となる。
Case 5: When the sensor output terminal is disconnected If the detection voltage input terminal 123 and the sensor output terminal 113 are disconnected (corresponding to the case where SW2 is turned off), the output voltage VO is not transmitted to the electronic control unit 120 side. At this time, the detection voltage input terminal 123 is at the ground potential (0 V).

断線検知部126に入力される電圧は、上記ケース1〜4ではセンサ出力端子113の電圧と一致し、ケース5ではセンサ出力端子113の電圧に関わらず接地電位(0V)となる。以下、断線検知部126の機能を説明する。   The voltage input to the disconnection detection unit 126 matches the voltage of the sensor output terminal 113 in the above cases 1 to 4, and becomes the ground potential (0 V) in the case 5 regardless of the voltage of the sensor output terminal 113. Hereinafter, the function of the disconnection detection unit 126 will be described.

・機能1:接地端子間の断線検知
出力用差動増幅器115の正側電源端子に供給される電圧(例えば4.55V〜4.8V)よりも大きな電圧が入力されたとき、断線検知部126は第1接地端子122と第2接地端子112との間が断線した(ケース3)と検知する。
Function 1: Disconnection Detection Between Ground Terminals When a voltage larger than a voltage (for example, 4.55 V to 4.8 V) supplied to the positive power supply terminal of the output differential amplifier 115 is input, the disconnection detection unit 126 Detects that the first ground terminal 122 and the second ground terminal 112 are disconnected (case 3).

・機能2:他の断線検知
検出電圧入力端子123の電圧が接地電位(0V)となったとき、断線検知部126は電源供給端子121と電源入力端子111との間が断線した(ケース4)又は検出電圧入力端子123とセンサ出力端子113との間が断線した(ケース5)と検知する。
Function 2: Other disconnection detection When the voltage of the detection voltage input terminal 123 becomes the ground potential (0 V), the disconnection detection unit 126 disconnects between the power supply terminal 121 and the power input terminal 111 (case 4). Alternatively, it is detected that the detection voltage input terminal 123 and the sensor output terminal 113 are disconnected (case 5).

・機能3:正方向の過電流検知
定格出力電圧の最大値(例えば4.5V)よりも大きくかつ出力用差動増幅器115の正側電源端子に供給される電圧(例えば4.55V〜4.8V)よりも小さな電圧が入力されたとき、断線検知部126は被測定電流Iinが正方向(例えばバッテリーの放電方向)に過電流である(ケース2)と検知する。
Function 3: Positive overcurrent detection Voltage that is larger than the maximum value of the rated output voltage (for example, 4.5 V) and supplied to the positive power supply terminal of the output differential amplifier 115 (for example, 4.55 V to 4.V). When a voltage smaller than 8V) is input, the disconnection detection unit 126 detects that the measured current Iin is an overcurrent in the positive direction (for example, the battery discharge direction) (Case 2).

・機能4:負方向の過電流検知
定格出力電圧の最小値(例えば0.5V)よりも小さくかつ出力用差動増幅器115の負側電源端子に供給される電圧(例えば0.2V〜0.45V)よりも大きな電圧が入力されたとき、断線検知部126は被測定電流Iinが負方向(例えばバッテリーの充電方向)過電流である(ケース2)と検知する。
Function 4: Negative-direction overcurrent detection Voltage that is smaller than the minimum value of the rated output voltage (for example, 0.5 V) and that is supplied to the negative power supply terminal of the output differential amplifier 115 (for example, 0.2 V to. When a voltage greater than 45V is input, the disconnection detection unit 126 detects that the measured current Iin is an overcurrent in the negative direction (for example, the charging direction of the battery) (case 2).

なお、異常を検知したときは断線検知部126は所定の表示や音声等で出力し、これにより使用者は異常を知ることができる。断線検知部126は好ましくは機能1〜3のいずれが働いたのかが分かるように区別して出力する。   When an abnormality is detected, the disconnection detection unit 126 outputs a predetermined display, voice, or the like, so that the user can know the abnormality. The disconnection detection unit 126 preferably outputs the distinction so that it can be understood which of the functions 1 to 3 has worked.

本実施の形態によれば、下記の効果を奏することができる。   According to the present embodiment, the following effects can be achieved.

(1) 第1接地端子122と第2接地端子112との間が断線したとき、Nチャンネル接合形FET133はオンとなり、被測定電流Iinに関わらず出力電圧Vは定電圧源125の電圧に極めて近くなる。このため、被測定電流Iinが流れている時に断線異常を検知することができる。したがって、特許文献1の装置のように被測定電流の停止時にコイルに検査電流を流す場合と比較して、例えばハイブリッドカーの運転中や工作機械の動作中には断線を検知することができる等のメリットがある。 (1) When the first ground terminal 122 and the second ground terminal 112 are disconnected, the N-channel junction FET 133 is turned on, and the output voltage V O is the voltage of the constant voltage source 125 regardless of the measured current I in. Very close to. For this reason, it is possible to detect a disconnection abnormality when the measured current I in is flowing. Therefore, as compared with the case where the inspection current is supplied to the coil when the current to be measured is stopped as in the apparatus of Patent Document 1, for example, disconnection can be detected during operation of the hybrid car or operation of the machine tool. There are benefits.

(2) 正側ダイオードDの順方向電圧降下VF1によりオペアンプ118の正側電源端子に供給される電圧は電源入力端子111の電圧(定電圧源125の電圧)よりも小さくなる。このため、被測定電流Iinが正方向に過電流のときも出力電圧Vの上限は定電圧源125の電圧よりも小さく、第1接地端子122と第2接地端子112との間が断線したときの出力電圧V(定電圧源125の電圧に極めて近い)と異なる。したがって、第1接地端子122と第2接地端子112との間の断線異常と被測定電流Iinの過電流異常とを区別して検知することが可能となる。 (2) it is smaller than the positive diode voltage supplied to the positive power supply terminal of the D 1 of the forward voltage drop V F1 operational amplifier 118 the voltage of the power supply input terminal 111 (the voltage of the constant voltage source 125). Therefore, even when the measured current I in is an overcurrent in the positive direction, the upper limit of the output voltage V O is smaller than the voltage of the constant voltage source 125, and the first ground terminal 122 and the second ground terminal 112 are disconnected. Output voltage V O (which is very close to the voltage of the constant voltage source 125). Therefore, it is possible to detect and distinguish disconnection abnormality and the overcurrent abnormality of the measured current I in between the first ground terminal 122 and the second ground terminal 112.

(3) 負側ダイオードDの順方向電圧降下VF2により、オペアンプ118の負側電源端子に供給される電圧は第2接地端子112の電圧(接地電位)よりも大きくなる。このため、被測定電流Iinが負方向に過電流のときも出力電圧Vの下限は接地電位よりも大きく、断線検知部126は電源供給端子121と電源入力端子111との間が断線したとき又は検出電圧入力端子123とセンサ出力端子113との間が断線したときの出力電圧V(接地電位に一致)と異なる。したがって、それらの断線異常と被測定電流Iinの過電流異常とを区別して検知することが容易となる。 (3) by a forward voltage drop V F2 of the negative-side diode D 2, the voltage supplied to the negative power supply terminal of the operational amplifier 118 is greater than the voltage of the second ground terminal 112 (ground potential). For this reason, even when the measured current I in is an overcurrent in the negative direction, the lower limit of the output voltage V O is larger than the ground potential, and the disconnection detector 126 disconnects between the power supply terminal 121 and the power input terminal 111. Or the output voltage V O (corresponding to the ground potential) when the detection voltage input terminal 123 and the sensor output terminal 113 are disconnected. Therefore, it is easy to detect by distinguishing an over-current abnormality and their disconnection abnormality and the measured current I in.

(4) 第1定電流回路131及び第2定電流回路132に流れる電流量を可変調整自在とした場合、正側ダイオードDの順方向電圧降下VF1と負側ダイオードDの順方向電圧降下VF2を所望値に決定できる。したがって、上述のとおりNチャンネル接合形FET133がオンしたときのNチャンネル接合形FET133による電圧降下VDSを正側ダイオードDの順方向電圧降下VF1よりも小さくする設計の観点から、正側ダイオードDの順方向電圧降下VF1を大きめしておく等の柔軟性が得られる。また、電流センサ110の取付対象や定格電圧の範囲に応じて正側ダイオードDの順方向電圧降下VF1と負側ダイオードDの順方向電圧降下VF2を変更することも可能なため、汎用性も高いといえる。 (4) When the amount of current flowing through the first constant current circuit 131 and the second constant current circuit 132 is variably adjustable, the forward voltage drop V F1 of the positive diode D 1 and the forward voltage of the negative diode D 2 The drop V F2 can be determined to a desired value. Therefore, from the viewpoint of the design in which the voltage drop V DS due to the N-channel junction FET 133 when the N-channel junction FET 133 is turned on as described above is smaller than the forward voltage drop V F1 of the positive-side diode D 1 , the positive-side diode Flexibility such as increasing the forward voltage drop V F1 of D 1 is obtained. Further, since also possible to change the forward voltage drop V F2 of the order of the positive side diodes D 1 direction voltage drop V F1 and the negative-side diode D 2 in accordance with the scope of the attached object and the rated voltage of the current sensor 110, It can be said that versatility is also high.

(第2の実施の形態)
図6は、本発明の第2の実施の形態に係る断線検知システム200の例示的な構成図である。本実施の形態の断線検知システム200は、第1の実施の形態の断線検知システム100と比較して、第1定電流回路131が正側抵抗RD1に変わった点と、第2定電流回路132が負側抵抗RD2に変わった点で相違し、その他の点で一致している。この場合も、定電流回路ほど精度は良くないものの、正側ダイオードD及び負側ダイオードDにほぼ一定の電流を供給することができる。正側抵抗RD1及び負側抵抗RD2の抵抗値は好ましくは可変調整自在とする。本実施の形態も、第1の実施の形態と同様の効果を奏することができる。
(Second Embodiment)
FIG. 6 is an exemplary configuration diagram of a disconnection detection system 200 according to the second embodiment of the present invention. The disconnection detection system 200 of the present embodiment is different from the disconnection detection system 100 of the first embodiment in that the first constant current circuit 131 is changed to the positive resistance R D1 and the second constant current circuit. The difference is that 132 is changed to the negative resistance R D2 , and the other points are the same. Again, although the more constant current circuit accuracy is not good, it is possible to supply a substantially constant current to the positive side diodes D 1 and the negative-side diode D 2. The resistance values of the positive resistance R D1 and the negative resistance R D2 are preferably variably adjustable. This embodiment can also achieve the same effects as those of the first embodiment.

(第3の実施の形態)
図7は、本発明の第3の実施の形態に係る断線検知システム300の例示的な構成図である。本実施の形態の断線検知システム300は、第1の実施の形態の断線検知システム100と比較して、Nチャンネル接合形FET133がPチャンネル接合形FET333に変わってセンサ出力端子113と第2接地端子112との間に設けられている点と、Pチャンネル接合形FET333のゲートが電源入力端子111とバイアス抵抗Rとの接続点に接続されている点と、抵抗R(第1の実施の形態ではプルダウン抵抗)が電源供給端子121と検出電圧入力端子123との間に接続されてプルアップ抵抗となっている点で相違し、その他の点で一致している。Pチャンネル接合形FET333がオンしたときのPチャンネル接合形FET333による電圧降下VDSは負側ダイオードDの順方向電圧降下VF2よりも小さいものとする。
(Third embodiment)
FIG. 7 is an exemplary configuration diagram of a disconnection detection system 300 according to the third embodiment of the present invention. The disconnection detection system 300 of this embodiment is different from the disconnection detection system 100 of the first embodiment in that the N-channel junction FET 133 is changed to a P-channel junction FET 333 and the sensor output terminal 113 and the second ground terminal. and that provided between the 112, and that it is connected to the connection point between the power supply input terminal 111 and the bias resistor R 5 gates of P channel junction forms FET 333, resistor R 6 (in the first embodiment The embodiment is different in that the pull-down resistor is connected between the power supply terminal 121 and the detection voltage input terminal 123 to form a pull-up resistor, and the other points are the same. Voltage drop due to P-channel junction form FET333 when P channel junction forms FET333 is turned V DS is set to be smaller than the forward voltage drop V F2 of the negative-side diode D 2.

図8は、図7の出力用差動増幅器115の出力電圧V(すなわち電流センサ110の出力電圧)と被測定電流Iinとの関係を示す例示的な出力特性図である。以下、第1の実施の形態と異なる点を中心に説明する。 FIG. 8 is an exemplary output characteristic diagram showing a relationship between the output voltage V O of the output differential amplifier 115 of FIG. 7 (that is, the output voltage of the current sensor 110) and the measured current I in . The following description will focus on differences from the first embodiment.

第1接地端子122と第2接地端子112との間が断線すると(SW1がオフした場合に相当)、電流センサ110は非アクティブとなってプルアップ抵抗Rに電流は流れない。したがって、出力電圧Vは定電圧源125の電圧(5V)となる。 If the first ground terminal 122 is between the second ground terminal 112 disconnected (corresponding to the case where SW1 is turned off), the current sensor 110 no current flows in the pull-up resistor R 6 becomes inactive. Therefore, the output voltage V O becomes the voltage (5 V) of the constant voltage source 125.

電源供給端子121と電源入力端子111との間が断線すると(SW3がオフした場合に相当)、電流センサ110は非アクティブとなる。また、バイアス抵抗Rに電流が流れなくなってPチャンネル接合形FET333のVGSは0となり、Pチャンネル接合形FET333はオンとなる。したがって、被測定電流Iinに関わらず出力電圧Vは接地電位(0V)に極めて近くなる。ただし、Pチャンネル接合形FET333のオン抵抗による電圧降下があるので、出力電圧Vは接地電位(0V)に厳密には一致せず、例えば0.1V程度となる。 When the power supply terminal 121 and the power input terminal 111 are disconnected (corresponding to the case where SW3 is turned off), the current sensor 110 becomes inactive. Also, no current flows through the bias resistor R 5 , the V GS of the P-channel junction FET 333 becomes 0, and the P-channel junction FET 333 is turned on. Therefore, the output voltage V O is very close to the ground potential (0 V) regardless of the current I in to be measured. However, since there is a voltage drop due to the ON resistance of the P-channel junction FET 333, the output voltage V O does not exactly match the ground potential (0V), and is about 0.1V, for example.

検出電圧入力端子123とセンサ出力端子113との間が断線すると(SW2がオフした場合に相当)、出力電圧Vは電子制御ユニット120側に伝達されない。なお、このとき検出電圧入力端子123は定電圧源125の電圧(5V)となる。 When the detection voltage input terminal 123 and the sensor output terminal 113 are disconnected (corresponding to the case where SW2 is turned off), the output voltage V O is not transmitted to the electronic control unit 120 side. At this time, the detection voltage input terminal 123 becomes the voltage (5 V) of the constant voltage source 125.

以下、断線検知部126の機能を説明する。   Hereinafter, the function of the disconnection detection unit 126 will be described.

・機能1:電源端子間の断線検知
出力用差動増幅器115の負側電源端子に供給される電圧(例えば0.2V〜0.45V)よりも小さな電圧が入力されたとき、断線検知部126は電源供給端子121と電源入力端子111との間が断線したと検知する。
Function 1: Disconnection Detection Between Power Supply Terminals When a voltage smaller than a voltage (for example, 0.2 V to 0.45 V) supplied to the negative power supply terminal of the output differential amplifier 115 is input, the disconnection detection unit 126 Detects that the power supply terminal 121 and the power input terminal 111 are disconnected.

・機能2:他の断線検知
検出電圧入力端子123の電圧が定電圧源125の電圧(5V)となったとき、断線検知部126は第1接地端子122と第2接地端子112との間が断線した又は検出電圧入力端子123とセンサ出力端子113との間が断線したと検知する。
Function 2: Other disconnection detection When the voltage of the detection voltage input terminal 123 becomes the voltage (5 V) of the constant voltage source 125, the disconnection detection unit 126 is connected between the first ground terminal 122 and the second ground terminal 112. It is detected that the circuit is disconnected or that the detection voltage input terminal 123 and the sensor output terminal 113 are disconnected.

・機能3:正方向の過電流検知
定格出力電圧の最大値(例えば4.5V)よりも大きくかつ出力用差動増幅器115の正側電源端子に供給される電圧(例えば4.55V〜4.8V)よりも小さな電圧が入力されたとき、断線検知部126は被測定電流Iinが正方向(例えばバッテリーの放電方向)に過電流であると検知する。
Function 3: Positive overcurrent detection Voltage that is larger than the maximum value of the rated output voltage (for example, 4.5 V) and supplied to the positive power supply terminal of the output differential amplifier 115 (for example, 4.55 V to 4.V). When a voltage smaller than 8V) is input, the disconnection detection unit 126 detects that the measured current Iin is an overcurrent in the positive direction (for example, the discharge direction of the battery).

・機能4:負方向の過電流検知
定格出力電圧の最小値(例えば0.5V)よりも小さくかつ出力用差動増幅器115の負側電源端子に供給される電圧(例えば0.2V〜0.45V)よりも大きな電圧が入力されたとき、断線検知部126は被測定電流Iinが負方向(例えばバッテリーの充電方向)過電流であると検知する。
Function 4: Negative-direction overcurrent detection Voltage that is smaller than the minimum value of the rated output voltage (for example, 0.5 V) and that is supplied to the negative power supply terminal of the output differential amplifier 115 (for example, 0.2 V to. When a voltage greater than 45V) is input, the disconnection detection unit 126 detects that the measured current Iin is an overcurrent in the negative direction (for example, the charging direction of the battery).

本実施の形態も、第1の実施の形態と同様の効果を奏することができる。なお、本実施の形態においても、第2の実施の形態のように定電流回路に替えて抵抗を用いることも可能であり、その場合も同様の効果を奏することができる。   This embodiment can also achieve the same effects as those of the first embodiment. Also in this embodiment, it is possible to use a resistor instead of the constant current circuit as in the second embodiment, and in this case, the same effect can be obtained.

以上、実施の形態を例に本発明を説明したが、実施の形態の各構成要素には請求項に記載の範囲で種々の変形が可能であることは当業者に理解されるところである。以下、変形例について触れる。   The present invention has been described above by taking the embodiment as an example. However, it will be understood by those skilled in the art that various modifications can be made to each component of the embodiment within the scope of the claims. Hereinafter, modifications will be described.

各実施の形態においては電源側降圧手段及び接地側降圧手段がダイオードである場合を説明したが、変形例ではダイオードに替えてトランジスタを用いてもよい。この場合の回路例を図9に示す。正側トランジスタQ(PNP形)は、電源入力端子111→エミッタ→ベース→抵抗RQ1→第2接地端子112の経路で電流が流れてバイアスされ(オン状態となり)、例えばVCE1=0.2Vとなる。同様に負側トランジスタQ(NPN形)は、電源入力端子111→抵抗RQ2→ベース→エミッタ→第2接地端子112の経路で電流が流れてバイアスされ(オン状態となり)、例えばVCE2=0.2Vとなる。 In each embodiment, the case where the power supply side step-down unit and the ground side step-down unit are diodes has been described. However, in the modification, a transistor may be used instead of the diode. A circuit example in this case is shown in FIG. The positive side transistor Q 1 (PNP type) is biased by the current flowing through the path of the power input terminal 111 → emitter → base → resistor R Q1second ground terminal 112, for example, V CE1 = 0. 2V. Similarly, the negative side transistor Q 2 (NPN type) is biased (turned on) by current flowing through the path of the power input terminal 111 → resistor R Q2 → base → emitter → second ground terminal 112, for example, V CE2 = 0.2V.

各実施の形態においては電源側降圧手段及び接地側降圧手段の双方を設けたが、変形例ではいずれか一方のみを設けてもよい。この場合、第1及び第2の実施の形態では電源側降圧手段のみを設け、第3の実施の形態の構成では接地側降圧手段のみを設けるとよい。これは、第1及び第2の実施の形態では第1接地端子122と第2接地端子112との間の断線異常を過電流異常と明確に区別するためであり、第3の実施の形態では電源供給端子121と電源入力端子111との間の断線異常を過電流異常と明確に区別するためである。   In each embodiment, both the power supply side step-down means and the ground side step-down means are provided, but in the modification, only one of them may be provided. In this case, it is preferable to provide only the power supply side step-down means in the first and second embodiments, and to provide only the ground side step-down means in the configuration of the third embodiment. This is because in the first and second embodiments, the disconnection abnormality between the first ground terminal 122 and the second ground terminal 112 is clearly distinguished from the overcurrent abnormality. In the third embodiment, This is to clearly distinguish a disconnection abnormality between the power supply terminal 121 and the power input terminal 111 from an overcurrent abnormality.

各実施の形態においては過電流異常と断線異常とを明確に区別するために電源側降圧手段及び接地側降圧手段を設けたが、それらの区別が不要な場合や過電流異常を考慮する必要がない場合等には電源側降圧手段及び接地側降圧手段を省略して回路構成を簡略化してもよい。   In each embodiment, the power supply side step-down means and the ground side step-down means are provided in order to clearly distinguish between overcurrent abnormality and disconnection abnormality, but it is necessary to consider overcurrent abnormality when it is not necessary to distinguish between them. If not, the circuit configuration may be simplified by omitting the power supply side step-down means and the ground side step-down means.

各実施の形態においては電流センサが磁気平衡式である場合を説明したが、変形例では電流センサを図10(A)に例示の磁気比例式としてもよい。この場合、図1及び図7の電流センサ110において負帰還用差動増幅器117と負帰還用コイルLFB、検出抵抗Rが不要となり、ホール素子116の出力電圧を検出電圧Vとして直接出力用差動増幅器115に入力すればよい。 In each embodiment, the case where the current sensor is a magnetic balance type has been described. However, in the modification, the current sensor may be a magnetic proportional type illustrated in FIG. In this case, in the current sensor 110 of FIGS. 1 and 7, the negative feedback differential amplifier 117, the negative feedback coil L FB , and the detection resistor RS are not required, and the output voltage of the Hall element 116 is directly output as the detection voltage V S. What is necessary is just to input to the differential amplifier 115.

本発明の第1の実施の形態に係る断線検知システムの例示的な構成図。1 is an exemplary configuration diagram of a disconnection detection system according to a first embodiment of the present invention. Nチャンネル接合形FETの例示的な伝達特性図。FIG. 4 is an exemplary transfer characteristic diagram of an N-channel junction FET. ショットキーバリアダイオードの例示的な順方向電流対順方向電圧特性図。FIG. 4 is an exemplary forward current vs. forward voltage characteristic diagram of a Schottky barrier diode. 図1に示される第1定電流回路及び第2定電流回路の具体的構成例を示す回路図。The circuit diagram which shows the specific structural example of the 1st constant current circuit and 2nd constant current circuit which are shown by FIG. 図1の出力用差動増幅器の出力電圧Vと被測定電流Iinとの関係を示す例示的な出力特性図。FIG. 2 is an exemplary output characteristic diagram showing a relationship between an output voltage V O of the output differential amplifier of FIG. 1 and a measured current I in . 本発明の第2の実施の形態に係る断線検知システムの例示的な構成図。The exemplary block diagram of the disconnection detection system which concerns on the 2nd Embodiment of this invention. 本発明の第3の実施の形態に係る断線検知システムの例示的な構成図Exemplary configuration diagram of a disconnection detection system according to a third embodiment of the present invention 図7の出力用差動増幅器の出力電圧Vと被測定電流Iinとの関係を示す例示的な出力特性図。FIG. 8 is an exemplary output characteristic diagram showing a relationship between an output voltage V O of the output differential amplifier of FIG. 7 and a measured current I in . トランジスタで電源側降圧手段及び接地側降圧手段を構成した場合の例示的な回路図。FIG. 3 is an exemplary circuit diagram in the case where a power supply side step-down unit and a ground side step-down unit are configured by transistors. (A)は磁気比例式電流センサの基本的構成図、(B)は磁気平衡式で電流センサの基本的構成図。(A) is a basic configuration diagram of a magnetic proportional current sensor, (B) is a basic configuration diagram of a magnetic balance type current sensor.

符号の説明Explanation of symbols

100 断線検知システム
110 電流センサ
111 電源入力端子
112 第2接地端子
113 センサ出力端子
114 電流検出部
115 出力用差動増幅器
116 ホール素子
117 負帰還用差動増幅器
119 基準電圧源
120 電子制御ユニット(ECU)
121 電源供給端子
122 第1接地端子
123 検出電圧入力端子
125 定電圧源
126 断線検知部
100 Disconnection Detection System 110 Current Sensor 111 Power Supply Input Terminal 112 Second Ground Terminal 113 Sensor Output Terminal 114 Current Detection Unit 115 Output Differential Amplifier 116 Hall Element 117 Negative Feedback Differential Amplifier 119 Reference Voltage Source 120 Electronic Control Unit (ECU) )
121 power supply terminal 122 first ground terminal 123 detection voltage input terminal 125 constant voltage source 126 disconnection detector

Claims (12)

電流センサと、前記電流センサに電源を供給する電子制御ユニットとを備え、
前記電子制御ユニットは、電源供給端子と、第1接地端子と、検出電圧入力端子と、前記検出電圧入力端子に接続された断線検知部とを有し、
前記電流センサは、前記電源供給端子に接続された電源入力端子と、前記第1接地端子に接続された第2接地端子と、前記検出電圧入力端子に接続されたセンサ出力端子と、被測定電流に応じた検出電圧を出力する電流検出部と、前記検出電圧を増幅して前記センサ出力端子に出力する出力用増幅器と、前記電源入力端子と前記センサ出力端子との間に設けられたNチャンネル接合形FETと、前記電源入力端子と前記第2接地端子との間に設けられたバイアス抵抗とを有し、前記バイアス抵抗と前記第2接地端子との接続点に前記Nチャンネル接合形FETのゲートが接続され、前記出力用増幅器の正側電源端子に供給される電圧を前記電源入力端子の電圧よりも小さくするための電源側降圧手段が前記電源入力端子と前記正側電源端子との間に設けられている、電流センサと電子制御ユニットとの間の断線検知システム。
A current sensor, and an electronic control unit that supplies power to the current sensor,
The electronic control unit includes a power supply terminal, a first ground terminal, a detection voltage input terminal, and a disconnection detection unit connected to the detection voltage input terminal,
The current sensor includes a power input terminal connected to the power supply terminal, a second ground terminal connected to the first ground terminal, a sensor output terminal connected to the detection voltage input terminal, and a current to be measured. A current detection unit that outputs a detection voltage according to the output, an output amplifier that amplifies the detection voltage and outputs the detection voltage to the sensor output terminal, and an N channel provided between the power input terminal and the sensor output terminal A junction-type FET, and a bias resistor provided between the power input terminal and the second ground terminal, and a connection point between the bias resistor and the second ground terminal of the N-channel junction FET. A power supply side step-down means for connecting a gate and making the voltage supplied to the positive power supply terminal of the output amplifier smaller than the voltage of the power supply input terminal comprises the power supply input terminal and the positive power supply terminal. Disconnection detection system between the provided and has a current sensor and an electronic control unit during.
請求項1に記載の断線検知システムにおいて、前記Nチャンネル接合形FETがオンしたときの前記Nチャンネル接合形FETによる電圧降下が前記電源側降圧手段による電圧降下よりも小さいことを特徴とする、電流センサと電子制御ユニットとの間の断線検知システム。   2. The disconnection detection system according to claim 1, wherein a voltage drop caused by the N-channel junction FET when the N-channel junction FET is turned on is smaller than a voltage drop caused by the power supply side step-down means. Disconnection detection system between sensor and electronic control unit. 請求項1又は2に記載の断線検知システムにおいて、前記出力用増幅器の前記正側電源端子に供給される電圧よりも大きな電圧が前記断線検知部に入力されたときに前記断線検知部が断線異常と検知する、電流センサと電子制御ユニットとの間の断線検知システム。   3. The disconnection detection system according to claim 1 or 2, wherein the disconnection detection unit is abnormal when a voltage larger than a voltage supplied to the positive power supply terminal of the output amplifier is input to the disconnection detection unit. A disconnection detection system between the current sensor and the electronic control unit. 請求項3に記載の断線検知装置において、前記被測定電流の定格範囲に対応する電圧範囲の中の最大電圧よりも大きくかつ前記出力用増幅器の前記正側電源端子に供給される電圧よりも小さな電圧が前記断線検知部に入力されたときに前記断線検知部が過電流異常と検知する、電流センサと電子制御ユニットとの間の断線検知システム。   4. The disconnection detecting device according to claim 3, wherein the disconnection detecting device is larger than a maximum voltage in a voltage range corresponding to a rated range of the current to be measured and smaller than a voltage supplied to the positive power supply terminal of the output amplifier. A disconnection detection system between a current sensor and an electronic control unit, wherein the disconnection detection unit detects an overcurrent abnormality when a voltage is input to the disconnection detection unit. 請求項1から4のいずれかに記載の断線検知システムにおいて、
前記電源側降圧手段は、アノードが前記電源入力端子に接続され、カソードが前記出力用増幅器の前記正側電源端子に接続された正側ダイオードを含み、
前記正側ダイオードの前記カソードと前記第2接地端子との間に正側定電流回路又は正側抵抗が設けられている、電流センサと電子制御ユニットとの間の断線検知システム。
In the disconnection detection system according to any one of claims 1 to 4,
The power supply side step-down means includes a positive side diode having an anode connected to the power supply input terminal and a cathode connected to the positive power supply terminal of the output amplifier,
A disconnection detection system between a current sensor and an electronic control unit, wherein a positive constant current circuit or a positive resistance is provided between the cathode of the positive diode and the second ground terminal.
請求項5に記載の断線検知システムにおいて、前記正側定電流回路に流れる電流量又は前記正側抵抗の抵抗値が可変調整自在である、電流センサと電子制御ユニットとの間の断線検知システム。   6. The disconnection detection system according to claim 5, wherein the amount of current flowing through the positive-side constant current circuit or the resistance value of the positive-side resistance is variably adjustable. 請求項1から6のいずれかに記載の断線検知システムにおいて、前記電流センサはさらに、前記出力用増幅器の負側電源端子に供給される電圧を前記第2接地端子の電圧よりも大きくするための接地側降圧手段が前記第2接地端子と前記負側電源端子との間に設けられている、電流センサと電子制御ユニットとの間の断線検知システム。   The disconnection detection system according to any one of claims 1 to 6, wherein the current sensor further makes a voltage supplied to a negative power supply terminal of the output amplifier larger than a voltage of the second ground terminal. A disconnection detection system between a current sensor and an electronic control unit, wherein a ground side step-down means is provided between the second ground terminal and the negative power supply terminal. 電流センサと、前記電流センサに電源を供給する電子制御ユニットとを備え、
前記電子制御ユニットは、電源供給端子と、第1接地端子と、検出電圧入力端子と、前記検出電圧入力端子に接続された断線検知部とを有し、
前記電流センサは、前記電源供給端子に接続された電源入力端子と、前記第1接地端子に接続された第2接地端子と、前記検出電圧入力端子に接続されたセンサ出力端子と、被測定電流に応じた検出電圧を出力する電流検出部と、前記検出電圧を増幅して前記センサ出力端子に出力する出力用増幅器と、前記センサ出力端子と前記第2接地端子との間に設けられたPチャンネル接合形FETと、前記電源入力端子と前記第2接地端子との間に設けられたバイアス抵抗とを有し、前記電源入力端子と前記バイアス抵抗との接続点に前記Pチャンネル接合形FETのゲートが接続され、前記出力用増幅器の負側電源端子に供給される電圧を前記第2接地端子の電圧よりも大きくするための接地側降圧手段が前記負側電源端子と前記第2接地端子との間に設けられている、電流センサと電子制御ユニットとの間の断線検知システム。
A current sensor, and an electronic control unit that supplies power to the current sensor,
The electronic control unit includes a power supply terminal, a first ground terminal, a detection voltage input terminal, and a disconnection detection unit connected to the detection voltage input terminal,
The current sensor includes a power input terminal connected to the power supply terminal, a second ground terminal connected to the first ground terminal, a sensor output terminal connected to the detection voltage input terminal, and a current to be measured. A current detection unit that outputs a detection voltage corresponding to the output voltage, an output amplifier that amplifies the detection voltage and outputs the detection voltage to the sensor output terminal, and a P provided between the sensor output terminal and the second ground terminal. A channel junction FET, and a bias resistor provided between the power input terminal and the second ground terminal, and a connection point between the power input terminal and the bias resistor is connected to the P channel junction FET. A ground side step-down means for connecting a gate and making the voltage supplied to the negative power supply terminal of the output amplifier larger than the voltage of the second ground terminal includes the negative power supply terminal and the second ground terminal. Disconnection detection system between the provided and has a current sensor and an electronic control unit during.
請求項8に記載の断線検知システムにおいて、前記Pチャンネル接合形FETがオンしたときの前記Pチャンネル接合形FETによる電圧降下が前記接地側降圧手段による電圧降下よりも小さいことを特徴とする、電流センサと電子制御ユニットとの間の断線検知システム。   9. The disconnection detection system according to claim 8, wherein a voltage drop caused by the P-channel junction FET when the P-channel junction FET is turned on is smaller than a voltage drop caused by the ground-side step-down means. Disconnection detection system between sensor and electronic control unit. 請求項8又は9に記載の断線検知システムにおいて、前記出力用増幅器の前記負側電源端子に供給される電圧よりも小さな電圧が前記断線検知部に入力されたときに前記断線検知部が断線異常と検知する、電流センサと電子制御ユニットとの間の断線検知システム。   The disconnection detection system according to claim 8 or 9, wherein the disconnection detection unit is abnormal when a voltage smaller than a voltage supplied to the negative power supply terminal of the output amplifier is input to the disconnection detection unit. A disconnection detection system between the current sensor and the electronic control unit. 請求項7から10のいずれかに記載の断線検知システムにおいて、
前記接地側降圧手段は、アノードが前記出力用増幅器の前記負側電源端子に接続され、カソードが前記第2接地端子に接続された負側ダイオードを含み、
前記電源入力端子と前記負側ダイオードの前記アノードとの間に負側定電流回路又は負側抵抗が設けられている、電流センサと電子制御ユニットとの間の断線検知システム。
In the disconnection detection system according to any one of claims 7 to 10,
The ground-side step-down means includes a negative diode having an anode connected to the negative power supply terminal of the output amplifier and a cathode connected to the second ground terminal;
A disconnection detection system between a current sensor and an electronic control unit, wherein a negative constant current circuit or a negative resistance is provided between the power input terminal and the anode of the negative diode.
被測定電流に応じた電圧を出力する電流センサと、前記電流センサに電源を供給する電子制御ユニットとを備え、
前記電子制御ユニットは、電源供給端子と、第1接地端子と、検出電圧入力端子と、前記検出電圧入力端子に接続された断線検知部とを有し、
前記電流センサは、前記電源供給端子に接続された電源入力端子と、前記第1接地端子に接続された第2接地端子と、前記検出電圧入力端子に接続されたセンサ出力端子と、前記センサ出力端子と前記第2接地端子との間に設けられたPチャンネル接合形FETと、前記電源入力端子と前記第2接地端子との間に設けられたバイアス抵抗とを有し、前記電源入力端子と前記バイアス抵抗との接続点に前記Pチャンネル接合形FETのゲートが接続されている、電流センサと電子制御ユニットとの間の断線検知システム。
A current sensor that outputs a voltage corresponding to the current to be measured, and an electronic control unit that supplies power to the current sensor;
The electronic control unit includes a power supply terminal, a first ground terminal, a detection voltage input terminal, and a disconnection detection unit connected to the detection voltage input terminal,
The current sensor includes a power input terminal connected to the power supply terminal, a second ground terminal connected to the first ground terminal, a sensor output terminal connected to the detection voltage input terminal, and the sensor output. A P-channel junction FET provided between the terminal and the second ground terminal, and a bias resistor provided between the power input terminal and the second ground terminal, and the power input terminal A disconnection detection system between a current sensor and an electronic control unit, wherein a gate of the P-channel junction FET is connected to a connection point with the bias resistor.
JP2008022285A 2008-02-01 2008-02-01 Disconnection detection system between current sensor and electronic control unit Active JP4761080B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008022285A JP4761080B2 (en) 2008-02-01 2008-02-01 Disconnection detection system between current sensor and electronic control unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008022285A JP4761080B2 (en) 2008-02-01 2008-02-01 Disconnection detection system between current sensor and electronic control unit

Publications (2)

Publication Number Publication Date
JP2009180693A true JP2009180693A (en) 2009-08-13
JP4761080B2 JP4761080B2 (en) 2011-08-31

Family

ID=41034774

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008022285A Active JP4761080B2 (en) 2008-02-01 2008-02-01 Disconnection detection system between current sensor and electronic control unit

Country Status (1)

Country Link
JP (1) JP4761080B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5085811B1 (en) * 2012-01-25 2012-11-28 株式会社 エニイワイヤ Disconnection detection method and slave station terminal used for that method
JP2014228344A (en) * 2013-05-21 2014-12-08 Ntn株式会社 Sensor unit
JP2019036539A (en) * 2017-08-18 2019-03-07 オーツー マイクロ, インコーポレーテッド Fault detection for battery management system
DE112013003667B4 (en) 2012-07-25 2019-05-09 Hitachi Automotive Systems, Ltd. sensor device
US10994627B2 (en) 2018-06-01 2021-05-04 Toyota Jidosha Kabushiki Kaisha Charge management system

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03118434A (en) * 1989-10-02 1991-05-21 Oki Electric Ind Co Ltd Thermistor-temperature detecting circuit
JPH0660851B2 (en) * 1985-02-05 1994-08-10 富士電機株式会社 Force detector
JPH08146069A (en) * 1994-11-18 1996-06-07 Nissan Motor Co Ltd Disconnection automatically detecting device
JP2004245747A (en) * 2003-02-14 2004-09-02 Aisin Seiki Co Ltd Sensor device
JP2004294069A (en) * 2003-03-25 2004-10-21 Denso Corp Physical quantity sensor device
JP2005241349A (en) * 2004-02-25 2005-09-08 Matsushita Electric Ind Co Ltd Controller
JP2006038834A (en) * 2004-06-21 2006-02-09 Tdk Corp Current sensor
JP2006515979A (en) * 2002-10-24 2006-06-08 クノル−ブレムゼ ジステーメ フューア ヌッツファールツォイゲ ゲゼルシャフト ミット ベシュレンクテル ハフツング Protection circuit for analog sensors
JP2006145426A (en) * 2004-11-22 2006-06-08 Honda Motor Co Ltd Current sensor
JP2008051722A (en) * 2006-08-25 2008-03-06 Tdk Corp Wire severance detection device of current sensor
JP2008249452A (en) * 2007-03-30 2008-10-16 Tdk Corp Magnetic detector

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0660851B2 (en) * 1985-02-05 1994-08-10 富士電機株式会社 Force detector
JPH03118434A (en) * 1989-10-02 1991-05-21 Oki Electric Ind Co Ltd Thermistor-temperature detecting circuit
JPH08146069A (en) * 1994-11-18 1996-06-07 Nissan Motor Co Ltd Disconnection automatically detecting device
JP2006515979A (en) * 2002-10-24 2006-06-08 クノル−ブレムゼ ジステーメ フューア ヌッツファールツォイゲ ゲゼルシャフト ミット ベシュレンクテル ハフツング Protection circuit for analog sensors
JP2004245747A (en) * 2003-02-14 2004-09-02 Aisin Seiki Co Ltd Sensor device
JP2004294069A (en) * 2003-03-25 2004-10-21 Denso Corp Physical quantity sensor device
JP2005241349A (en) * 2004-02-25 2005-09-08 Matsushita Electric Ind Co Ltd Controller
JP2006038834A (en) * 2004-06-21 2006-02-09 Tdk Corp Current sensor
JP2006145426A (en) * 2004-11-22 2006-06-08 Honda Motor Co Ltd Current sensor
JP2008051722A (en) * 2006-08-25 2008-03-06 Tdk Corp Wire severance detection device of current sensor
JP2008249452A (en) * 2007-03-30 2008-10-16 Tdk Corp Magnetic detector

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5085811B1 (en) * 2012-01-25 2012-11-28 株式会社 エニイワイヤ Disconnection detection method and slave station terminal used for that method
WO2013111279A1 (en) * 2012-01-25 2013-08-01 株式会社エニイワイヤ Disconnection detecting scheme and slave terminal used with said method
DE112013003667B4 (en) 2012-07-25 2019-05-09 Hitachi Automotive Systems, Ltd. sensor device
JP2014228344A (en) * 2013-05-21 2014-12-08 Ntn株式会社 Sensor unit
JP2019036539A (en) * 2017-08-18 2019-03-07 オーツー マイクロ, インコーポレーテッド Fault detection for battery management system
JP7214391B2 (en) 2017-08-18 2023-01-30 オーツー マイクロ, インコーポレーテッド Fault detection for battery management systems
US10994627B2 (en) 2018-06-01 2021-05-04 Toyota Jidosha Kabushiki Kaisha Charge management system

Also Published As

Publication number Publication date
JP4761080B2 (en) 2011-08-31

Similar Documents

Publication Publication Date Title
US8465859B2 (en) Current sensor
JP5699301B2 (en) Current sensor
US8169226B2 (en) Method for measuring a current, in particular by means of a grounding apparatus
JP4761080B2 (en) Disconnection detection system between current sensor and electronic control unit
JP4883289B2 (en) Current sensor disconnection detector
WO2007007765A1 (en) Current-voltage conversion circuit and power consumption detection circuit and electronic device using the same
JP2010181211A (en) Current sensor and method of compensating temperature characteristic of magnetic detecting element used for the same
KR20060043676A (en) Current detecting function provided semiconductor integrated circuit and power supply equipment using the same
US20120194947A1 (en) Voltage regulator
WO2014203704A1 (en) Voltage regulator
JP2014509747A (en) Current sensor
WO2014208261A1 (en) Voltage regulator
JP4623289B2 (en) Current sensor
JP2013068452A (en) Current sensor failure diagnosis equipment
JP2010002388A (en) Magnetic proportional current sensor
JP2008210134A (en) Detection system
US7928711B2 (en) Linear voltage regulator with accurate open load detection
JP4325811B2 (en) Current sensor
US8717047B2 (en) Method for measuring a current, in particular by means of a grounding apparatus
JP2010091366A (en) Magnetic balance current sensor
JP2010127636A (en) Magnetic proportion system current sensor
JP6819238B2 (en) Wiring abnormality detection device
JP5989171B1 (en) CURRENT DETECTION CIRCUIT AND ELECTRIC CONTROL DEVICE FOR VEHICLE HAVING THE CIRCUIT
JP2008129693A (en) Dropper type regulator
JP2005188936A (en) Voltage drop type current measuring device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110406

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110511

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110524

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140617

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4761080

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150