JP2010127636A - Magnetic proportion system current sensor - Google Patents

Magnetic proportion system current sensor Download PDF

Info

Publication number
JP2010127636A
JP2010127636A JP2008299524A JP2008299524A JP2010127636A JP 2010127636 A JP2010127636 A JP 2010127636A JP 2008299524 A JP2008299524 A JP 2008299524A JP 2008299524 A JP2008299524 A JP 2008299524A JP 2010127636 A JP2010127636 A JP 2010127636A
Authority
JP
Japan
Prior art keywords
magnetic
resistors
current
resistor
hall element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008299524A
Other languages
Japanese (ja)
Other versions
JP5126536B2 (en
Inventor
Takashi Urano
高志 浦野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2008299524A priority Critical patent/JP5126536B2/en
Publication of JP2010127636A publication Critical patent/JP2010127636A/en
Application granted granted Critical
Publication of JP5126536B2 publication Critical patent/JP5126536B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a low-cost magnetic proportion system current sensor in which gain adjustment is simplified by eliminating the change in offset voltage resulting from the gain adjustment because it is not necessary to change the drive current of a magnetic detection element such as a hall element when the gain adjustment is performed. <P>SOLUTION: When adjusting the magnetic proportion system current sensor, first, a drive current I<SB>C</SB>of a hall element 16 is fixed, then, influence of an offset voltage is adjusted by adjusting a resistance of a resistor R<SB>2</SB>of an intermediate voltage generating circuit 26, and thereafter the gain of a differential amplifier 22 is adjusted by adjusting a resistance of a resistor R<SB>T</SB>(gain adjustment is performed). Because the drive current I<SB>C</SB>of the hall element 16 does not change owing to the adjustment of the gain of the differential amplifier 22, it is not necessary to consider the change in the offset voltage resulting from the change in the drive current I<SB>C</SB>. Namely, no repeated offset adjustment or complex calculation in consideration of the same is required, and thus a gain adjustment process is simplified. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、例えばハイブリットカーや電気自動車のバッテリー電流やモータ駆動電流、工作機械のモータに流れる電流をホール素子等の磁気検出素子を用いて測定する磁気比例式電流センサに関する。   The present invention relates to a magnetic proportional current sensor that measures a battery current of a hybrid car or an electric vehicle, a motor driving current, and a current flowing through a motor of a machine tool using a magnetic detection element such as a Hall element.

ホール素子等の磁気検出素子を用いてバスバーに流れる電流(被測定電流)を非接触状態で検出する電流センサとして、以下に示す磁気比例式のものが従来から知られている。   2. Description of the Related Art Conventionally, magnetic proportional sensors shown below have been known as current sensors that detect a current flowing through a bus bar (current to be measured) in a non-contact state using a magnetic detection element such as a Hall element.

磁気比例式電流センサは、図7に例示のように、ギャップGを有するリング状の磁気コア20(高透磁率で残留磁気が少ない珪素鋼板やパーマロイコア等)と、ギャップGに配置されたホール素子16(磁気検出素子の例示)とを有する。磁気コア20は、被測定電流Iinの流れるバスバー10が貫通する配置である。したがって、被測定電流IinによってギャップG内に磁界が発生し、これがホール素子16の感磁面に印加される。磁界の強さは被測定電流Iinに比例するので、ホール素子16の出力電圧から被測定電流Iinが求められる。なお、磁気比例式電流センサの回路構成は、例えば図8に示されるものである。この回路では、定電流駆動されるホール素子16の出力電圧を差動増幅回路で増幅してセンサ出力としている。 As illustrated in FIG. 7, the magnetic proportional current sensor includes a ring-shaped magnetic core 20 having a gap G (such as a silicon steel plate or a permalloy core with high permeability and low residual magnetism), and a hole disposed in the gap G. And an element 16 (an example of a magnetic detection element). The magnetic core 20 is an arrangement in which the bus bar 10 of the flow of the current I in the measurement through. Therefore, a magnetic field is generated in the gap G due to the current I in to be measured, and this is applied to the magnetic sensitive surface of the Hall element 16. Since the intensity of the magnetic field is proportional to the measured current I in, the measured current I in is determined from the output voltage of the Hall element 16. The circuit configuration of the magnetic proportional current sensor is as shown in FIG. 8, for example. In this circuit, the output voltage of the Hall element 16 driven at a constant current is amplified by a differential amplifier circuit to obtain a sensor output.

また、近年では装置小型化の要求のため、図9(A),(B)に示されるような、リング状の磁気コアを用いないコアレス構造の磁気比例式電流センサも採用されている。図10は、図9の場合における、バスバー10に流れる被測定電流Iinとそれによってホール素子16の感磁面に印加される磁界(磁束密度B)との関係を例示する特性図である。被測定電流Iinの−1000A〜+1000Aのレンジに対してホール素子16の感磁面に印加される磁界(磁束密度B)は−50mT〜+50mTのレンジで直線的に変化する(比例する)。したがって、コアレス構造の場合も、被測定電流Iinによって発生する磁界がホール素子16の感磁面に印加され、ホール素子16の出力電圧から被測定電流Iinが求められる。 Further, in recent years, a magnetic proportional current sensor having a coreless structure that does not use a ring-shaped magnetic core as shown in FIGS. FIG. 10 is a characteristic diagram illustrating the relationship between the measured current I in flowing through the bus bar 10 and the magnetic field (magnetic flux density B) applied to the magnetic sensitive surface of the Hall element 16 in the case of FIG. The magnetic field (magnetic flux density B) applied to the magnetosensitive surface of the Hall element 16 varies linearly (proportional) in the range of −50 mT to +50 mT with respect to the range of the current to be measured I in from −1000 A to +1000 A. Therefore, even in the case of the coreless structure, the magnetic field generated by the measured current I in is applied to the magnetic sensitive surface of the Hall element 16, and the measured current I in is obtained from the output voltage of the Hall element 16.

ところで、ホール素子の感度は素子ごとに異なり、また、磁気コアのギャップ長も一定にすることはできないため、被測定電流に対するセンサ出力を所望値(例えばセンサ出力Vout=2.5V±2V〔被測定電流のフルスケール±400A時〕)にするためには、電流センサのゲイン調整を行う必要がある。 By the way, the sensitivity of the Hall element differs from element to element, and since the gap length of the magnetic core cannot be made constant, the sensor output for the current to be measured is set to a desired value (for example, sensor output V out = 2.5 V ± 2 V [ In order to make the current to be measured full scale ± 400 A]), it is necessary to adjust the gain of the current sensor.

ゲイン調整に関し、下記特許文献1の電流センサ装置では、「ホール素子1の駆動定電流を調整するための第1のトリミング抵抗3が設けられて」いて、「この第1のトリミング抵抗3は電流センサ装置のゲイン調整手段として機能」している(段落[0017])。そして、特許文献1は、「この第1のトリミング抵抗3」に「ゲインの調整により生じるオフセット電圧の変化量を補正したゲイン調整目標値」を入力し(同段落)、ゲイン調整後にオフセット電圧を調整することで、「基板の廃却や再トリミングがなく、かつ調整工程も少なくて済む、低コストを目的とした電流センサ装置の調整方法を提供」([要約]の[課題])できるとしている。
特開2008−241552号公報
Regarding the gain adjustment, in the current sensor device disclosed in Patent Document 1 below, “the first trimming resistor 3 for adjusting the driving constant current of the Hall element 1 is provided”, and “the first trimming resistor 3 is a current "Function as gain adjusting means of sensor device" (paragraph [0017]). Patent Document 1 inputs “a gain adjustment target value obtained by correcting an amount of change in offset voltage caused by gain adjustment” to “first trimming resistor 3” (same paragraph), and sets the offset voltage after gain adjustment. By adjusting, “Providing a method for adjusting the current sensor device for the purpose of low cost, which eliminates the need to discard or re-trim the board and requires only a small adjustment process” ([Summary] [Problem]) Yes.
JP 2008-241552 A

ゲイン調整のためにホール素子の駆動電流を変化させると、駆動電流の変化に伴ってオフセット電圧(被測定電流が0A時のホール素子の出力電圧)が変化してしまうという欠点がある。特許文献1では、上記欠点を克服するために「第1のトリミング抵抗3」に「ゲインの調整により生じるオフセット電圧の変化量を補正したゲイン調整目標値」を入力してゲイン調整後にオフセット電圧を調整することとしているが、同文献段落[0020]〜[0024]に説明されているような複雑な計算が必要となるため、電流センサの設計に手間と時間を要してコスト高になりやすいという問題がある。   If the drive current of the Hall element is changed for gain adjustment, there is a drawback that the offset voltage (the output voltage of the Hall element when the current to be measured is 0 A) changes with the change of the drive current. In Patent Document 1, in order to overcome the above drawbacks, “a gain adjustment target value obtained by correcting a change amount of an offset voltage caused by gain adjustment” is input to “first trimming resistor 3”, and the offset voltage is adjusted after gain adjustment. Although adjustment is required, since complicated calculations as described in the paragraphs [0020] to [0024] of the same document are required, it takes time and effort to design the current sensor, which tends to increase costs. There is a problem.

本発明はこうした状況を認識してなされたものであり、その目的は、ゲイン調整にあたってホール素子等の磁気検出素子の駆動電流を変化させることを不要としてゲイン調整に伴うオフセット電圧の変化をなくすことで、ゲイン調整を簡素化した低コストの磁気比例式電流センサを提供することにある。   The present invention has been made in view of such a situation, and its purpose is to eliminate the need to change the drive current of a magnetic detection element such as a Hall element in gain adjustment, and to eliminate the change in offset voltage accompanying gain adjustment. Thus, an object of the present invention is to provide a low-cost magnetic proportional current sensor with simplified gain adjustment.

本発明のある態様は、磁気比例式電流センサである。この磁気比例式電流センサは、
被測定電流によって発生する磁界が印加される磁気検出素子と、
前記磁気検出素子を定電圧駆動又は定電流駆動する駆動回路と、
前記磁気検出素子の出力電圧を増幅する差動増幅器とを備え、
前記差動増幅器は、オペアンプと、第1ないし第6抵抗と、トリミング可能な抵抗又は可変抵抗とを有し、
前記磁気検出素子の一方の出力端子と前記オペアンプの反転入力端子とを接続する経路に前記第1抵抗が設けられ、前記磁気検出素子の他方の出力端子と前記オペアンプの非反転入力端子とを接続する経路に前記第2抵抗が設けられ、前記オペアンプの出力端子と前記反転入力端子とを接続する経路に前記第3及び第4抵抗が直列に接続され、前記非反転入力端子と基準電圧端子とを接続する経路に前記第5及び第6抵抗が直列に接続され、前記第3及び第4抵抗の接続点と前記第5及び第6抵抗の接続点とを接続する経路に前記トリミング可能な抵抗又は前記可変抵抗が設けられ、前記第1及び第2抵抗が同抵抗値であり、前記第3ないし第6抵抗が同抵抗値である。
One embodiment of the present invention is a magnetic proportional current sensor. This magnetic proportional current sensor
A magnetic sensing element to which a magnetic field generated by a current to be measured is applied;
A drive circuit for driving the magnetic detection element at a constant voltage or a constant current;
A differential amplifier that amplifies the output voltage of the magnetic detection element;
The differential amplifier includes an operational amplifier, first to sixth resistors, and a trimmable resistor or a variable resistor.
The first resistor is provided in a path connecting one output terminal of the magnetic detection element and the inverting input terminal of the operational amplifier, and connects the other output terminal of the magnetic detection element and the non-inverting input terminal of the operational amplifier. The second resistor is provided in a path to be connected, the third and fourth resistors are connected in series to a path connecting the output terminal of the operational amplifier and the inverting input terminal, and the non-inverting input terminal and the reference voltage terminal are connected to each other. The fifth and sixth resistors are connected in series to the path connecting the three, and the trimmable resistance is connected to the path connecting the connection point of the third and fourth resistors and the connection point of the fifth and sixth resistors. Alternatively, the variable resistor is provided, the first and second resistors have the same resistance value, and the third to sixth resistors have the same resistance value.

ある態様の磁気比例式電流センサにおいて、前記第1ないし第6抵抗が固定抵抗であるとよい。   In one aspect of the magnetic proportional current sensor, the first to sixth resistors may be fixed resistors.

ある態様の磁気比例式電流センサにおいて、
前記被測定電流の経路を囲む、ギャップ部を有するリング状磁気コアをさらに備え、
前記磁気検出素子が前記ギャップ部に位置するとよい。
In an aspect of the magnetic proportional current sensor,
A ring-shaped magnetic core having a gap portion surrounding the path of the current to be measured;
The magnetic detection element may be located in the gap portion.

なお、以上の構成要素の任意の組合せ、本発明の表現を方法やシステムなどの間で変換したものもまた、本発明の態様として有効である。   It should be noted that any combination of the above-described constituent elements, and those obtained by converting the expression of the present invention between methods and systems are also effective as aspects of the present invention.

本発明によれば、トリミング可能な抵抗又は可変抵抗の抵抗値を調整して差動増幅器の増幅度を調整することで磁気比例式電流センサのゲイン調整ができるため、ゲイン調整にあたってホール素子等の磁気検出素子の駆動電流を変化させる必要がない。したがって、ゲイン調整に伴うオフセット電圧の変化をなくすことができ、ゲイン調整を簡素化した低コストの磁気比例式電流センサを実現することができる。   According to the present invention, the gain of the magnetic proportional current sensor can be adjusted by adjusting the gain of the differential amplifier by adjusting the resistance value of the trimmable resistor or variable resistor. There is no need to change the drive current of the magnetic detection element. Therefore, it is possible to eliminate the change in the offset voltage accompanying the gain adjustment, and to realize a low-cost magnetic proportional current sensor that simplifies the gain adjustment.

以下、図面を参照しながら本発明の好適な実施の形態を詳述する。なお、各図面に示される同一または同等の構成要素、部材等には同一の符号を付し、適宜重複した説明は省略する。また、実施の形態は発明を限定するものではなく例示であり、実施の形態に記述されるすべての特徴やその組み合わせは必ずしも発明の本質的なものであるとは限らない。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings. In addition, the same code | symbol is attached | subjected to the same or equivalent component, member, etc. which are shown by each drawing, and the overlapping description is abbreviate | omitted suitably. In addition, the embodiments do not limit the invention but are exemplifications, and all features and combinations thereof described in the embodiments are not necessarily essential to the invention.

図1は、本発明の実施の形態に係る磁気比例式電流センサ100の回路図である。磁気比例式電流センサ100は、高電圧端子としての電源端子12と、低電圧端子としての接地端子14と、センサ出力端子15と、磁気検出素子としてのホール素子16と、駆動回路としての定電流回路18と、差動増幅器22と、分圧回路24と、中間電圧生成回路26とを備える。   FIG. 1 is a circuit diagram of a magnetic proportional current sensor 100 according to an embodiment of the present invention. The magnetic proportional current sensor 100 includes a power supply terminal 12 as a high voltage terminal, a ground terminal 14 as a low voltage terminal, a sensor output terminal 15, a Hall element 16 as a magnetic detection element, and a constant current as a drive circuit. A circuit 18, a differential amplifier 22, a voltage dividing circuit 24, and an intermediate voltage generation circuit 26 are provided.

電源端子12及び接地端子14は直流電圧源(ここでは例として電源電圧VCC=5V)に接続され、電源端子12が高電圧側であり、接地端子14が低電圧側で接地される。ホール素子16は、例えばInAs系であり、図7に例示のように磁気コア20のギャップ部G内(すなわち被測定電流Iinによって発生する磁界が印加される位置)に固定配置される。 The power supply terminal 12 and the ground terminal 14 are connected to a DC voltage source (here, the power supply voltage V CC = 5 V as an example), the power supply terminal 12 is on the high voltage side, and the ground terminal 14 is grounded on the low voltage side. Hall element 16 is, for example, InAs system, are fixedly arranged to the illustrated manner the magnetic core 20 in the gap portion G in FIG. 7 (ie, the position where the magnetic field generated by the current to be measured I in is applied).

図2(A)はホール素子16に印加される磁界(ギャップ内磁束密度B)の模式的説明図であり、同図(B)は被測定電流Iinに対するギャップ内磁束密度Bの例示的な特性図である。被測定電流Iinの−400A〜+400Aのレンジ(磁気比例式電流センサ100の定格)に対して、ギャップ内磁束密度Bは−50mT〜+50mTのレンジで直線的に変化している(比例している)。 FIG. 2A is a schematic explanatory diagram of the magnetic field (magnetic flux density B in the gap) applied to the Hall element 16, and FIG. 2B is an exemplary magnetic flux density B in the gap with respect to the measured current Iin. FIG. The magnetic flux density B in the gap varies linearly in the range of −50 mT to +50 mT (in proportion to the range of the current to be measured I in of −400 A to +400 A (rated by the magnetic proportional current sensor 100)). )

図1においてホール素子16は等価的に4つの抵抗のブリッジ接続で表される。ホール素子16の電流供給端子a,b間に一定の駆動電流ICを流しておくことにより、ホール素子16に印加された磁界に比例した(換言すれば被測定電流Iinに比例した)電圧VHが出力端子c,d間に得られる。 In FIG. 1, the Hall element 16 is equivalently represented by a bridge connection of four resistors. By keeping flowing a constant driving current I C between the current supply terminals a, b of the Hall element 16, is proportional to the magnetic field applied to the Hall element 16 (proportional to in other words the measurement current I in) Voltage V H is obtained between the output terminals c and d.

図3は、磁気比例式電流センサ100におけるホール素子16の駆動電流ICと出力電圧VHとの関係を例示する特性図である。条件は周囲温度Taを25℃、ギャップ内磁束密度Bを50mTとしている。本図に示されるように、ホール素子16は駆動電流ICが大きいほど出力電圧VHが大きくなっている。よって、ホール素子16の駆動電流ICは最大定格(例えば10mA)の近くに設計するほど高感度になって望ましいといえる。そこで、本実施の形態では例として駆動電流ICを9mAに設定(固定)する。そして、後述のように駆動電流ICは磁気比例式電流センサ100のゲイン調整によって変化しないのがポイントである。 FIG. 3 is a characteristic diagram illustrating the relationship between the drive current I C of the Hall element 16 and the output voltage V H in the magnetic proportional current sensor 100. Conditions 25 ° C. ambient temperature T a, is set to 50mT the gap magnetic flux density B. As shown in the figure, the Hall element 16 has an output voltage V H that increases as the drive current I C increases. Therefore, it can be said that the drive current I C of the Hall element 16 is more desirable as it is designed to be close to the maximum rating (for example, 10 mA). Therefore, in this embodiment, as an example, the drive current I C is set (fixed) to 9 mA. As described later, the point is that the drive current I C does not change by the gain adjustment of the magnetic proportional current sensor 100.

図4は、磁気比例式電流センサ100におけるホール素子16の駆動電流ICとオフセット電圧Vofsとの関係を例示する特性図である。条件は周囲温度Taを25℃、ギャップ内磁束密度Bを0mTとしている。本図に示されるように、ホール素子16は駆動電流ICが大きいほどオフセット電圧Vofsが大きくなっている。つまり、駆動電流ICの大きさによってオフセット電圧Vofsは変化する。このため、特許文献1に記載のようにゲイン調整のために駆動電流ICを変化させるとオフセット電圧Vofsが変化してしまうという問題が発生するわけである。そこで、本実施の形態では後述のようにゲイン調整にあたって駆動電流ICを変化させない構成としている。 FIG. 4 is a characteristic diagram illustrating the relationship between the drive current I C of the Hall element 16 and the offset voltage V ofs in the magnetic proportional current sensor 100. Conditions 25 ° C. ambient temperature T a, is set to 0mT the gap magnetic flux density B. As shown in this figure, the Hall element 16 has a larger offset voltage V ofs as the drive current I C increases. That is, the offset voltage V ofs varies depending on the magnitude of the drive current I C. For this reason, as described in Patent Document 1, when the drive current I C is changed for gain adjustment, there arises a problem that the offset voltage V ofs changes. Therefore, in the present embodiment has a configuration that does not change the driving current I C when the gain adjustment as described below.

図1において、定電流回路18は、ホール素子16を定電流駆動する。分圧回路24は、電源電圧VCCを所定の比率で分圧する。この分圧電圧Vdvは定電流回路18の駆動電圧となる。差動増幅器22は、ホール素子16の出力電圧VHを増幅し、これをセンサ出力端子15から出力する(センサ出力電圧Vout)。中間電圧生成回路26は、電源電圧を所定の比率で分圧して出力する。中間電圧生成回路26の出力電圧Vmdは、差動増幅器22の基準電圧となる。 In FIG. 1, a constant current circuit 18 drives the Hall element 16 with a constant current. The voltage dividing circuit 24 divides the power supply voltage V CC at a predetermined ratio. This divided voltage V dv becomes a drive voltage for the constant current circuit 18. The differential amplifier 22 amplifies the output voltage V H of the Hall element 16 and outputs it from the sensor output terminal 15 (sensor output voltage V out ). The intermediate voltage generation circuit 26 divides the power supply voltage at a predetermined ratio and outputs it. The output voltage V md of the intermediate voltage generation circuit 26 becomes a reference voltage for the differential amplifier 22.

以下、磁気比例式電流センサ100の回路構成をより具体的に説明する。   Hereinafter, the circuit configuration of the magnetic proportional current sensor 100 will be described more specifically.

ホール素子16及び定電流回路18は、電源端子12と接地端子14との間に、ホール素子16が電源端子12側となるように直列に接続される。すなわち、ホール素子16の電流供給端子aが電源端子12に接続され、ホール素子16の電流供給端子bと接地端子14との間に定電流回路18が設けられる。   The Hall element 16 and the constant current circuit 18 are connected in series between the power supply terminal 12 and the ground terminal 14 so that the Hall element 16 is on the power supply terminal 12 side. That is, the current supply terminal a of the Hall element 16 is connected to the power supply terminal 12, and the constant current circuit 18 is provided between the current supply terminal b of the Hall element 16 and the ground terminal 14.

分圧回路24は、電源端子12と接地端子14との間に直列に接続された抵抗R3及びR4を有し、抵抗R3及びR4の接続点の電圧(分圧電圧Vdv)を定電流回路18に出力する。分圧電圧Vdvは、
dv=(R4/(R3+R4))×VCC …式(1)
と表される。抵抗R3及びR4による分圧比は例えば4:1であり、この場合、分圧電圧Vdvは1Vとなる。
The voltage dividing circuit 24 includes resistors R 3 and R 4 connected in series between the power supply terminal 12 and the ground terminal 14, and a voltage at the connection point of the resistors R 3 and R 4 ( divided voltage V dv ). Is output to the constant current circuit 18. The divided voltage V dv is
V dv = (R 4 / ( R 3 + R 4)) × V CC ... formula (1)
It is expressed. The voltage dividing ratio by the resistors R 3 and R 4 is, for example, 4: 1. In this case, the divided voltage V dv is 1V.

定電流回路18は、Nチャンネル型トランジスタとしてのNPN型バイポーラトランジスタQと、電流設定用抵抗R5と、オペアンプ32(演算増幅器)とを有する。NPN型バイポーラトランジスタQ及び電流設定用抵抗R5は、ホール素子16の電流供給端子bと接地端子14との間に、NPN型バイポーラトランジスタQが電流供給端子b側となるように直列に接続される。すなわち、NPN型バイポーラトランジスタQのコレクタがホール素子16の電流供給端子bに接続され、NPN型バイポーラトランジスタQのエミッタと接地端子14との間に電流設定用抵抗R5が設けられる。オペアンプ32は、分圧回路24からの分圧電圧Vdvが非反転入力端子に入力され、NPN型バイポーラトランジスタQと電流設定用抵抗R5との接続点に反転入力端子が接続され、出力端子がNPN型バイポーラトランジスタQの制御端子(ベース端子)に接続される。 The constant current circuit 18 includes an NPN bipolar transistor Q as an N channel transistor, a current setting resistor R 5, and an operational amplifier 32 (operational amplifier). The NPN bipolar transistor Q and the current setting resistor R 5 are connected in series between the current supply terminal b of the Hall element 16 and the ground terminal 14 so that the NPN bipolar transistor Q is on the current supply terminal b side. The That is, the collector of the NPN bipolar transistor Q is connected to the current supply terminal b of the Hall element 16, and the current setting resistor R 5 is provided between the emitter of the NPN bipolar transistor Q and the ground terminal 14. Operational amplifier 32, the divided voltage V dv from the voltage dividing circuit 24 is input to the non-inverting input terminal, an inverting input terminal connected to a connection point between NPN bipolar transistor Q and the current setting resistor R 5, an output terminal Is connected to the control terminal (base terminal) of the NPN bipolar transistor Q.

このような接続とすることで、オペアンプ32の非反転入力端子と反転入力端子との間の電圧は負帰還により常にゼロとなる(イマジナリーショートが成立する)。つまり、オペアンプ32の反転入力端子の電圧(NPN型バイポーラトランジスタQのエミッタの電圧)はオペアンプ32の非反転入力端子の電圧(分圧回路24からの分圧電圧Vdv)と等しくなる。したがって、電流設定用抵抗R5に流れる電流すなわちホール素子駆動電流ICは、
C=Vdv/R5[A] …式(2)
となり、ホール素子16の内部抵抗によらず一定となる。ホール素子駆動電流ICは例えば9mAに設定する。
With this connection, the voltage between the non-inverting input terminal and the inverting input terminal of the operational amplifier 32 is always zero due to negative feedback (imaginary short is established). That is, the voltage at the inverting input terminal of the operational amplifier 32 (the voltage at the emitter of the NPN bipolar transistor Q) is equal to the voltage at the non-inverting input terminal of the operational amplifier 32 (the divided voltage V dv from the voltage dividing circuit 24). Therefore, the current flowing through the current setting resistor R 5 , that is, the Hall element drive current I C is
I C = V dv / R 5 [A] (2)
Therefore, it is constant regardless of the internal resistance of the Hall element 16. The Hall element drive current I C is set to 9 mA, for example.

中間電圧生成回路26は、電源端子12と接地端子14との間に直列に接続された抵抗R1及びR2を有し、抵抗R1及びR2の接続点の電圧(中間電圧Vmd)を差動増幅器22に出力する。中間電圧Vmdは、
md=(R2/(R1+R2))×VCC …式(3)
と表される。抵抗R1及びR2による分圧比は例えば1:1であり、この場合、中間電圧Vmdは2.5Vとなる。なお、ホール素子16のオフセット電圧による影響の調整のために、抵抗R1及びR2のいずれか(図1では抵抗R2)を可変抵抗とし、被測定電流Iinが0Aの時の差動増幅器22の出力電圧Voutが2.5Vとなるように中間電圧Vmdを微調整可能としている。
The intermediate voltage generation circuit 26 includes resistors R 1 and R 2 connected in series between the power supply terminal 12 and the ground terminal 14, and a voltage at the connection point of the resistors R 1 and R 2 (intermediate voltage V md ). Is output to the differential amplifier 22. The intermediate voltage V md is
V md = (R 2 / (R 1 + R 2 )) × V CC Formula (3)
It is expressed. The voltage dividing ratio by the resistors R 1 and R 2 is, for example, 1: 1, and in this case, the intermediate voltage V md is 2.5V. In order to adjust the influence of the offset voltage of the Hall element 16, one of the resistors R 1 and R 2 (the resistor R 2 in FIG. 1) is a variable resistor, and the differential when the measured current I in is 0 A. The intermediate voltage V md can be finely adjusted so that the output voltage V out of the amplifier 22 becomes 2.5V.

差動増幅器22は、オペアンプ38と、第1ないし第6抵抗としての抵抗R6〜R11と、トリミング可能な抵抗としての抵抗RTとを有する。好ましくは抵抗R6〜R11は、低精度な半固定抵抗器やレーザトリミング抵抗器ではなく、高精度な固定抵抗器を使用する。抵抗RTとしては例えばレーザトリミング抵抗器が用いられる。 Differential amplifier 22 includes an operational amplifier 38, a resistor R 6 to R 11 as the first to sixth resistor, and R T resistor as trimmable resistor. Preferably, the resistors R 6 to R 11 are high-precision fixed resistors, not low-precision semi-fixed resistors or laser trimming resistors. For example, a laser trimming resistor is used as the resistor RT .

ホール素子16の出力端子dとオペアンプ38の反転入力端子とを接続する経路に抵抗R6が設けられ、ホール素子16の出力端子cとオペアンプ38の非反転入力端子とを接続する経路に抵抗R7が設けられ、オペアンプ38の出力端子と前記反転入力端子とを接続する経路に抵抗R8及びR9が直列に接続され、前記非反転入力端子と基準電圧端子(中間電圧生成回路26の出力端子)とを接続する経路に抵抗R10及びR11が直列に接続され、抵抗R8及びR9の接続点と抵抗R10及びR11の接続点とを接続する経路に抵抗RTが設けられる。抵抗R6及びR7は同抵抗値であり、抵抗R8〜R11は同抵抗値である(R6=R7,R8=R9=R10=R11)。また、抵抗RTの抵抗値はK×R12(Kは任意の正の実数)とする(但しR8=R9=R10=R11=R12)。 A resistor R 6 is provided in a path connecting the output terminal d of the Hall element 16 and the inverting input terminal of the operational amplifier 38, and a resistor R 6 is connected in a path connecting the output terminal c of the Hall element 16 and the non-inverting input terminal of the operational amplifier 38. 7 is provided, the resistor R 8 and R 9 an output terminal and a path connecting the inverting input terminal of the operational amplifier 38 are connected in series, the output of the non-inverting input terminal and the reference voltage terminal (the intermediate voltage generating circuit 26 Resistors R 10 and R 11 are connected in series to the path connecting the terminals), and a resistor RT is provided on the path connecting the connection points of the resistors R 8 and R 9 and the connection points of the resistors R 10 and R 11. It is done. The resistors R 6 and R 7 have the same resistance value, and the resistors R 8 to R 11 have the same resistance value (R 6 = R 7 , R 8 = R 9 = R 10 = R 11 ). The resistance value of the resistor RT is K × R 12 (K is an arbitrary positive real number) (where R 8 = R 9 = R 10 = R 11 = R 12 ).

差動増幅器22の出力電圧Vout(センサ出力電圧)は、
out=Vmd+2(1+1/K)×(R12/R6)×VH[V] …式(4)
で示される。したがって、抵抗RTの抵抗値(=K×R12)を調整することで差動増幅器22の増幅度を調整することができる(抵抗R6〜R11は抵抗値の調整不要)。
The output voltage V out (sensor output voltage) of the differential amplifier 22 is
V out = V md +2 (1 + 1 / K) × (R 12 / R 6 ) × V H [V] (4)
Indicated by Therefore, the amplification degree of the differential amplifier 22 can be adjusted by adjusting the resistance value of the resistor RT (= K × R 12 ) (the resistors R 6 to R 11 do not require adjustment of the resistance value).

磁気比例式電流センサ100の調整の際には、まずホール素子16の駆動電流ICを例えば9mAに設定(固定)し、次に中間電圧生成回路26の抵抗R2(可変抵抗)の抵抗値を調整して被測定電流Iinが0Aの時の差動増幅器22の出力電圧Voutが2.5Vとなるように中間電圧Vmdを調整し、その後、抵抗RTの抵抗値(=K×R12)を調整して差動増幅器22の増幅度を調整する(すなわち磁気比例式電流センサ100のゲイン調整を行う)。差動増幅器22は、ホール素子16の出力電圧VH(例えば数10mV)を数10倍に増幅して例えばVout=2.5V±2V(被測定電流Iinのフルスケール±400A時)として出力する。なお、差動増幅器22の増幅度の調整によりホール素子16の駆動電流ICは変化しないため、駆動電流ICの変化に伴うオフセット電圧の変化は考慮しなくてよい。すなわち、再度のオフセット調整やそれを考慮した複雑な計算が不要であり、ゲイン調整の工程が簡素化できる。 When adjusting the magnetic proportional current sensor 100, first, the drive current I C of the Hall element 16 is set (fixed) to, for example, 9 mA, and then the resistance value of the resistor R 2 (variable resistor) of the intermediate voltage generating circuit 26 is set. And the intermediate voltage V md is adjusted so that the output voltage V out of the differential amplifier 22 when the measured current I in is 0 A is 2.5 V, and then the resistance value of the resistor RT (= K XR 12 ) is adjusted to adjust the amplification degree of the differential amplifier 22 (that is, the gain of the magnetic proportional current sensor 100 is adjusted). The differential amplifier 22 amplifies the output voltage V H (for example, several tens of mV) of the Hall element 16 by several tens of times to obtain, for example, V out = 2.5 V ± 2 V (full scale of the measured current I in ± 400 A). Output. Since the drive current I C of the Hall element 16 does not change by adjusting the amplification factor of the differential amplifier 22, it is not necessary to consider the change in the offset voltage due to the change in the drive current I C. That is, it is not necessary to perform the offset adjustment again and complicated calculation considering it, and the gain adjustment process can be simplified.

本実施の形態によれば、下記の効果を奏することができる。   According to the present embodiment, the following effects can be achieved.

(1) トリミング可能な抵抗としての抵抗RTの抵抗値を調整して差動増幅器22の増幅度を調整することで磁気比例式電流センサ100のゲイン調整ができるため、ゲイン調整にあたってホール素子16の駆動電流ICを変化させる必要がない。したがって、特許文献1に記載のようにゲイン調整のためにホール素子の駆動電流を変化させる場合と異なりゲイン調整に伴うオフセット電圧の変化をなくすことができ、ゲイン調整を作業性よく簡素化した低コストの磁気比例式電流センサを実現することができる。 (1) Since the gain of the magnetic proportional current sensor 100 can be adjusted by adjusting the gain of the differential amplifier 22 by adjusting the resistance value of the resistor RT as a resistor that can be trimmed, the Hall element 16 is used for gain adjustment. it is not necessary to change the drive current I C of. Therefore, unlike the case where the Hall element drive current is changed for gain adjustment as described in Patent Document 1, it is possible to eliminate the change of the offset voltage accompanying the gain adjustment, and the gain adjustment is simplified with good workability. A cost-proportional magnetic current sensor can be realized.

(2) 磁気比例式電流センサ100のゲイン調整にあたってホール素子16の駆動電流ICを変化させる必要がないため、特許文献1に記載のようにゲイン調整のためにホール素子の駆動電流を変化させる場合と比較してホール素子16の駆動電流ICを最大定格(例えば10mA)の近く(例えば9mA)に設定してホール素子16の感度を高めることができ、電流検出精度が高められる。 (2) there is no need to change the drive current I C of the Hall element 16 when the gain adjustment of the magnetic proportional current sensor 100, to change the drive current of the Hall element for gain adjustment as described in Patent Document 1 Compared to the case, the drive current I C of the Hall element 16 can be set close to the maximum rating (for example, 10 mA) (for example, 9 mA) to increase the sensitivity of the Hall element 16, and the current detection accuracy can be increased.

(3) 差動増幅器22の増幅度を調整する際に抵抗R6〜R11の抵抗値は調整不要なため、増幅度の調整のために差動増幅器22のCMR(Common Mode Rejection)が低下する不都合も防止できる。以下、これについて説明する。 (3) Since the resistance values of the resistors R 6 to R 11 do not need to be adjusted when adjusting the amplification degree of the differential amplifier 22, the CMR (Common Mode Rejection) of the differential amplifier 22 is lowered to adjust the amplification degree. It is possible to prevent the inconvenience. This will be described below.

差動増幅器22は、反転増幅器と非反転増幅器の両方を重ねて作った増幅器と考えられるため、抵抗R6〜R11の抵抗値の関係(R6=R7,R8=R9=R10=R11)が崩れた場合は、差動増幅器22に反転入力端子及び非反転入力端子に同相成分が入ってきたときのCMRが低下し、理想的な差動増幅器から離れてしまい、不具合が発生しやすくなる。理想的な差動増幅器の場合は、例えば同相のノイズが入っても出力はゼロとなる(差動電圧だけを正確に増幅する)。 Since the differential amplifier 22 is considered as an amplifier in which both an inverting amplifier and a non-inverting amplifier are overlapped, the relationship between the resistance values of the resistors R 6 to R 11 (R 6 = R 7 , R 8 = R 9 = R When 10 = R 11 ) is broken, the CMR when the in-phase component enters the differential amplifier 22 at the inverting input terminal and the non-inverting input terminal is lowered, and the differential amplifier 22 is separated from the ideal differential amplifier. Is likely to occur. In the case of an ideal differential amplifier, for example, even if in-phase noise enters, the output becomes zero (only the differential voltage is amplified accurately).

ここで、抵抗R8〜R11(又は、抵抗R6及びR7)を半固定抵抗器やレーザトリミング抵抗器としてその抵抗値を調整することでゲイン調整する場合を考えると、調整後の抵抗値が等しくなるようにする(R8=R9=R10=R11(又はR6=R7)を満たすようにする)ことは至難の業であり、抵抗値の上記関係が崩れてCMRが低下し、理想的な差動増幅器から遠ざかってしまう。 Here, when adjusting the gain by adjusting the resistance values of the resistors R 8 to R 11 (or resistors R 6 and R 7 ) as semi-fixed resistors or laser trimming resistors, the adjusted resistors It is extremely difficult to make the values equal (to satisfy R 8 = R 9 = R 10 = R 11 (or R 6 = R 7 )). Will fall away from the ideal differential amplifier.

一方、本実施の形態によれば上述のとおりトリミング可能な抵抗としての抵抗RTの抵抗値を調整することで差動増幅器22の増幅度を調整でき、抵抗R6〜R11の抵抗値は調整不要なため、抵抗R6〜R11として高精度の固定抵抗器を用いることができる。このため差動増幅器22の増幅度の調整(すなわち磁気比例式電流センサ100のゲイン調整)のために抵抗R6〜R11の抵抗値の関係(R6=R7,R8=R9=R10=R11)が崩れることはなく、理想的な差動増幅器に近い状態を維持することができる。 On the other hand, according to the present embodiment, the amplification degree of the differential amplifier 22 can be adjusted by adjusting the resistance value of the resistor RT as a resistor that can be trimmed as described above, and the resistance values of the resistors R 6 to R 11 are Since adjustment is not necessary, high-precision fixed resistors can be used as the resistors R 6 to R 11 . Therefore, the relationship between the resistance values of the resistors R 6 to R 11 (R 6 = R 7 , R 8 = R 9 =) for adjusting the amplification degree of the differential amplifier 22 (ie, adjusting the gain of the magnetic proportional current sensor 100). R 10 = R 11 ) does not collapse, and a state close to an ideal differential amplifier can be maintained.

以上、実施の形態を例に本発明を説明したが、実施の形態の各構成要素には請求項に記載の範囲で種々の変形が可能であることは当業者に理解されるところである。以下、変形例について触れる。   The present invention has been described above by taking the embodiment as an example. However, it will be understood by those skilled in the art that various modifications can be made to each component of the embodiment within the scope of the claims. Hereinafter, modifications will be described.

実施の形態ではホール素子16の温度特性への配慮について特に触れなかったが、変形例では定電流回路18の抵抗R4を温度補償用の例えば正温度係数抵抗器(サーミスタ)として温度変化に伴う磁気比例式電流センサ100の精度を補償してもよい。すなわち、ホール素子16は図5に例示のようにギャップ内磁束密度Bが一定(例えば50mT)かつ駆動電流ICが一定(例えば10mA)であれば周囲温度Taが高いほど出力電圧VHが小さくなる傾向があるところ、定電流回路18の抵抗R4を正温度係数抵抗器とすれば、周囲温度Taが高いほど分圧回路24からの分圧電圧Vdvが大きくなってホール素子16の駆動電流ICが大きくなる(上記式(2)参照)ため、ホール素子16の感度が高められて温度特性の影響が補償される。なお、抵抗R4に代えて抵抗R3を温度補償用の抵抗器(負温度係数抵抗器(サーミスタ))としてもよい。 In the embodiment, consideration for the temperature characteristics of the Hall element 16 is not particularly mentioned. However, in the modified example, the resistance R 4 of the constant current circuit 18 is used as a temperature compensation resistor, for example, a positive temperature coefficient resistor (thermistor), which accompanies temperature change. The accuracy of the magnetic proportional current sensor 100 may be compensated. That is, the Hall element 16 is constant gap magnetic flux density B as illustrated in FIG. 5 (e.g., 50 mT) and the driving current I C ambient temperature if constant (e.g. 10 mA) is T a is higher than the output voltage V H is where tend to be small, if the resistance R 4 of the constant current circuit 18 and the positive temperature coefficient resistor, a Hall element 16 increases divided voltage V dv from the voltage dividing circuit 24 the higher the ambient temperature T a Drive current I C becomes larger (see the above equation (2)), the sensitivity of the Hall element 16 is increased and the influence of temperature characteristics is compensated. Instead of the resistor R 4 , the resistor R 3 may be a temperature compensation resistor (negative temperature coefficient resistor (thermistor)).

実施の形態では定電流回路に用いるトランジスタをNPN型バイポーラトランジスタとする場合を説明したが、変形例ではPNP型バイポーラトランジスタ又は電界効果トランジスタとしてもよい。この場合の定電流回路の構成を図6(A)〜(C)に示す。   In the embodiment, the case where the transistor used in the constant current circuit is an NPN bipolar transistor has been described. However, in a modified example, a PNP bipolar transistor or a field effect transistor may be used. The configuration of the constant current circuit in this case is shown in FIGS.

図6(A)はPNP型バイポーラトランジスタを用いた場合である。この場合、電流設定用抵抗R9及びPNP型バイポーラトランジスタQは、電源端子12とホール素子16の電流供給端子aとの間に、電流設定用抵抗R9が電源端子12側となるように直列に接続される。すなわち、電源端子12とPNP型バイポーラトランジスタQのエミッタとの間に電流設定用抵抗R9が設けられ、PNP型バイポーラトランジスタQのコレクタがホール素子16の電流供給端子aに接続される。演算増幅器32は、分圧回路24からの分圧電圧Vdvが非反転入力端子に入力され、PNP型バイポーラトランジスタQと電流設定用抵抗R9との接続点に反転入力端子が接続され、出力端子がPNP型バイポーラトランジスタQの制御端子(ベース端子)に接続される。 FIG. 6A shows the case where a PNP bipolar transistor is used. In this case, the current setting resistor R 9 and the PNP bipolar transistor Q are connected in series such that the current setting resistor R 9 is on the power supply terminal 12 side between the power supply terminal 12 and the current supply terminal a of the Hall element 16. Connected to. That is, a current setting resistor R 9 is provided between the power supply terminal 12 and the emitter of the PNP bipolar transistor Q, and the collector of the PNP bipolar transistor Q is connected to the current supply terminal a of the Hall element 16. Operational amplifier 32, the divided voltage V dv from the voltage dividing circuit 24 is input to the non-inverting input terminal, an inverting input terminal connected to a junction of a PNP bipolar transistor Q and the current setting resistor R 9, output The terminal is connected to the control terminal (base terminal) of the PNP bipolar transistor Q.

図6(B)ではNチャンネルMOS型の電界効果トランジスタ(MOS:Metal-Oxide Semiconductor)を用いており、これは図1の定電流回路18の変形である。図6(C)ではPチャンネルMOS型の電界効果トランジスタを用いており、これは同図(A)の定電流回路18の変形である。なお、ホール素子16の駆動回路は定電流回路に限定されず、ホール素子16の電流供給端子a及びcをそれぞれ電源端子12及び接地端子14に必要に応じて抵抗(固定抵抗)を介して接続して定電圧駆動としてもよい。   In FIG. 6B, an N channel MOS type field effect transistor (MOS: Metal-Oxide Semiconductor) is used, which is a modification of the constant current circuit 18 of FIG. In FIG. 6C, a P-channel MOS field effect transistor is used, which is a modification of the constant current circuit 18 of FIG. The drive circuit of the Hall element 16 is not limited to a constant current circuit, and the current supply terminals a and c of the Hall element 16 are connected to the power supply terminal 12 and the ground terminal 14 through resistors (fixed resistors) as necessary. Thus, constant voltage driving may be used.

実施の形態ではホール素子16が磁気コア20のギャップ部Gに配置される場合を説明したが、変形例では図9に例示のようなコアレス構成を採用してもよい。   In the embodiment, the case where the Hall element 16 is disposed in the gap portion G of the magnetic core 20 has been described. However, in a modification, a coreless configuration illustrated in FIG. 9 may be adopted.

実施の形態では磁気比例式電流センサを単電源駆動する場合を説明したが、変形例では両電源駆動としてもよい。この場合、中間電圧Vmdとしては接地電位を用いることができるので、中間電圧生成回路26は不要である。 In the embodiment, the case where the magnetic proportional current sensor is driven by a single power supply has been described. In this case, since the ground potential can be used as the intermediate voltage V md , the intermediate voltage generation circuit 26 is not necessary.

実施の形態では抵抗RTをトリミング可能な抵抗(例えばレーザトリミング抵抗器)としたが、変形例では抵抗RTを可変抵抗としてもよい。 In the embodiment, the resistor RT is a resistor that can be trimmed (for example, a laser trimming resistor), but in a modified example, the resistor RT may be a variable resistor.

本発明の実施の形態に係る磁気比例式電流センサの回路図。1 is a circuit diagram of a magnetic proportional current sensor according to an embodiment of the present invention. (A)は同磁気比例式電流センサのホール素子に印加される磁界(ギャップ内磁束密度)の模式的説明図。(B)は被測定電流に対するギャップ内磁束密度の例示的な特性図。(A) is typical explanatory drawing of the magnetic field (magnetic flux density in a gap) applied to the Hall element of the magnetic proportional type current sensor. (B) is an exemplary characteristic diagram of the magnetic flux density in the gap with respect to the current to be measured. 同ホール素子の駆動電流と出力電圧との関係を例示する特性図。The characteristic view which illustrates the relationship between the drive current and output voltage of the Hall element. 同ホール素子の駆動電流とオフセット電圧との関係を例示する特性図。The characteristic view which illustrates the relationship between the drive current of the Hall element, and an offset voltage. 同ホール素子の出力電圧の周囲温度に対する例示的な特性図。The characteristic view with respect to the ambient temperature of the output voltage of the Hall element. 定電流回路の変形例を示す回路図。The circuit diagram which shows the modification of a constant current circuit. 磁気比例式電流センサの基本的構成図。The basic block diagram of a magnetic proportional type current sensor. 磁気比例式電流センサの基本的回路図。A basic circuit diagram of a magnetic proportional current sensor. リング状の磁気コアを用いないコアレス構造の磁気比例式電流センサの構成を示す、(A)は平面図、(B)は断面図。The structure of the magnetic proportional type current sensor of the coreless structure which does not use a ring-shaped magnetic core is shown, (A) is a top view, (B) is sectional drawing. 図9の場合における、被測定電流とそれによってホール素子の感磁面に印加される磁界(磁束密度)との関係を例示する特性図。FIG. 10 is a characteristic diagram illustrating the relationship between the current to be measured and the magnetic field (magnetic flux density) applied to the magnetic sensitive surface of the Hall element in the case of FIG. 9.

符号の説明Explanation of symbols

12 電源端子
14 接地端子
15 センサ出力端子
16 ホール素子
18 定電流回路
22 差動増幅器
24 分圧回路
26 中間電圧生成回路
100 磁気比例式電流センサ
12 power supply terminal 14 ground terminal 15 sensor output terminal 16 hall element 18 constant current circuit 22 differential amplifier 24 voltage dividing circuit 26 intermediate voltage generating circuit 100 magnetic proportional current sensor

Claims (3)

被測定電流によって発生する磁界が印加される磁気検出素子と、
前記磁気検出素子を定電圧駆動又は定電流駆動する駆動回路と、
前記磁気検出素子の出力電圧を増幅する差動増幅器とを備え、
前記差動増幅器は、オペアンプと、第1ないし第6抵抗と、トリミング可能な抵抗又は可変抵抗とを有し、
前記磁気検出素子の一方の出力端子と前記オペアンプの反転入力端子とを接続する経路に前記第1抵抗が設けられ、前記磁気検出素子の他方の出力端子と前記オペアンプの非反転入力端子とを接続する経路に前記第2抵抗が設けられ、前記オペアンプの出力端子と前記反転入力端子とを接続する経路に前記第3及び第4抵抗が直列に接続され、前記非反転入力端子と基準電圧端子とを接続する経路に前記第5及び第6抵抗が直列に接続され、前記第3及び第4抵抗の接続点と前記第5及び第6抵抗の接続点とを接続する経路に前記トリミング可能な抵抗又は前記可変抵抗が設けられ、前記第1及び第2抵抗が同抵抗値であり、前記第3ないし第6抵抗が同抵抗値である、磁気比例式電流センサ。
A magnetic sensing element to which a magnetic field generated by a current to be measured is applied;
A drive circuit for driving the magnetic detection element at a constant voltage or a constant current;
A differential amplifier that amplifies the output voltage of the magnetic detection element;
The differential amplifier includes an operational amplifier, first to sixth resistors, and a trimmable resistor or a variable resistor.
The first resistor is provided in a path connecting one output terminal of the magnetic detection element and the inverting input terminal of the operational amplifier, and connects the other output terminal of the magnetic detection element and the non-inverting input terminal of the operational amplifier. The second resistor is provided in a path to be connected, the third and fourth resistors are connected in series to a path connecting the output terminal of the operational amplifier and the inverting input terminal, and the non-inverting input terminal and the reference voltage terminal are connected to each other. The fifth and sixth resistors are connected in series to the path connecting the three, and the trimmable resistance is connected to the path connecting the connection point of the third and fourth resistors and the connection point of the fifth and sixth resistors. Alternatively, a magnetic proportional current sensor provided with the variable resistor, wherein the first and second resistors have the same resistance value, and the third to sixth resistors have the same resistance value.
請求項1に記載の磁気比例式電流センサにおいて、前記第1ないし第6抵抗が固定抵抗である、磁気比例式電流センサ。   2. The magnetic proportional current sensor according to claim 1, wherein the first to sixth resistors are fixed resistors. 請求項1又は2に記載の磁気比例式電流センサにおいて、
前記被測定電流の経路を囲む、ギャップ部を有するリング状磁気コアをさらに備え、
前記磁気検出素子が前記ギャップ部に位置する、磁気比例式電流センサ。
The magnetic proportional current sensor according to claim 1 or 2,
A ring-shaped magnetic core having a gap portion surrounding the path of the current to be measured;
A magnetic proportional current sensor, wherein the magnetic detection element is located in the gap portion.
JP2008299524A 2008-11-25 2008-11-25 Magnetic proportional current sensor gain adjustment method Expired - Fee Related JP5126536B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008299524A JP5126536B2 (en) 2008-11-25 2008-11-25 Magnetic proportional current sensor gain adjustment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008299524A JP5126536B2 (en) 2008-11-25 2008-11-25 Magnetic proportional current sensor gain adjustment method

Publications (2)

Publication Number Publication Date
JP2010127636A true JP2010127636A (en) 2010-06-10
JP5126536B2 JP5126536B2 (en) 2013-01-23

Family

ID=42328160

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008299524A Expired - Fee Related JP5126536B2 (en) 2008-11-25 2008-11-25 Magnetic proportional current sensor gain adjustment method

Country Status (1)

Country Link
JP (1) JP5126536B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013105451A1 (en) * 2012-01-12 2013-07-18 アルプス・グリーンデバイス株式会社 Current sensor
CN106324332A (en) * 2015-07-06 2017-01-11 深圳市沃特玛电池有限公司 Current sampling circuit of battery management system
JP2017078646A (en) * 2015-10-21 2017-04-27 甲神電機株式会社 Sensor using bridge type sensor element, and bottom side voltage adjustment circuit of sensor element
CN117519404A (en) * 2024-01-05 2024-02-06 深圳市信瑞达电力设备有限公司 Method and circuit topology for adjusting output gain of Hall element

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03165281A (en) * 1989-11-24 1991-07-17 Yamaha Corp Sensor circuit
JP2000097972A (en) * 1998-09-25 2000-04-07 Asahi Kasei Denshi Kk Current sensor
JP2004020560A (en) * 2002-06-19 2004-01-22 Sumida Technologies Inc Current sensor and method for controlling the same
JP2008241552A (en) * 2007-03-28 2008-10-09 Mitsubishi Electric Corp Method of adjusting current sensor device, and current sensor device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03165281A (en) * 1989-11-24 1991-07-17 Yamaha Corp Sensor circuit
JP2000097972A (en) * 1998-09-25 2000-04-07 Asahi Kasei Denshi Kk Current sensor
JP2004020560A (en) * 2002-06-19 2004-01-22 Sumida Technologies Inc Current sensor and method for controlling the same
JP2008241552A (en) * 2007-03-28 2008-10-09 Mitsubishi Electric Corp Method of adjusting current sensor device, and current sensor device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013105451A1 (en) * 2012-01-12 2013-07-18 アルプス・グリーンデバイス株式会社 Current sensor
CN104040362A (en) * 2012-01-12 2014-09-10 阿尔卑斯绿色器件株式会社 Current sensor
JPWO2013105451A1 (en) * 2012-01-12 2015-05-11 アルプス・グリーンデバイス株式会社 Current sensor
CN106324332A (en) * 2015-07-06 2017-01-11 深圳市沃特玛电池有限公司 Current sampling circuit of battery management system
JP2017078646A (en) * 2015-10-21 2017-04-27 甲神電機株式会社 Sensor using bridge type sensor element, and bottom side voltage adjustment circuit of sensor element
CN117519404A (en) * 2024-01-05 2024-02-06 深圳市信瑞达电力设备有限公司 Method and circuit topology for adjusting output gain of Hall element
CN117519404B (en) * 2024-01-05 2024-03-22 深圳市信瑞达电力设备有限公司 Method and circuit topology for adjusting output gain of Hall element

Also Published As

Publication number Publication date
JP5126536B2 (en) 2013-01-23

Similar Documents

Publication Publication Date Title
JP2010181211A (en) Current sensor and method of compensating temperature characteristic of magnetic detecting element used for the same
JP4258430B2 (en) Current sensor
US11199593B2 (en) Magnetic sensor
WO2007007765A1 (en) Current-voltage conversion circuit and power consumption detection circuit and electronic device using the same
JP6143752B2 (en) Manufacturing method of current sensor and current sensor
WO2012070337A1 (en) Current sensor
JPWO2014203525A1 (en) Amplifier circuit and amplifier circuit IC chip
JP5126536B2 (en) Magnetic proportional current sensor gain adjustment method
JP2010002388A (en) Magnetic proportional current sensor
JP4883289B2 (en) Current sensor disconnection detector
JP4761080B2 (en) Disconnection detection system between current sensor and electronic control unit
US20100097146A1 (en) Signal amplification circuit
JP5891516B2 (en) Current sensor
JP6291224B2 (en) Magnetic sensor
JP6586853B2 (en) Current source circuit and detection circuit
JP2010085190A (en) Sensor apparatus and self-diagnosis method of sensor apparatus
JP2006003209A (en) Current detector
JP2011169833A (en) Current sensor
JP2007033270A (en) Sensor circuit and circuit unit
JP3989131B2 (en) Drive circuit for physical quantity detection element and rotation angle sensor
US6861717B2 (en) Device for defecting a magnetic field, magnetic field measure and current meter
US20140125328A1 (en) Magnetic detection device
JPH0814616B2 (en) Hall element device
JPS6361961A (en) Current detector
JP2938657B2 (en) Current detection circuit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120711

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120808

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121003

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121016

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5126536

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151109

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees