JPH0658766A - Absolute position detector and motor control apparatus - Google Patents

Absolute position detector and motor control apparatus

Info

Publication number
JPH0658766A
JPH0658766A JP20834292A JP20834292A JPH0658766A JP H0658766 A JPH0658766 A JP H0658766A JP 20834292 A JP20834292 A JP 20834292A JP 20834292 A JP20834292 A JP 20834292A JP H0658766 A JPH0658766 A JP H0658766A
Authority
JP
Japan
Prior art keywords
magnetic
track
magnetoresistive
magnetoresistive effect
absolute position
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20834292A
Other languages
Japanese (ja)
Inventor
Tadashi Takahashi
正 高橋
Shoichi Kawamata
昭一 川又
Seiji Yamashita
誠二 山下
Ichiro Hashimoto
一郎 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP20834292A priority Critical patent/JPH0658766A/en
Publication of JPH0658766A publication Critical patent/JPH0658766A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

PURPOSE:To obtain a compact absolute position detector having the simple constitution and high resolution by using a magnetic recording medium and magnetoresistance effect elements and to obtain a motor control apparatus by using the absolute position detector. CONSTITUTION:Tracks T1 and T2, wherein a plurality of magnetic signals are recorded, are provided in a moving magnetic recording medium 1. Magnetic signals NS at a pitch lambda1 are continuously recorded on the first track T1. Magnetic signals NS at a pitch lambda2 are continuously recorded on the second track T2. A magnetism sensor 2 is arranged so as to face the magnetic recording medium 1. The magnetism sensor 2 has a first magnetoresistance effect element R11 and a second magnetoresistance effect element R21. The absolute position of a moving body is detected based on the phase difference between two sets of the output signals obtained with the magnetoresistance effect elements. The highly accurate controllability is obtained with a motor control apparatus using this absolute position detector.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は磁気的に位置を検出する
装置に係り、位置制御に好適な複数の磁気記録媒体と複
数の磁気抵抗効果素子を用いた絶対位置検出装置および
その応用に関するものである。特に、例えば、サ−ボ制
御の分野で広く利用される。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for magnetically detecting a position, and more particularly to an absolute position detecting apparatus using a plurality of magnetic recording media suitable for position control and a plurality of magnetoresistive effect elements and its application. Is. In particular, it is widely used in the field of servo control, for example.

【0002】[0002]

【従来の技術】従来の位置検出装置は、磁気記録された
磁気信号を有する磁気記録媒体とこの磁気記録媒体のト
ラツクに対向して配置された磁気検出素子からなり、こ
の磁気検出素子によって得られる検出信号に基づいて移
動体の位置を検出させていた。このような構成の位置検
出装置は、磁気記録単位を移動体の移動方向に所要数連
続させる必要があった。すなわち、磁気記録信号の記録
長は、この最小磁気記録単位の磁極N,Sを前記トラツ
クの移動方向に連続して、トラック毎に所要数を記録さ
せるため、ほぼ出力信号のビット数に等しい磁気トラッ
クと磁気センサが用いられていた。すなわち、分解能が
256得られる8ビットの場合においては、8以上のト
ラックと磁気センサを用いていた。そのため、位置検出
装置は構成が複雑で、その形状が大きくなり、小型化が
難しいという欠点があった。これに関連するものとして
は、例えば特開昭61ー17001号公報記載の技術が
知られている。また、上記従来の位置検出装置を構成要
素とするモ−タ制御装置も構成が複雑、かつ、大きな据
付け面積を要するという欠点が有った。
2. Description of the Related Art A conventional position detecting device comprises a magnetic recording medium having a magnetically recorded magnetic signal and a magnetic detecting element arranged so as to face a track of the magnetic recording medium. The position of the moving body is detected based on the detection signal. In the position detecting device having such a configuration, it is necessary to make the required number of magnetic recording units continuous in the moving direction of the moving body. That is, the recording length of the magnetic recording signal is substantially equal to the number of bits of the output signal because the required number of magnetic poles N and S of the minimum magnetic recording unit are continuously recorded in each track in the moving direction of the track. Tracks and magnetic sensors were used. That is, in the case of 8 bits that can obtain a resolution of 256, eight or more tracks and magnetic sensors were used. Therefore, the position detection device has a drawback that the structure is complicated, its shape is large, and miniaturization is difficult. As a technique related to this, for example, the technique described in JP-A-61-17011 is known. Further, the motor control device having the above-mentioned conventional position detecting device as a constituent element has a drawback that the structure is complicated and a large installation area is required.

【0003】[0003]

【発明が解決しようとする課題】上記従来の位置検出装
置は、前述の如く、ほぼ出力信号のビット数に等しい磁
気トラックと磁気センサとが用いられており、しかも磁
気センサを構成する磁気抵抗効果素子は、一方向が非常
に長く(以下、長手方向という)、他の方向(以下、幅
方向という)は短い異方性の形状で磁気抵抗をもたせて
いた。
As described above, the above-mentioned conventional position detecting device uses the magnetic track and the magnetic sensor whose number of bits of the output signal is almost equal to each other, and moreover, the magnetoresistive effect constituting the magnetic sensor. The element has an anisotropic shape in which one direction is very long (hereinafter, referred to as a longitudinal direction) and the other direction (hereinafter, referred to as a width direction) has an anisotropic shape to provide magnetoresistance.

【0004】この異方性の形状の素子を必要な個数だけ
長手方向に配設されていたため、構成が複雑で、その形
状が大きくなり、小型化が難しいという問題点があっ
た。また、この絶対位置検出装置を使用したモ−タ制御
装置も構成が複雑で、その形状が大きくなるという問題
点があった。
Since a required number of the anisotropically shaped elements are arranged in the longitudinal direction, there is a problem that the structure is complicated, the shape is large, and miniaturization is difficult. Further, the motor control device using this absolute position detection device also has a problem that the structure is complicated and its shape becomes large.

【0005】本発明は、上記従来技術の問題点を解決す
るためになされたもので、構成が簡略化され、装置を小
型化し、しかも、高分解能の絶対位置検出装置を提供す
ることを第一の目的とする。また、本発明の第二の目的
は上記高分解能の絶対位置検出装置を用いた高精度モ−
タ制御装置を提供することにある。
The present invention has been made in order to solve the above-mentioned problems of the prior art, and it is a first object of the present invention to provide an absolute position detecting device having a simplified structure, a small size, and high resolution. The purpose of. A second object of the present invention is to provide a high precision mode using the high resolution absolute position detecting device.
To provide a control device.

【0006】[0006]

【課題を解決するための手段】上記第一の目的を達成す
るために、本発明に係る絶対位置検出装置の構成は、移
動体または固定体に取り付けられた磁気信号NSを記録
した磁気記録媒体と、固定体または移動体に取り付けら
れた磁気抵抗効果素子からなる磁気センサとを備えた前
記移動体の位置を検出する位置検出装置において、前記
磁気記録媒体は、二つのトラックに分け、第一のトラッ
クにはn個の磁気信号(n;偶数)を、第二のトラック
には(n±2)個の磁気信号をそれぞれ記録させ、前記
磁気センサは二組の磁気抵抗効果素子群で構成し、第一
組の磁気抵抗効果素子群は前記第一のトラックに、第二
組の磁気抵抗効果素子群は前記第二のトラックにそれぞ
れ対向するように配設され、該第一組の磁気抵抗素子群
の出力から得られる第一の電気角度θ1と該第二組の磁
気抵抗素子群の出力から得られる第二の電気角度θ2と
の位相差から前記移動体の絶対位置を得るようにしたも
のである。
In order to achieve the first object, an absolute position detecting device according to the present invention has a magnetic recording medium having a magnetic signal NS recorded on a moving body or a fixed body. In the position detection device for detecting the position of the moving body, the magnetic recording medium is divided into two tracks, N magnetic signals (n; even number) are recorded on each track, and (n ± 2) magnetic signals are recorded on the second track, and the magnetic sensor is composed of two sets of magnetoresistive element groups. The first set of magnetoresistive effect element groups is arranged so as to face the first track, and the second set of magnetoresistive effect element groups is arranged so as to face the second track. Obtained from the output of the resistive element group Is obtained so as to obtain the absolute position of the moving body from the phase difference between the second electrical angle θ2, which is obtained from the output of the first electrical angle θ1 and said two sets of magneto-resistive element group.

【0007】上記二つのトラックを第一,第二,第三の
3トラックで構成してもよく、n個の磁気信号(n;偶
数)をm個(m;整数)の磁気信号としてもよい。すな
わち、磁気信号を記録する磁気記録媒体のトラックを基
本的には2〜3トラックにし、それぞれのトラックに記
録する磁気信号の数を異なるようにする。そして、この
トラックに対向して配設される2〜3組の磁気センサの
出力は、それぞれのトラックの位置によって、その電気
的な位相が異なることを利用して移動体の絶対位置を検
出するようにしたものである。また、2つのトラックか
ら得られる信号と1つのトラックから得られる信号とを
利用して、移動体の絶対位置を検出し、分解能の向上を
図るようにしたものである。
The above-mentioned two tracks may be composed of first, second and third tracks, and n magnetic signals (n; even number) may be m (m; integer) magnetic signals. . That is, basically, the tracks of the magnetic recording medium for recording the magnetic signals are set to 2 to 3 tracks, and the numbers of the magnetic signals to be recorded on the respective tracks are made different. The absolute position of the moving body is detected by utilizing the fact that the outputs of the two to three sets of magnetic sensors arranged facing this track have different electrical phases depending on the position of each track. It was done like this. Further, the absolute position of the moving body is detected by using the signal obtained from the two tracks and the signal obtained from the one track to improve the resolution.

【0008】また、上記第二の目的を達成するために、
本発明に係るモータ制御装置の構成は、機器を駆動する
制御用モータと該モータの位置を検出する位置検出器を
備えたモータ制御装置において、当該位置検出器に上記
の絶対位置検出装置を用いたものである。
In order to achieve the above second object,
The configuration of a motor control device according to the present invention is a motor control device including a control motor for driving a device and a position detector for detecting the position of the motor, wherein the absolute position detection device is used for the position detector. It was what I had.

【0009】[0009]

【作用】上記各技術手段の働きは次のとおりである。第
一の発明の構成によれば、移動体に取り付けた磁気記録
媒体に磁気信号を記録するトラックを2〜3に分け、第
1のトラックにはn個(n;偶数)またはm個(m;整
数)の磁気信号を記録させ、第2のトラックには(n±
2)個または(m±1)個の磁気信号を記録させ、前記
トラックに対向したそれぞれ複数の磁気抵抗効果素子か
らなる磁気センサを設けたので、これら磁気センサから
出力電気信号を得ることができる。
The operation of each of the above technical means is as follows. According to the configuration of the first invention, tracks for recording magnetic signals on the magnetic recording medium attached to the moving body are divided into 2 to 3, and n tracks (n; even number) or m tracks (m) are provided on the first track. (Integer) magnetic signal is recorded and (n ±) is recorded on the second track.
2) or (m ± 1) magnetic signals are recorded, and the magnetic sensors composed of a plurality of magnetoresistive elements facing the track are provided, so that an output electric signal can be obtained from these magnetic sensors. .

【0010】これらの出力電気信号はそれぞれトラック
に記録されている磁気信号の数が異なるので、磁気抵抗
効果素子の抵抗変化の周期が異なり、そのため前記電気
信号の周期も異なる。したがって、第1のトラックに対
向する磁気抵抗効果素子の電気出力信号の電気角と第2
のトラックに対向する磁気抵抗効果素子の電気出力信号
の電気角との位相差により、移動体の絶対位置を検出す
るものである。
Since these output electric signals have different numbers of magnetic signals recorded on the tracks, the cycle of resistance change of the magnetoresistive effect element is different, and therefore the cycle of the electric signal is also different. Therefore, the electrical angle of the electrical output signal of the magnetoresistive element facing the first track and the second angle
The absolute position of the moving body is detected by the phase difference from the electrical angle of the electrical output signal of the magnetoresistive element facing the track.

【0011】また、第3のトラックを設けた場合は、該
第3のトラックに対向する磁気センサの磁気抵抗効果素
子の出力信号と上記第1〜2のトラックに対向した磁気
センサの磁気抵抗効果素子の出力信号との組合せから、
高分解能な移動体の絶対位置を得ることができる。
Further, when the third track is provided, the output signal of the magnetoresistive effect element of the magnetic sensor facing the third track and the magnetoresistive effect of the magnetic sensor facing the first and second tracks. From the combination with the output signal of the element,
It is possible to obtain the absolute position of the moving body with high resolution.

【0012】また、上記磁気センサの複数の磁気抵抗効
果素子のそれぞれの位置を電気的にずらせて配設したの
で、この位置のずれに基ずく出力信号の位相差とその組
合せから移動体の粗位置と微細位置とを検出し、より高
分解能な移動体の絶対位置を得ることができる。
Further, since the respective positions of the plurality of magnetoresistive effect elements of the magnetic sensor are arranged so as to be electrically displaced, the phase difference of the output signal based on the displacement of the positions and the combination thereof are used to estimate the coarseness of the moving body. By detecting the position and the fine position, it is possible to obtain the absolute position of the moving body with higher resolution.

【0013】また、第二の発明の構成によれば、機器を
駆動する制御用モータと該モータの位置を検出する位置
検出器を備えたモータ制御装置において、当該位置検出
器に第一の発明の絶対位置検出装置を用いたので、この
絶対位置検出装置より正確な位置信号を入力して、高精
度なモータ制御ができる。
Further, according to the structure of the second invention, in the motor control device provided with the control motor for driving the device and the position detector for detecting the position of the motor, the position detector has the first invention. Since this absolute position detecting device is used, it is possible to input a more accurate position signal than this absolute position detecting device and perform highly accurate motor control.

【0014】[0014]

【実施例】以下、本発明の各実施例を図1ないし図21
を参照して説明する。 〔実施例 1〕図1は本発明の一実施例に係る回転型絶
対位置検出装置の基本構成図、図2は図1の装置におけ
る磁気抵抗効果素子の信号磁界特性図、図3は本発明の
一実施例に係る回転型絶対位置検出装置の展開図、図4
は図3の装置における磁気抵抗効果素子の出力波形図、
図5は図3の装置における移動体回転位置と磁気抵抗効
果素子の出力の位相差の関係を示す線図である。
Embodiments of the present invention will now be described with reference to FIGS. 1 to 21.
Will be described with reference to. [Embodiment 1] FIG. 1 is a basic configuration diagram of a rotary absolute position detecting device according to an embodiment of the present invention, FIG. 2 is a signal magnetic field characteristic diagram of a magnetoresistive effect element in the device of FIG. 1, and FIG. 4 is a development view of a rotary absolute position detection device according to one embodiment of the present invention.
Is an output waveform diagram of the magnetoresistive effect element in the device of FIG.
FIG. 5 is a diagram showing the relationship between the rotational position of the moving body and the phase difference of the output of the magnetoresistive effect element in the apparatus of FIG.

【0015】図1において、1は磁気記録媒体である磁
気ドラム、2は磁気センサ、3は磁気ドラムの回転軸で
ある。磁気ドラム1は回転軸3に取り付けられ、この軸
3を中心に回転できるようになっている。磁気ドラム1
の表面には2つの磁気トラックT1,T2を設け、第一
のトラックT1にはピッチλ1の磁気信号NS,第二の
トラックT2にはピッチλ2の磁気信号NSが連続して
記録されている。また、この磁気ドラム1に対向して磁
気センサ2を配設されており、さらに、磁気センサ2に
は、第一の磁気抵抗効果素子R11と第二の磁気抵抗効
果素子R21が配設されている。磁気抵抗効果素子R1
1,R21はパーマロイ等強磁性体の薄膜で形成されて
おり、印加磁界により素子の電気抵抗が変化する特性を
有している。
In FIG. 1, 1 is a magnetic drum which is a magnetic recording medium, 2 is a magnetic sensor, and 3 is a rotating shaft of the magnetic drum. The magnetic drum 1 is attached to a rotating shaft 3 and can rotate about this shaft 3. Magnetic drum 1
Two magnetic tracks T1 and T2 are provided on the surface of the magnetic recording medium, and a magnetic signal NS having a pitch λ1 is continuously recorded on the first track T1 and a magnetic signal NS having a pitch λ2 is continuously recorded on the second track T2. Further, a magnetic sensor 2 is arranged to face the magnetic drum 1, and the magnetic sensor 2 further includes a first magnetoresistive effect element R11 and a second magnetoresistive effect element R21. There is. Magnetoresistive element R1
1, R21 are formed of a thin film of a ferromagnetic material such as permalloy, and have a characteristic that the electric resistance of the element changes with an applied magnetic field.

【0016】次に、上記構成の本発明の実施例に係る絶
対位置検出装置の機能を説明する。磁気ドラム1が、回
転軸3を中心として回転すると、磁気抵抗効果素子R1
1,R21に加えられる磁界が磁気ドラム1の位置によ
り変化する。磁界が位置により変化すると、それにより
この素子R11,R21の抵抗がその磁気抵抗効果特性
により変化する。したがって、逆に、前記素子R11,
R21の抵抗を知ることにより磁気ドラム1の回転位置
を知る事ができる。
Next, the function of the absolute position detecting device according to the embodiment of the present invention having the above-mentioned structure will be described. When the magnetic drum 1 rotates about the rotating shaft 3, the magnetoresistive effect element R1
1, the magnetic field applied to R21 changes depending on the position of the magnetic drum 1. When the magnetic field changes depending on the position, the resistance of the elements R11 and R21 changes due to its magnetoresistive effect characteristic. Therefore, conversely, the element R11,
By knowing the resistance of R21, the rotational position of the magnetic drum 1 can be known.

【0017】さらに、詳しく説明すると、磁気抵抗効果
素子R11,R21の信号磁界に対する特性は、図2に
示すように磁界の正負に関係なく磁界の大きさの2乗に
反比例し、その抵抗が減少する特性を示し、ある磁界で
抵抗変化は飽和する。いま、磁気ドラム1が回転する
と、磁気抵抗効果素子R11,R21に印加されている
磁界が正弦波状に変化するので、図2の〜に対応し
て抵抗が変わり、1サイクルの磁界変化に対して磁気抵
抗効果素子R11,R21の抵抗変化が2サイクル分得
られる。
More specifically, the characteristics of the magnetoresistive effect elements R11 and R21 with respect to the signal magnetic field are inversely proportional to the square of the magnitude of the magnetic field regardless of whether the magnetic field is positive or negative as shown in FIG. The resistance change is saturated in a certain magnetic field. Now, when the magnetic drum 1 rotates, the magnetic fields applied to the magnetoresistive effect elements R11 and R21 change sinusoidally, so that the resistance changes corresponding to 1 to 3 in FIG. The resistance changes of the magnetoresistive effect elements R11 and R21 are obtained for two cycles.

【0018】ここで、磁気ドラム1のトラックT1の磁
気信号の数とトラックT2の磁気信号の数が異なるの
で、トラックT1の磁気信号が印加される磁気抵抗効果
素子R11の抵抗変化とトラックT2の磁気信号が印加
される磁気抵抗効果素子R21の抵抗変化の電気的な周
期がことなる。このことは、磁気ドラム1の位置によっ
て磁気抵抗効果素子R11,R21の抵抗変化である正
弦波出力の電気角がことなることを意味している。した
がって、磁気抵抗効果素子R11,R21の正弦波出力
の電気角の差、すなわち位相差を検出することにより磁
気ドラム1の絶対位置が得られる。
Since the number of magnetic signals on the track T1 of the magnetic drum 1 is different from the number of magnetic signals on the track T2, the resistance change of the magnetoresistive effect element R11 to which the magnetic signal of the track T1 is applied and the track T2. The electrical cycle of the resistance change of the magnetoresistive effect element R21 to which the magnetic signal is applied is different. This means that the electrical angle of the sine wave output, which is the resistance change of the magnetoresistive effect elements R11 and R21, differs depending on the position of the magnetic drum 1. Therefore, the absolute position of the magnetic drum 1 can be obtained by detecting the difference between the electrical angles of the sine wave outputs of the magnetoresistive effect elements R11 and R21, that is, the phase difference.

【0019】図3は以上の原理をさらに、詳しく説明し
た展開図である。図3において、1Aは磁気記録媒体で
あり、わかり易くするため磁気ドラム1を展開して示し
た。2Aは磁気センサである。図示のように、磁気記録
媒体1Aの第一のトラックT1にはピッチλ1の磁気信
号が10個記録され、第二のトラックT2にはピッチλ
2の磁気信号が12個記録されている。すなわち、第一
のトラックT1にはピッチλ1の磁気信号をn個(n;
偶数)記録し、第二のトラックT2にはピッチλ2の磁
気信号が(n±2)個記録されていることになる。
FIG. 3 is a development view illustrating the above principle in more detail. In FIG. 3, reference numeral 1A is a magnetic recording medium, and the magnetic drum 1 is shown in a developed state for the sake of clarity. 2A is a magnetic sensor. As shown in the figure, ten magnetic signals having a pitch λ1 are recorded on the first track T1 of the magnetic recording medium 1A, and the pitch λ is recorded on the second track T2.
12 magnetic signals of 2 are recorded. That is, on the first track T1, n magnetic signals (n;
(Even number) is recorded, and (n ± 2) magnetic signals having a pitch λ2 are recorded on the second track T2.

【0020】磁気センサ2Aは磁気抵抗効果素子を各2
個,2組配置し、第一の組は磁気抵抗効果素子R11と
R12、第二の組は磁気抵抗効果素子R21とR22で
あり、各々λ1/4、λ2/4の間隔で配置している。λ
1とλ2の関係はλ2=λ1{n/(n±2)}となっ
ているので、第二の組の磁気抵抗効果素子R21とR2
2の間隔はλ1{n/(n±2)}/4の間隔で配置され
ていることになる。
The magnetic sensor 2A has two magnetoresistive elements.
Two sets are provided, the first set is the magnetoresistive effect elements R11 and R12, and the second set is the magnetoresistive effect elements R21 and R22, which are arranged at intervals of λ1 / 4 and λ2 / 4, respectively. . λ
Since the relationship between 1 and λ2 is λ2 = λ1 {n / (n ± 2)}, the second set of magnetoresistive effect elements R21 and R2
The intervals of 2 are arranged at intervals of λ1 {n / (n ± 2)} / 4.

【0021】磁気ドラム1が回転して、磁気記録媒体1
Aと磁気センサ2Aとの相対位置が変化すると、磁気抵
抗効果素子R11とR21に対する磁界も変化し、その
出力は図4に示す波形sin1とsin2となる。図4
の波形は、磁気ドラム1が1回転すると、もとに戻るこ
とを示している。また、磁気抵抗効果素子R12とR2
2の出力は各々図4の波形より電気角で90度、すなわ
ち、(λ1/4),(λ2/4)だけ位相が遅れる。
When the magnetic drum 1 rotates, the magnetic recording medium 1
When the relative position between A and the magnetic sensor 2A changes, the magnetic fields for the magnetoresistive effect elements R11 and R21 also change, and the outputs thereof have the waveforms sin1 and sin2 shown in FIG. Figure 4
The waveform of indicates that the magnetic drum 1 returns to its original position after one rotation. Further, the magnetoresistive effect elements R12 and R2
The outputs of 2 are each delayed by 90 degrees in electrical angle from the waveform of FIG. 4, that is, delayed by (λ1 / 4) and (λ2 / 4).

【0022】ここで、磁気抵抗効果素子R11の出力波
形sin1とR21の出力波形sin2とを比較してみ
ると、初めは両波形の位相が同じである。次に、矢印で
示した方向に回転すれば、sin2の位相がsin1の
位相より進み回転に対応して位相差が大きくなり、やが
て最初の半回転で同位相となり、後の半回転は最初の半
回転と同じことを繰り返している。これを図5におい
て、磁気ドラム1の回転位置、すなわち、磁気記録媒体
1Aの位置と両波形の位相差との関係を示している。し
たがって、sin1とsin2の位相差を比較すれば、
磁気ドラム1の半回転の絶対位置が検出できることにな
る。以上説明したように、本実施例によれば、簡単な構
成で、しかも高精度で移動体である磁気ドラム1の絶対
位置の検出をすることができる。
Here, comparing the output waveform sin1 of the magnetoresistive effect element R11 and the output waveform sin2 of R21, the phases of both waveforms are initially the same. Next, when rotating in the direction indicated by the arrow, the phase of sin2 advances from the phase of sin1, and the phase difference increases corresponding to the rotation, and eventually the first half rotation becomes the same phase, and the latter half rotation becomes the first half rotation. The same thing as half a turn is repeated. FIG. 5 shows the relationship between the rotational position of the magnetic drum 1, that is, the position of the magnetic recording medium 1A and the phase difference between the two waveforms. Therefore, by comparing the phase difference between sin1 and sin2,
The absolute position of half rotation of the magnetic drum 1 can be detected. As described above, according to the present embodiment, it is possible to detect the absolute position of the magnetic drum 1, which is a moving body, with a simple configuration and with high accuracy.

【0023】〔実施例 2〕次に、本発明の他の実施例
を説明する。図6は本発明の他の実施例に係る回転型絶
対位置検出装置の展開図、図7は図6の装置における磁
気抵抗効果素子の信号磁界特性図、図8は図6の装置に
おける磁気抵抗効果素子の出力波形図、図9は図6の装
置における移動体の回転位置と磁気抵抗効果素子出力波
形の位相差との関係を示す線図である。
[Second Embodiment] Next, another embodiment of the present invention will be described. 6 is a development view of a rotary absolute position detecting device according to another embodiment of the present invention, FIG. 7 is a signal magnetic field characteristic diagram of a magnetoresistive effect element in the device of FIG. 6, and FIG. 8 is a magnetic resistance in the device of FIG. FIG. 9 is a diagram showing the output waveform of the effect element, and FIG. 9 is a diagram showing the relationship between the rotational position of the moving body and the phase difference of the magnetoresistive effect element output waveform in the apparatus of FIG.

【0024】図6において、第一の発明の他の実施例に
係る回転型絶対位置検出装置は、図3に示す〔実施例
1〕とほぼ同じ構成である。1Bは〔実施例 1〕の磁
気記録媒体1Aと同一の構成の磁気記録媒体であり、2
Bは〔実施例 1〕の磁気センサ1Aと同一構成の磁気
センサであるが、図6に示す矢印のバイアス磁界Hbが
加えられている。次に、本実施例の働きを説明する。磁
気抵抗効果素子の信号磁界Hsに対する特性が図7に示
すようになり、磁気記録媒体1上のトラックの磁気信号
1サイクルの変化に対して、磁気抵抗効果素子の抵抗変
化も1サイクルが得られる。図6に示す回転型絶対位置
検出装置は、磁気記録媒体1Bの第1のトラックT1に
はピッチλ1の磁気信号が10個記録され、第2のトラ
ックT2にはピッチλ2の磁気信号が12個記録されて
いる。
In FIG. 6, a rotary type absolute position detecting device according to another embodiment of the first invention is shown in FIG.
The configuration is almost the same as in 1). 1B is a magnetic recording medium having the same structure as the magnetic recording medium 1A of [Example 1],
B is a magnetic sensor having the same configuration as the magnetic sensor 1A of [Example 1], but a bias magnetic field Hb shown by the arrow in FIG. 6 is applied. Next, the operation of this embodiment will be described. The characteristics of the magnetoresistive effect element with respect to the signal magnetic field Hs are as shown in FIG. 7, and one cycle of the change in resistance of the magnetoresistive effect element can be obtained with respect to the change of one cycle of the magnetic signal of the track on the magnetic recording medium 1. . In the rotary absolute position detector shown in FIG. 6, ten magnetic signals having a pitch λ1 are recorded on the first track T1 of the magnetic recording medium 1B, and twelve magnetic signals having a pitch λ2 are recorded on the second track T2. It is recorded.

【0025】磁気センサ2Bは磁気抵抗効果素子各2
個,2組が配設され、第一の組は磁気抵抗効果素子R1
1とR12、第二の組は磁気抵抗効果素子R21とR2
2を備えており、その各々の素子はλ1/2,λ2/2の
間隔で配置されている。λ1とλ2の関係はλ2=λ1
{n/(n±2)}となっているので、第2の組は磁気
抵抗効果素子R21とR22の間隔はλ1{n/(n±
2)}/2の間隔で配置されていることになる。
The magnetic sensors 2B are two magnetoresistive effect elements.
2 sets are provided, and the first set is the magnetoresistive effect element R1.
1 and R12, the second set is magnetoresistive effect elements R21 and R2
2 are provided, and the respective elements are arranged at intervals of λ1 / 2 and λ2 / 2. The relationship between λ1 and λ2 is λ2 = λ1
Since {n / (n ± 2)}, the distance between the magnetoresistive effect elements R21 and R22 in the second set is λ1 {n / (n ±
2)} / 2 are arranged at intervals.

【0026】次に、本実施例の働きを説明する。磁気ド
ラム1が回転して、磁気記録媒体2Aと磁気センサ2B
との相対位置が変化すると、磁気抵抗効果素子の信号磁
界Hsに対する特性が図7に示すようになり、磁気記録
媒体1B上のトラックの磁気信号1サイクルの変化に対
して、磁気抵抗効果素子の抵抗変化も1サイクルが得ら
れる。したがって、磁気抵抗効果素子R11とR21の
出力は図8の波形sin1とsin2のごとくになり、
磁気ドラム1の1回転により、それぞれ5サイクルと6
サイクルの出力波形となる。また、磁気抵抗効果素子R
12とR22の出力は各々図8の波形より電気角で90
度、すなわち、(λ1/2),(λ2/2)だけ位相が遅
れる。
Next, the operation of this embodiment will be described. The magnetic drum 1 rotates to rotate the magnetic recording medium 2A and the magnetic sensor 2B.
When the relative position to the magnetoresistive effect element changes, the characteristics of the magnetoresistive effect element with respect to the signal magnetic field Hs become as shown in FIG. One cycle of resistance change can be obtained. Therefore, the outputs of the magnetoresistive effect elements R11 and R21 become the waveforms sin1 and sin2 of FIG.
One rotation of the magnetic drum 1 results in 5 cycles and 6 cycles, respectively.
It becomes the output waveform of the cycle. In addition, the magnetoresistive element R
The outputs of 12 and R22 are 90 in electrical angle from the waveform of FIG.
The phase is delayed by degrees, that is, (λ1 / 2) and (λ2 / 2).

【0027】いま、磁気抵抗効果素子R11の出力波形
sin1とR21の出力波形sin2とを比較してみる
と、最初においては両波形の位相が同じであるが、図
6,図8に示す矢印方向に回転すれば、sin2の位相
がsin1の位相より進み回転に対応して位相差が大き
くなり、やがて1回転で360°進み元の同位相とな
る。このことは、図9に示す移動体の位置と磁気抵抗効
果素子出力波形の位相差との関係を示す線図で表されて
いる。したがって、sin1とsin2の位相差を比較
すれば1回転の絶対位置が検出できることになる。以上
説明したように本実施例によれば簡単な構成で1回転の
絶対位置の検出ができることになる。
Now, comparing the output waveform sin1 of the magnetoresistive effect element R11 with the output waveform sin2 of R21, the phases of both waveforms are initially the same, but the directions of the arrows shown in FIGS. When rotated to, the phase of sin2 advances from the phase of sin1 and the phase difference becomes large corresponding to the rotation, and eventually it advances 360 ° in one rotation to become the same phase as the original phase. This is represented by a diagram showing the relationship between the position of the moving body and the phase difference of the magnetoresistive effect element output waveform shown in FIG. Therefore, the absolute position of one rotation can be detected by comparing the phase difference between sin1 and sin2. As described above, according to this embodiment, the absolute position of one rotation can be detected with a simple structure.

【0028】〔実施例 3〕本発明のさらに他の実施例
を説明する。図10は本発明のさらに他の実施例の直線
型絶対位置検出装置の基本構成図であり、1Cは磁気記
録媒体、2Cは磁気センサ、4は磁気センサ2Cの支持
台である。第一の発明のさらに他の実施例の直線型絶対
位置検出装置は図10に示すように、磁気記録媒体1C
は線形に連続した磁気信号を記録した2つのトラックT
1,T2を備え、第一のトラックT1にはピッチλ1の
磁気信号が記録され、第二のトラックT2にはピッチλ
2の磁気信号が記録されている。前記磁気センサ2Cは
支持台4によって支持されるとともに、磁気抵抗効果素
子R11,R21により構成されている。磁気記録媒体
1Cまたは磁気センサ2Cが移動し、磁気記録媒体1C
と磁気センサ2Cの相対位置が変化し、磁気抵抗効果素
子R11とR21に印加されている磁界が変化し、〔実
施例 1〕,〔実施例 2〕と同様に、図4または図8
のような波形の出力が得られ、この出力波形sin1と
sin2を比較し、移動体位置と出力波形の位相差の関
係より、移動体の直線運動絶対位置検出が可能である。
[Embodiment 3] Still another embodiment of the present invention will be described. FIG. 10 is a basic configuration diagram of a linear absolute position detecting device according to still another embodiment of the present invention. 1C is a magnetic recording medium, 2C is a magnetic sensor, and 4 is a support for the magnetic sensor 2C. As shown in FIG. 10, a linear absolute position detecting device according to still another embodiment of the first invention is a magnetic recording medium 1C.
Is two tracks T on which linearly continuous magnetic signals are recorded.
1, T2, a magnetic signal having a pitch λ1 is recorded on the first track T1, and a pitch λ is recorded on the second track T2.
2 magnetic signals are recorded. The magnetic sensor 2C is supported by a support 4 and is composed of magnetoresistive effect elements R11 and R21. When the magnetic recording medium 1C or the magnetic sensor 2C moves, the magnetic recording medium 1C
4 and FIG. 8 similarly to [Example 1] and [Example 2], the relative positions of the magnetic sensor 2C and the magnetic sensor 2C change, and the magnetic fields applied to the magnetoresistive effect elements R11 and R21 change.
The output of the waveform is obtained, the output waveforms sin1 and sin2 are compared, and the linear motion absolute position of the moving body can be detected from the relationship between the position of the moving body and the phase difference between the output waveforms.

【0029】〔実施例 4〕本発明のさらに他の実施例
を説明する。図11は本発明のさらに他の実施例に係る
回転型絶対位置検出装置の展開図、図12は図11の装
置における磁気抵抗効果素子の出力波形図、図13は図
11の装置における移動体の位置と磁気抵抗効果素子出
力波形の位相差との関係を示す線図である。
[Embodiment 4] Still another embodiment of the present invention will be described. 11 is a development view of a rotary absolute position detecting device according to still another embodiment of the present invention, FIG. 12 is an output waveform diagram of a magnetoresistive effect element in the device of FIG. 11, and FIG. 13 is a moving body in the device of FIG. FIG. 6 is a diagram showing the relationship between the position and the phase difference of the magnetoresistive effect element output waveform.

【0030】第一の発明のさらに他の実施例の回転型絶
対位置検出装置は、図11に示すように〔実施例 1〕
〔実施例 2〕と同様に構成されるが、その相違は磁気
ドラム1に3つのトラックを設けた構成しているところ
である。図11において、1Dは磁気記録媒体、2Dは
磁気センサである。磁気記録媒体1Dは、三つのトラッ
クに分け、第一および第二のトラックは〔実施例 1〕
〔実施例 2〕と同じ構成であるが、第三のトラックに
は図示する如く、第一,第二のトラックの磁気信号記録
の方向と直角方向に磁気信号が記録されている。さら
に、この第三の磁気信号記録は移動方向の半分のみと
し、他の半分は無記録部となっている。
As shown in FIG. 11, a rotary type absolute position detecting device according to still another embodiment of the first invention is shown in FIG.
The second embodiment has the same configuration as that of the second embodiment, except that the magnetic drum 1 is provided with three tracks. In FIG. 11, 1D is a magnetic recording medium and 2D is a magnetic sensor. The magnetic recording medium 1D is divided into three tracks, and the first and second tracks are [Example 1].
Although it has the same structure as that of [Embodiment 2], magnetic signals are recorded on the third track in a direction perpendicular to the magnetic signal recording directions of the first and second tracks as shown in the drawing. Further, the third magnetic signal recording is limited to half in the moving direction, and the other half is a non-recording portion.

【0031】これらのトラックに対向して配設されてい
る磁気センサ2Dの磁気抵抗効果素子は、第一組の磁気
抵抗効果素子R11,R12および第二組の磁気抵抗効
果素子R21,R22は〔実施例 1〕〔実施例 2〕
の磁気抵抗効果素子と同じ構成,同じ位置である。本実
施例にて、新たに設けられた第三の磁気抵抗効果素子R
31は、第一組の磁気抵抗効果素子R11,R12と第
二組の磁気抵抗効果素子R21,R22と直交する方向
に配設されている。これら磁気抵抗効果素子R11(R
12)からの出力波形sin1とR21(R22)から
の出力波形sin2は〔実施例 1〕〔実施例 2〕と
同じ波形である。
The magnetoresistive effect elements of the magnetic sensor 2D disposed so as to face these tracks are the magnetoresistive effect elements R11 and R12 of the first set and the magnetoresistive effect elements R21 and R22 of the second set. Example 1] [Example 2]
The same structure and the same position as the magnetoresistive effect element of. In the present embodiment, a newly provided third magnetoresistive effect element R
Reference numeral 31 is arranged in a direction orthogonal to the first set of magnetoresistive effect elements R11, R12 and the second set of magnetoresistive effect elements R21, R22. These magnetoresistive effect elements R11 (R
The output waveform sin1 from 12) and the output waveform sin2 from R21 (R22) are the same as those in [Example 1] and [Example 2].

【0032】第三の磁気抵抗効果素子31の出力波形
は、図12のE3に示すごとく始めの半分(半回転分)
はローレベルであり、後の半分はハイレベルである。上
記出力sin1とsin2とから得られる位相差と移動
体の移動位置との関係は図13に示される。該図13の
値と第三の出力E3との組み合わせにより、図13の位
置aからbまではE3がローレベルなので絶対角度の0
〜180度であり、図13の位置bからcまではE3が
ハイレベルなので絶対角度の180〜360度であるこ
とがわかる。このようにして、1回転の角度の絶対値を
得ることができる。
The output waveform of the third magnetoresistive effect element 31 is the first half (half rotation) as shown by E3 in FIG.
Is at the low level and the other half is at the high level. The relationship between the phase difference obtained from the outputs sin1 and sin2 and the moving position of the moving body is shown in FIG. Due to the combination of the value in FIG. 13 and the third output E3, since E3 is at a low level from positions a to b in FIG. 13, the absolute angle is 0.
It can be seen that the absolute angle is 180 to 360 degrees because E3 is at a high level from positions b to c in FIG. In this way, the absolute value of the angle of one rotation can be obtained.

【0032】〔実施例 5〕本発明のさらに他の実施例
を説明する。図14は本発明のさらに他の実施例に係る
回転型絶対位置検出装置の展開図、図15は図14の装
置における磁気抵抗効果素子の出力波形図、図16は図
14の装置における移動体の位置と磁気抵抗効果素子出
力波形の位相差との関係を示す線図である。
[Embodiment 5] Still another embodiment of the present invention will be described. 14 is a development view of a rotary type absolute position detecting device according to still another embodiment of the present invention, FIG. 15 is an output waveform diagram of a magnetoresistive effect element in the device of FIG. 14, and FIG. 16 is a moving body in the device of FIG. FIG. 6 is a diagram showing the relationship between the position and the phase difference of the magnetoresistive effect element output waveform.

【0033】図14において、1Eは磁気記録媒体、2
Eは磁気センサである。磁気ドラム1上の磁気記録媒体
1Eは二つのトラックT1,T2にわけ、第一のトラッ
クT1の磁気信号NSの記録数を10個とし、第二のト
ラックT2の磁気信号NSの数を9個として構成する。
すなわち、磁気記録媒体の第一のトラックの磁気信号N
Sの記録数をm個(m;整数)とし、第二のトラックの
磁気信号NSの数を(m−1)として構成したものであ
る。これに対して磁気センサ2Eは各二組,二個の磁気
抵抗効果素子からなり、その配置は、図14に示すよう
に第一組の磁気抵抗効果素子R11とR12の間隔をλ
1/4とし、第二組の磁気抵抗効果素子R21とR22
の間隔をλ2/4としている。
In FIG. 14, 1E is a magnetic recording medium and 2 is a magnetic recording medium.
E is a magnetic sensor. The magnetic recording medium 1E on the magnetic drum 1 is divided into two tracks T1 and T2, the number of magnetic signals NS recorded on the first track T1 is 10, and the number of magnetic signals NS on the second track T2 is 9. Configure as.
That is, the magnetic signal N of the first track of the magnetic recording medium
The number of S recorded is m (m; integer), and the number of magnetic signals NS of the second track is (m-1). On the other hand, the magnetic sensor 2E is composed of two sets of two magnetoresistive effect elements, and the arrangement thereof is such that the interval between the first set of magnetoresistive effect elements R11 and R12 is λ, as shown in FIG.
1/4, and the second set of magnetoresistive elements R21 and R22
Is set to λ2 / 4.

【0034】λ1とλ2の関係はλ2=λ1{m/(m
−1)}となっているので、第2組は磁気抵抗効果素子
R21とR22の間隔はλ1{m/(m−1)}/4の間
隔で配置されていることになる。各磁気抵抗効果素子R
11とR21の出力は図15に示す如くsin1とsi
n2となる。したがって、sin1とsin2の位相差
は図16に示すように磁気記録媒体1Eの位置に対して
変化し、始めの位置a点から最終位置c点まで直線的に
昇り勾配で変化する。第一組の磁気抵抗効果素子R11
と第二組の磁気抵抗効果素子R21または第一組のR1
2の出力と第二組のR22の出力とのそれぞれ位相差を
求めて絶対位置を得ることができる。
The relationship between λ1 and λ2 is λ2 = λ1 {m / (m
−1)}, the second group is arranged such that the magnetoresistive effect elements R21 and R22 are arranged at an interval of λ1 {m / (m−1)} / 4. Each magnetoresistive element R
The outputs of 11 and R21 are sin1 and si as shown in FIG.
It becomes n2. Therefore, the phase difference between sin1 and sin2 changes with respect to the position of the magnetic recording medium 1E as shown in FIG. 16, and changes linearly with a rising gradient from the starting point a to the ending point c. First set of magnetoresistive element R11
And the second set of magnetoresistive elements R21 or the first set of R1
The absolute position can be obtained by obtaining the phase difference between the output of 2 and the output of R22 of the second set.

【0035】〔実施例 5〕本発明のさらに他の実施例
を説明する。図17は本発明のさらに他の実施例に係る
回転型絶対位置検出装置の磁気抵抗効果素子の出力波形
図、図18は図17の装置における移動体の位置と磁気
抵抗効果素子出力波形の位相角との関係を示す線図であ
る。図19は図17の装置における移動体の位置と磁気
抵抗効果素子出力波形の位相差との関係を示す線図であ
る。本実施例は構成としては〔実施例 1〕と同一であ
るので説明を省略し、その機能について、上記図17,
図18,図19および〔実施例 1〕の図3,図4,図
5を用いて説明する。
[Embodiment 5] Still another embodiment of the present invention will be described. 17 is an output waveform diagram of a magnetoresistive effect element of a rotary type absolute position detecting device according to still another embodiment of the present invention, and FIG. 18 is a position of a moving body in the device of FIG. It is a diagram which shows the relationship with a corner. FIG. 19 is a diagram showing the relationship between the position of the moving body and the phase difference of the magnetoresistive effect element output waveform in the device of FIG. Since this embodiment has the same configuration as that of [Embodiment 1], the description thereof will be omitted.
This will be described with reference to FIGS. 18 and 19 and FIGS. 3, 4 and 5 of [Example 1].

【0036】本実施例は〔実施例 1〕,〔実施例
2〕,〔実施例 3〕,〔実施例 4〕おいて、説明し
た絶対位置検出装置よりさらに微細な絶対位置を得るこ
とができる。図3において説明した如く、第一の組の磁
気抵抗効果素子R11とR12とはλ1/4の間隔をお
いて配設され、第二組の磁気抵抗効果素子R21とR2
2とはλ2/4の間隔をおいて配設されている。
This embodiment is based on [Embodiment 1] and [Embodiment
In 2], [Embodiment 3] and [Embodiment 4], it is possible to obtain a finer absolute position than the absolute position detecting device described above. As described with reference to FIG. 3, the first set of magnetoresistive effect elements R11 and R12 are arranged at an interval of λ1 / 4, and the second set of magnetoresistive effect elements R21 and R2.
2 is disposed at a distance of λ2 / 4.

【0037】したがって、図17の波形に示すように磁
気抵抗効果素子R11とR12の出力はそれぞれsin
1とそれより位相角で90度位相が進んだcos1とな
る。また、磁気抵抗効果素子R21とR22の出力はそ
れぞれsin2とそれより位相角で90度位相が進んだ
cos2となる。第一組の磁気抵抗効果素子R11とR
12とのそれぞれの出力sin1とcos1から位相角
θ1を求める手段の例を次式で示す。 θ1 =tan (cos1/sin1) またはθ1 =cot (sin1/cos1)
Therefore, as shown in the waveform of FIG. 17, the outputs of the magnetoresistive effect elements R11 and R12 are sin.
1 and cos 1 with the phase angle advanced by 90 degrees from that. The outputs of the magnetoresistive elements R21 and R22 are sin2 and cos2 with a phase angle advanced by 90 degrees from that of sin2, respectively. First set of magnetoresistive elements R11 and R
An example of means for obtaining the phase angle θ1 from the respective outputs sin1 and cos1 of 12 and 12 is shown by the following equation. θ1 = tan (cos1 / sin1) or θ1 = cot (sin1 / cos1)

【0038】同様に第二組の磁気抵抗効果素子の出力s
in2とcos2から位相角θ2を求める手段の例を次
式で示す。 θ2 =tan (cos2/sin2) またはθ2 =cot (sin2/cos2) このようにして求めた位相角θ1およびθ2は図18の
θ1、θ2に示すようにそれ自体各波形の1周期以内で
はa、a1、a2、a3、a4、a5、a6のように微
細な絶対位置を示している。
Similarly, the output s of the second set of magnetoresistive elements
An example of means for obtaining the phase angle θ2 from in2 and cos2 is shown by the following equation. θ2 = tan (cos2 / sin2) or θ2 = cot (sin2 / cos2) The phase angles θ1 and θ2 thus obtained are a within one cycle of each waveform as shown by θ1 and θ2 in FIG. Fine absolute positions are shown as a1, a2, a3, a4, a5, and a6.

【0039】また、図19図に示した位相差(θ1ーθ
2)より求めた粗い分解能の絶対位置Δθは最初の1サ
イクル以内の位置a、a1、a2、a3、a4、a5、
a6では非常に小さな値であるが、最終位置c点では角
度差が360度近くなり、絶対位置Δθが最大値とな
る。この値と1サイクル以内の絶対位置a、a1、a
2、a3、a4、a5、a6を加えれば、微細な分解能
の連続した絶対位置を得ることが出来る。本実施例によ
れば分解能の高い絶対位置を検出できる。
Further, the phase difference (θ1-θ) shown in FIG.
The absolute position Δθ of the coarse resolution obtained from 2) is the positions a, a1, a2, a3, a4, a5 within the first one cycle.
Although it is a very small value at a6, the angle difference becomes close to 360 degrees at the final position c point, and the absolute position Δθ becomes the maximum value. This value and absolute position a, a1, a within one cycle
By adding 2, a3, a4, a5, and a6, continuous absolute positions with fine resolution can be obtained. According to this embodiment, an absolute position with high resolution can be detected.

【0040】〔実施例 6〕次に、第二の発明の実施例
を説明する。図20は本発明のさらに他の実施例に係る
モ−タ制御装置の構成図である。図中、図1と同一符号
のものは同等部分であるから、その説明を省略する。第
二の発明の実施例に係るモ−タ制御装置は、機器を駆動
する制御用モータと該モータの位置を検出する位置検出
器を備えたモータ制御装置において、当該位置検出器に
第一の発明に係る絶対位置検出装置を用いて構成したも
のである。
[Embodiment 6] Next, an embodiment of the second invention will be described. 20 is a block diagram of a motor control device according to still another embodiment of the present invention. In the figure, the same reference numerals as those in FIG. 1 denote the same parts, and thus the description thereof will be omitted. A motor control device according to an embodiment of the second invention is a motor control device equipped with a control motor for driving equipment and a position detector for detecting the position of the motor. It is configured using the absolute position detection device according to the invention.

【0041】図20において、Mは制御用モータで回転
軸Jを有している。この回転軸Jと磁気ドラム1の回転
軸と共通になっている。そして、軸Jを中心に制御用モ
ータMおよび磁気ドラム1が回転するようになってい
る。磁気ドラム1には2個のトラックT1,T2が設け
られ、それらに対向して磁気センサ2が支持台4により
固定されている。磁気センサ2には磁気抵抗効果素子R
11,R21が載置されている。
In FIG. 20, M is a control motor having a rotary shaft J. The rotation axis J and the rotation axis of the magnetic drum 1 are common. Then, the control motor M and the magnetic drum 1 rotate around the axis J. The magnetic drum 1 is provided with two tracks T1 and T2, and the magnetic sensor 2 is fixed by a support 4 so as to face them. The magnetic sensor 2 has a magnetoresistive effect element R.
11 and R21 are mounted.

【0042】次に、本実施例の動作を説明する。制御用
モータMが制御信号によりある角度回転すると、磁気ド
ラム1が共に同一角度回転する。この回転する磁気ドラ
ム1上の2個のトラックT1,T2から磁気センサ2上
の磁気抵抗効果素子R11,R21に回転角に応じた磁
気信号が伝達される。この伝達信号にたいして磁気抵抗
効果素子R11,R21から電気信号が出力され、その
電気信号より〔実施例 1〕と同じく磁気ドラム1、す
なわち、制御用モータMの回転絶対位置を高い分解能で
検出でき、モ−タ制御ができる。
Next, the operation of this embodiment will be described. When the control motor M rotates by a certain angle according to the control signal, the magnetic drum 1 rotates by the same angle. From the two tracks T1 and T2 on the rotating magnetic drum 1, magnetic signals corresponding to the rotation angle are transmitted to the magnetoresistive effect elements R11 and R21 on the magnetic sensor 2. An electric signal is output from the magnetoresistive effect elements R11 and R21 in response to this transmission signal, and the absolute rotation position of the magnetic drum 1, that is, the control motor M can be detected with high resolution from the electric signal, as in [Example 1]. Motor control is possible.

【0043】次に、第二の発明の他の実施例を説明す
る。図21は本発明のさらに他の実施例に係るモ−タ制
御装置の制御ブロック図である。図21において、Mは
制御モータ、Sは絶対位置検出装置、P.Cは位置制御
部、S.Cは速度制御部である。
Next, another embodiment of the second invention will be described. FIG. 21 is a control block diagram of a motor controller according to still another embodiment of the present invention. 21, M is a control motor, S is an absolute position detecting device, and P. C is a position controller, S. C is a speed control unit.

【0044】図21に示す、第二の発明の他の実施例に
係るモ−タ制御装置では、制御モータMはモータ軸を介
して絶対位置検出装置Sを接続され、位置制御部P.C
と速度制御部S.Cとは電気的に接続し、また、速度制
御部S.Cの出力が制御モータMの制御信号として入力
されている。さらに、絶対位置検出装置Sの出力eは位
置制御部P.Cと速度制御部S.Cに入力される構成と
なっている。
In the motor controller according to another embodiment of the second invention shown in FIG. 21, the control motor M is connected to the absolute position detector S via the motor shaft, and the position controller P.P. C
And speed control unit S. It is electrically connected to the speed control unit S.C. The output of C is input as the control signal of the control motor M. Further, the output e of the absolute position detecting device S is the position control unit P. C and speed control unit S. It is configured to be input to C.

【0045】次に、本実施例の働きを制御ブロック図に
従い説明する。位置制御部P.Cには位置指令が外部か
ら与えられ、絶対位置検出装置Sの出力eと比較し、そ
の偏差値に応じた出力信号を速度制御部S.Cに入力信
号として与えている。速度制御部S.Cでは入力信号値
と絶対位置検出装置Sの出力eと比較し、その差に応じ
た制御出力値を電流指令または電圧指令として制御モー
タMに与え、該モータを駆動する。このようにシステム
として動作するので、制御モータMはその絶対位置に対
応して精度よく制御できる。
Next, the operation of this embodiment will be described with reference to the control block diagram. Position control unit P.P. A position command is externally given to C, and it is compared with the output e of the absolute position detection device S, and an output signal corresponding to the deviation value is output to the speed control unit S. It is given to C as an input signal. Speed control unit S. At C, the input signal value is compared with the output e of the absolute position detecting device S, and a control output value corresponding to the difference is given to the control motor M as a current command or a voltage command to drive the motor. Since the system operates as described above, the control motor M can be accurately controlled in accordance with its absolute position.

【0046】[0046]

【発明の効果】以上詳細に説明したように、本発明によ
れば、第一に、構成が簡略化され、装置を小型化し、し
かも、高分解能の絶対位置検出装置を提供することがで
きる。また、第二は上記高分解能の絶対位置検出装置を
用いた高精度モ−タ制御装置を提供することができる。
As described in detail above, according to the present invention, firstly, it is possible to provide an absolute position detecting device having a simplified structure, a small size, and high resolution. Secondly, it is possible to provide a high precision motor control device using the high resolution absolute position detection device.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例に係る回転型絶対位置検出装
置の基本構成図である。
FIG. 1 is a basic configuration diagram of a rotary absolute position detection device according to an embodiment of the present invention.

【図2】図1の装置における磁気抵抗効果素子の信号磁
界特性図である。
FIG. 2 is a signal magnetic field characteristic diagram of a magnetoresistive effect element in the device of FIG.

【図3】本発明の一実施例に係る回転型絶対位置検出装
置の展開図である。
FIG. 3 is a development view of a rotary absolute position detection device according to an embodiment of the present invention.

【図4】図3の装置における磁気抵抗効果素子の出力波
形図である。
4 is an output waveform diagram of a magnetoresistive effect element in the apparatus of FIG.

【図5】図3の装置における移動体の位置と磁気抵抗効
果素子出力の位相差との関係を示す線図である。
5 is a diagram showing the relationship between the position of the moving body and the phase difference of the magnetoresistive effect element output in the apparatus of FIG.

【図6】本発明の他の一実施例に係る回転型絶対位置検
出装置の展開図である。
FIG. 6 is a development view of a rotary absolute position detection device according to another embodiment of the present invention.

【図7】図6の装置における磁気抵抗効果素子の信号磁
界特性図である。
7 is a signal magnetic field characteristic diagram of a magnetoresistive effect element in the apparatus of FIG.

【図8】図6の装置における磁気抵抗効果素子の出力波
形図である。
8 is an output waveform diagram of the magnetoresistive effect element in the apparatus of FIG.

【図9】図6の装置における移動体の位置と磁気抵抗効
果素子出力の位相差との関係を示す線図である。
9 is a diagram showing the relationship between the position of the moving body and the phase difference of the magnetoresistive effect element output in the apparatus of FIG.

【図10】本発明のさらに他の一実施例に係る直線型絶
対位置検出装置の基本構成図である。
FIG. 10 is a basic configuration diagram of a linear absolute position detection device according to still another embodiment of the present invention.

【図11】本発明のさらに他の一実施例に係る回転型絶
対位置検出装置の展開図である。
FIG. 11 is a development view of a rotary absolute position detection device according to still another embodiment of the present invention.

【図12】図11の装置における磁気抵抗効果素子の出
力波形図である。
12 is an output waveform diagram of a magnetoresistive effect element in the device of FIG.

【図13】図11の装置における移動体の位置と磁気抵
抗効果素子出力の位相差との関係を示す線図である。
13 is a diagram showing the relationship between the position of the moving body and the phase difference of the magnetoresistive effect element output in the apparatus of FIG.

【図14】本発明のさらに他の一実施例に係る回転型絶
対位置検出装置の展開図である。
FIG. 14 is a development view of a rotary absolute position detection device according to still another embodiment of the present invention.

【図15】図14の装置における磁気抵抗効果素子の出
力波形図である。
15 is an output waveform diagram of the magnetoresistive effect element in the device of FIG.

【図16】図14の装置における移動体の位置と磁気抵
抗効果素子出力の位相差との関係を示す線図である。
16 is a diagram showing the relationship between the position of the moving body and the phase difference of the magnetoresistive effect element output in the device of FIG.

【図17】本発明のさらに他の一実施例に係る磁気抵抗
効果素子の出力波形図である。
FIG. 17 is an output waveform diagram of a magnetoresistive effect element according to still another embodiment of the present invention.

【図18】図17の装置における移動体の位置と磁気抵
抗効果素子出力の位相角との関係を示す線図である。
18 is a diagram showing the relationship between the position of the moving body and the phase angle of the magnetoresistive effect element output in the device of FIG.

【図19】図17の実施例に係る移動体の位置と磁気抵
抗効果素子出力の位相差との関係を示す線図である。
19 is a diagram showing the relationship between the position of the moving body and the phase difference of the magnetoresistive effect element output according to the embodiment of FIG.

【図20】本発明のさらに他の一実施例に係るモ−タ制
御装置の構成図である。
FIG. 20 is a block diagram of a motor controller according to still another embodiment of the present invention.

【図21】本発明のさらに他の一実施例に係るモ−タ制
御装置の制御ブロック図である。
FIG. 21 is a control block diagram of a motor controller according to still another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1A,1B,1C,1D,1E 磁気記録媒体 2A,2B,2C,2D,2E 磁気センサ R11,R12 第一組の磁気効果抵抗素子 R21,R22 第二組の磁気効果抵抗素子 R31 第三組の磁気効果抵抗素子 T1 第一のトラック T2 第二のトラック T3 第三のトラック Hb バイアス磁界 M 制御用モ−タ S 絶対位置検出装置 P.C 位置制御部 S.C 速度制御部 1A, 1B, 1C, 1D, 1E Magnetic recording medium 2A, 2B, 2C, 2D, 2E Magnetic sensor R11, R12 First set of magnetic effect resistance element R21, R22 Second set of magnetic effect resistance element R31 Third set Magnetic effect resistance element T1 First track T2 Second track T3 Third track Hb Bias magnetic field M Control motor S Absolute position detector P. C position control unit S.I. C speed controller

───────────────────────────────────────────────────── フロントページの続き (72)発明者 橋本 一郎 茨城県日立市東多賀町一丁目一番一号 株 式会社日立製作所多賀工場内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Ichiro Hashimoto 1st 1st Higashitagacho, Hitachi City, Ibaraki Prefecture Hitachi Ltd. Taga Factory

Claims (16)

【特許請求の範囲】[Claims] 【請求項1】 移動体または固定体に取り付けられた磁
気信号NSを記録した磁気記録媒体と、固定体または移
動体に取り付けられた磁気抵抗効果素子からなる磁気セ
ンサとを備えた前記移動体の位置を検出する位置検出装
置において、 前記磁気記録媒体は、二つのトラックに分け、第一のト
ラックにはn個の磁気信号(n;偶数)を、第二のトラ
ックには(n±2)個の磁気信号をそれぞれ記録させ、 前記磁気センサは二組の磁気抵抗効果素子群で構成し、
第一組の磁気抵抗効果素子群は前記第一のトラックに、
第二組の磁気抵抗効果素子群は前記第二のトラックにそ
れぞれ対向するように配設され、該第一組の磁気抵抗素
子群の出力から得られる第一の電気角度θ1と該第二組
の磁気抵抗素子群の出力から得られる第二の電気角度θ
2との位相差から前記移動体の絶対位置を求めることを
特徴とする絶対位置検出装置。
1. A moving body provided with a magnetic recording medium, which is mounted on a moving body or a fixed body, for recording a magnetic signal NS, and a magnetic sensor comprising a magnetoresistive element mounted on the fixed body or the moving body. In a position detecting device for detecting a position, the magnetic recording medium is divided into two tracks, n magnetic signals (n; even number) are recorded in a first track and (n ± 2) are recorded in a second track. Each of the magnetic signals is recorded, and the magnetic sensor is composed of two sets of magnetoresistive effect element groups,
The first set of magnetoresistive element groups is on the first track,
The second set of magnetoresistive effect element groups are arranged so as to face the second track, respectively, and the first electrical angle θ1 obtained from the output of the first set of magnetoresistive element groups and the second set Second electrical angle θ obtained from the output of the magnetoresistive element group of
An absolute position detecting device, characterized in that an absolute position of the moving body is obtained from a phase difference from 2.
【請求項2】 各組の磁気抵抗効果素子群はそれぞれ複
数の磁気抵抗効果素子群で構成され、それぞれの各磁気
抵抗効果素子群はsin波とcos波を発生する二つの
グループで構成したことを特徴とする請求項1記載の絶
対位置検出装置。
2. A magnetoresistive effect element group of each set is composed of a plurality of magnetoresistive effect element groups, and each magnetoresistive effect element group is composed of two groups that generate a sin wave and a cos wave. The absolute position detecting device according to claim 1.
【請求項3】 各組の磁気抵抗効果素子群はそれぞれ複
数の磁気抵抗効果素子群で構成され、該第一組の磁気抵
抗素子群は、磁気信号NSの記録ピッチをλとすると、
λ/4の間隔で複数個配置され、該第二組の磁気抵抗素
子群は、[n/(n±2)]×(λ/4)の間隔で複数個配置さ
れていることを特徴とする請求項1記載の絶対位置検出
装置。
3. The magnetoresistive effect element group of each set is composed of a plurality of magnetoresistive effect element groups, and the magnetoresistive element group of the first set has a recording pitch of the magnetic signal NS as λ,
a plurality of them are arranged at intervals of λ / 4, and a plurality of the second group of magnetoresistive element groups are arranged at intervals of [n / (n ± 2)] × (λ / 4). The absolute position detection device according to claim 1.
【請求項4】 各組の磁気抵抗効果素子群はバイアス手
段によりバイアス磁界を与えられると共に、それぞれ複
数の磁気抵抗効果素子群で構成し、該第一組の磁気抵抗
素子群は、磁気信号NSのピッチをλとすると、λ/2
の間隔で複数個配置され、該第二組の磁気抵抗素子群
は、[n/(n±2)]×(λ/2)の間隔で複数個配置されて
いることを特徴とする請求項1記載の絶対位置検出装
置。
4. A magnetoresistive effect element group of each set is provided with a bias magnetic field by a bias means, and is composed of a plurality of magnetoresistive effect element groups. Let λ be the pitch of λ / 2
2. A plurality of magnetoresistive element groups of the second set are arranged at intervals of [n / (n ± 2)] × (λ / 2). 1. The absolute position detection device according to 1.
【請求項5】 第一組の磁気抵抗素子群の出力から得ら
れる第一の電気角度θ1と第二組の磁気抵抗素子群の出
力から得られる第二の電気角度θ2との位相差から粗位
置を求め、第一組または第2組のいずれかの磁気抵抗素
子群の出力から得られるsin波とcos波から1周期
以内の微細位置を求め、上記粗位置と該微細位置とを組
み合わせて高分解能な絶対位置を求めることを特徴とす
る請求項2記載の絶対位置検出装置。
5. A phase difference between a first electrical angle θ1 obtained from the output of the first set of magnetoresistive element groups and a second electrical angle θ2 obtained from the output of the second set of magnetoresistive element groups. The position is obtained, the fine position within one cycle is obtained from the sin wave and the cos wave obtained from the output of the magnetoresistive element group of either the first set or the second set, and the coarse position and the fine position are combined. The absolute position detecting device according to claim 2, wherein the absolute position with high resolution is obtained.
【請求項6】 移動体または固定体に取り付けられた磁
気信号NSを記録した磁気記録媒体と、固定体または移
動体に取り付けられた磁気抵抗効果素子からなる磁気セ
ンサとを備えた前記移動体の位置を検出する位置検出装
置において、 前記磁気記録媒体は三つのトラックに分け、第一のトラ
ックにはn個の磁気信号(n;偶数)を、第二のトラッ
クには(n±2)個の磁気信号をそれぞれ記録させ、第
三のトラックには前記第一のトラックおよび第二のトラ
ックの磁気記録方向と直交する方向の磁気信号を記録さ
せ、 前記磁気センサは三組の磁気抵抗効果素子群で構成し、
第一組の磁気抵抗効果素子群は前記第一のトラックに、
第二組の磁気抵抗効果素子群は前記第二のトラックに、
第三組の磁気抵抗効果素子群は前記第三のトラックにそ
れぞれ対向するように配設され、第一組の磁気抵抗素子
群の出力から得られる第一の電気角度θ1と第二組の磁
気抵抗素子群の出力から得られる第二の電気角度θ2と
の位相差および第三組の磁気抵抗素子群の出力から得ら
れる第三の電気信号から前記移動体の絶対位置を求める
ことを特徴とする絶対位置検出装置。
6. A moving body provided with a magnetic recording medium, which is mounted on a moving body or a fixed body, for recording a magnetic signal NS, and a magnetic sensor comprising a magnetoresistive effect element, which is mounted on the fixed body or the moving body. In a position detecting device for detecting a position, the magnetic recording medium is divided into three tracks, n magnetic signals (n; an even number) are recorded in a first track, and (n ± 2) are recorded in a second track. Magnetic signals in a direction orthogonal to the magnetic recording directions of the first track and the second track are recorded on the third track, and the magnetic sensor includes three sets of magnetoresistive effect elements. In groups,
The first set of magnetoresistive element groups is on the first track,
The second set of magnetoresistive element groups is on the second track,
The magnetoresistive effect element group of the third set is arranged so as to face the third track, respectively, and the first electrical angle θ1 and the magnetic force of the second set obtained from the output of the magnetoresistive element group of the first set are set. The absolute position of the moving body is obtained from the phase difference from the second electric angle θ2 obtained from the output of the resistance element group and the third electric signal obtained from the output of the third set of magnetoresistive element groups. Absolute position detector.
【請求項7】 移動体または固定体に取り付けられた磁
気信号NSを記録した磁気記録媒体と、固定体または移
動体に取り付けられた磁気抵抗効果素子からなる磁気セ
ンサとを備えた前記移動体の位置を検出する位置検出装
置において、 前記磁気記録媒体は二つのトラックに分け、第一のトラ
ックにはm個(m;整数)の磁気信号を、第二のトラッ
クには(m±1)個の磁気信号をそれぞれ記録させ、 前記磁気センサは二組の磁気抵抗効果素子群で構成し、
第一組の磁気抵抗効果素子群は前記第一のトラックに、
第二組の磁気抵抗効果素子群は前記第二のトラックにそ
れぞれ対向するように配設され、第一組の磁気抵抗素子
群の出力から得られる第一の電気角度θ1と第二組の磁
気抵抗素子群の出力から得られる第二の電気角度θ2と
の位相差から前記移動体の絶対位置を求めることを特徴
とする絶対位置検出装置。
7. A magnetic recording medium, which is mounted on a moving body or a fixed body, for recording a magnetic signal NS, and a magnetic sensor comprising a magnetoresistive element mounted on the fixed body or the moving body. In a position detecting device for detecting a position, the magnetic recording medium is divided into two tracks, m magnetic signals (m; integer) are provided in a first track, and (m ± 1) magnetic signals are provided in a second track. Respectively recording the magnetic signal of, the magnetic sensor is composed of two sets of magnetoresistive effect element group,
The first set of magnetoresistive element groups is on the first track,
The second set of magnetoresistive effect element groups are arranged so as to face the second track, respectively, and the first electrical angle θ1 and the second set of magnetic fields obtained from the output of the first set of magnetoresistive element groups are arranged. An absolute position detecting device characterized in that an absolute position of the moving body is obtained from a phase difference from a second electric angle θ2 obtained from an output of the resistance element group.
【請求項8】 各組の磁気抵抗効果素子群はそれぞれ複
数の磁気抵抗効果素子群で構成し、それぞれの各磁気抵
抗効果素子群はsin波とcos波を発生する二つのグ
ループで構成したことを特徴とする請求項7記載の絶対
位置検出装置。
8. The magnetoresistive effect element group of each set is composed of a plurality of magnetoresistive effect element groups, and each of the magnetoresistive effect element groups is composed of two groups for generating a sin wave and a cos wave. The absolute position detection device according to claim 7.
【請求項9】 各組の磁気抵抗効果素子群はそれぞれ複
数の磁気抵抗効果素子群で構成し、第一組の磁気抵抗素
子群は、磁気信号NSのピッチをλとすると、λ/4の
間隔で複数個配置し、第二組の磁気抵抗素子群は、[m/
(m±1)]×(λ/4)の間隔で複数個配置したことを特徴
とする請求項7記載の絶対位置検出装置。
9. A magnetoresistive effect element group of each set is composed of a plurality of magnetoresistive effect element groups, and the magnetoresistive element group of the first set has a λ / 4 ratio, where λ is the pitch of the magnetic signal NS. A plurality of magnetoresistive elements are arranged at intervals and the second group of magnetoresistive elements is
8. The absolute position detecting device according to claim 7, wherein a plurality of (m ± 1)] × (λ / 4) are arranged.
【請求項10】 各組の磁気抵抗効果素子群はバイアス
手段によりバイアス磁界を与えられると共に、それぞれ
複数の磁気抵抗効果素子群で構成し、第一組の磁気抵抗
素子群は磁気信号NSのピッチをλとすると、λ/2の
間隔で複数個配置し、第二組の磁気抵抗素子群は、[m/
(m±1)]×(λ/2)の間隔で複数個配置したことを特徴
とする請求項7記載の絶対位置検出装置。
10. The magnetoresistive effect element group of each set is provided with a bias magnetic field by a bias means and is composed of a plurality of magnetoresistive effect element groups, and the first set of magnetoresistive element groups has a pitch of a magnetic signal NS. Where λ is λ, a plurality of magnetoresistive element groups are arranged at an interval of λ / 2.
8. The absolute position detecting device according to claim 7, wherein a plurality of them are arranged at an interval of (m ± 1)] × (λ / 2).
【請求項11】 第一組の磁気抵抗素子群の出力から得
られる第一の電気角度θ1と第二組の磁気抵抗素子群の
出力から得られる第二の電気角度θ2との位相差から粗
位置を求め、第一組または第2組のいずれかの磁気抵抗
素子群の出力から得られるsin波とcos波から1周
期以内の微細位置を求め、上記粗位置と該微細位置とを
組み合わせて高分解能な絶対位置を求めることを特徴と
する請求項8記載の絶対位置検出装置。
11. A phase difference between a first electrical angle θ1 obtained from the output of the first set of magnetoresistive element groups and a second electrical angle θ2 obtained from the output of the second set of magnetoresistive element groups. The position is obtained, the fine position within one cycle is obtained from the sin wave and the cos wave obtained from the output of the magnetoresistive element group of either the first set or the second set, and the coarse position and the fine position are combined. 9. The absolute position detecting device according to claim 8, wherein the absolute position with high resolution is obtained.
【請求項12】 移動体または固定体に取り付けられた
磁気信号NSを記録した磁気記録媒体と、固定体または
移動体に取り付けられた磁気抵抗効果素子からなる磁気
センサとを備えた前記移動体の位置を検出する位置検出
装置において、 前記磁気記録媒体は三つのトラックに分け、第一のトラ
ックにはm個(m;整数)の磁気信号を、第二のトラッ
クには(m±1)個の磁気信号を、第三のトラックには
(m±2)個の磁気信号をそれぞれ記録させ、 前記磁気センサは三組の磁気抵抗効果素子群で構成し、
第一組の磁気抵抗効果素子群は前記第一のトラックに、
第二組の磁気抵抗効果素子群は前記第二のトラックに、
第三組の磁気抵抗効果素子群は前記第三のトラックにそ
れぞれ対向するように配設され、第一組の磁気抵抗素子
群の出力から得られる第一の電気角度θ1と第二組の磁
気抵抗素子群の出力から得られる第二の電気角度θ2と
の位相差および第三組の磁気抵抗素子群の出力から得ら
れる第三の電気角度θ3から前記移動体の絶対位置を求
めることを特徴とする絶対位置検出装置。
12. A moving body provided with a magnetic recording medium, which is attached to a moving body or a fixed body, for recording a magnetic signal NS, and a magnetic sensor made of a magnetoresistive effect element, which is attached to the fixed body or the moving body. In a position detecting device for detecting a position, the magnetic recording medium is divided into three tracks, and the first track contains m (m; integer) magnetic signals and the second track contains (m ± 1) magnetic signals. Magnetic signals of (m ± 2) are recorded on the third track, and the magnetic sensor is composed of three groups of magnetoresistive effect elements,
The first set of magnetoresistive element groups is on the first track,
The second set of magnetoresistive element groups is on the second track,
The magnetoresistive effect element group of the third set is arranged so as to face the third track, respectively, and the first electrical angle θ1 and the magnetic force of the second set obtained from the output of the magnetoresistive element group of the first set are set. The absolute position of the moving body is obtained from the phase difference from the second electric angle θ2 obtained from the output of the resistance element group and the third electric angle θ3 obtained from the output of the third set of magnetoresistive element groups. Absolute position detection device.
【請求項13】 移動体または固定体に取り付けられた
磁気信号NSを記録した磁気記録媒体と、固定体または
移動体に取り付けられた磁気抵抗効果素子からなる磁気
センサを備えた前記移動体の位置を検出する位置検出装
置において、前記磁気記録媒体は三つのトラックに分
け、第一のトラックにはm個(m;整数)の磁気信号
を、第二のトラックには(m±1)個の磁気信号をそれ
ぞれ記録させ、第三のトラックには前記の第一および第
二のトラックの磁気記録方向と直交する方向の磁気信号
を記録させ、 前記磁気センサは三組の磁気抵抗効果素子群で構成し、
第一組の磁気抵抗効果素子群は前記第一のトラックに、
第二組の磁気抵抗効果素子群は前記第二のトラックに、
第三組の磁気抵抗効果素子群は前記第三のトラックにそ
れぞれ対向するように配設され、第一組の磁気抵抗素子
群の出力から得られる第一の電気角度θ1と第二組の磁
気抵抗素子群の出力から得られる第二の電気角度θ2と
の位相差および第三組の磁気抵抗素子群の出力から得ら
れる第三の電気信号から前記移動体の絶対位置を求める
ことを特徴とする絶対位置検出装置。
13. A position of the moving body provided with a magnetic recording medium, which is attached to the moving body or the fixed body, for recording a magnetic signal NS, and a magnetic sensor comprising a magnetoresistive effect element attached to the fixed body or the moving body. In the position detecting device for detecting the magnetic field, the magnetic recording medium is divided into three tracks, and the first track contains m (m; integer) magnetic signals and the second track contains (m ± 1) magnetic signals. Magnetic signals are respectively recorded, and magnetic signals are recorded on the third track in a direction orthogonal to the magnetic recording directions of the first and second tracks, and the magnetic sensor is composed of three sets of magnetoresistive effect element groups. Configure and
The first set of magnetoresistive element groups is on the first track,
The second set of magnetoresistive element groups is on the second track,
The magnetoresistive effect element group of the third set is arranged so as to face the third track, respectively, and the first electrical angle θ1 and the magnetic force of the second set obtained from the output of the magnetoresistive element group of the first set are set. The absolute position of the moving body is obtained from the phase difference from the second electric angle θ2 obtained from the output of the resistance element group and the third electric signal obtained from the output of the third set of magnetoresistive element groups. Absolute position detector.
【請求項14】 機器を駆動する制御用モータと該モー
タの位置を検出する位置検出器を備えたモータ制御装置
において、当該位置検出器に請求項1記載の絶対位置検
出装置を用いたことを特徴とするモータ制御装置。
14. A motor control device comprising a control motor for driving equipment and a position detector for detecting the position of the motor, wherein the absolute position detection device according to claim 1 is used for the position detector. A characteristic motor control device.
【請求項15】 機器を駆動する制御用モータと位置を
検出する位置検出器を備え、前記位置検出噐の出力信号
と位置設定指令とを比較することにより位置制御を行う
装置において、該位置検出器に請求項1記載の絶対位置
検出装置を用いたことを特徴とするモータ位置制御装
置。
15. A device comprising a control motor for driving a device and a position detector for detecting a position, wherein the position detection is performed by comparing an output signal of the position detection device with a position setting command. A motor position control device, wherein the absolute position detection device according to claim 1 is used in a container.
【請求項16】 機器を駆動する制御用モータと該モー
タ位置を検出する位置検出器を備え、前記位置検出器の
出力信号と速度設定指令とを比較することにより速度制
御を行う装置において、該位置検出器に請求項1記載の
絶対位置検出装置を用いたことを特徴とするモータ速度
制御装置。
16. A device comprising a control motor for driving a device and a position detector for detecting the position of the motor, wherein speed control is performed by comparing an output signal of the position detector with a speed setting command. A motor speed control device, wherein the absolute position detection device according to claim 1 is used as a position detector.
JP20834292A 1992-08-05 1992-08-05 Absolute position detector and motor control apparatus Pending JPH0658766A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20834292A JPH0658766A (en) 1992-08-05 1992-08-05 Absolute position detector and motor control apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20834292A JPH0658766A (en) 1992-08-05 1992-08-05 Absolute position detector and motor control apparatus

Publications (1)

Publication Number Publication Date
JPH0658766A true JPH0658766A (en) 1994-03-04

Family

ID=16554691

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20834292A Pending JPH0658766A (en) 1992-08-05 1992-08-05 Absolute position detector and motor control apparatus

Country Status (1)

Country Link
JP (1) JPH0658766A (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004507722A (en) * 2000-08-22 2004-03-11 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Angle measuring device and method
JP2005003625A (en) * 2003-06-16 2005-01-06 Matsushita Electric Ind Co Ltd Rotation angle detecting device
JP2008233069A (en) * 2007-02-23 2008-10-02 Ntn Corp Rotation detecting apparatus and bearing provided therewith
WO2008129872A1 (en) * 2007-04-17 2008-10-30 Ntn Corporation Rotation detector, and bearing with rotation detector
JP2008267867A (en) * 2007-04-17 2008-11-06 Ntn Corp Rotation detector, and bearing with the rotation detector
JP2008267868A (en) * 2007-04-17 2008-11-06 Ntn Corp Rotation detector, and bearing with rotation detector
WO2009041023A1 (en) * 2007-09-27 2009-04-02 Ntn Corporation Rotation detecting device, and bearing having the rotation detecting device
JP2009097950A (en) * 2007-10-16 2009-05-07 Ntn Corp Measuring device and measurement method of shaft torque in drive shaft
JP2009097896A (en) * 2007-10-15 2009-05-07 Ntn Corp Shaft torque measuring device and measurement method of drive shaft
WO2010029742A1 (en) 2008-09-11 2010-03-18 Ntn株式会社 Rotation detecting device and bearing with rotation detecting device
JP4660719B2 (en) * 2001-04-19 2011-03-30 マッスル株式会社 Position detection method and position detection apparatus
WO2011152266A1 (en) 2010-06-03 2011-12-08 Ntn株式会社 Magnetic encoder
WO2013114705A1 (en) * 2012-01-30 2013-08-08 富士フイルム株式会社 Position detection method of lens device and movable optical element
WO2014027584A1 (en) 2012-08-16 2014-02-20 Ntn株式会社 Magnetization device for magnetic encoder
WO2014034317A1 (en) * 2012-08-30 2014-03-06 富士フイルム株式会社 Image pickup lens tube and method for controlling motion thereof
WO2014034315A1 (en) * 2012-08-30 2014-03-06 富士フイルム株式会社 Image pickup lens tube and method for controlling motion thereof
WO2014034316A1 (en) * 2012-08-30 2014-03-06 富士フイルム株式会社 Image pickup lens tube and method for controlling motion thereof
JP2015010982A (en) * 2013-07-01 2015-01-19 富士フイルム株式会社 Lens device and method for detecting position of movable optical element
WO2015141053A1 (en) * 2014-03-18 2015-09-24 富士フイルム株式会社 Lens apparatus, image pickup apparatus, and method for detecting movable lens position
EP2372313A4 (en) * 2008-12-24 2017-07-05 NTN Corporation Rotation detecting device and bearing having rotation detecting device
JP2019095373A (en) * 2017-11-27 2019-06-20 Tdk株式会社 Arithmetic processing device, angle sensor and steering device
WO2021039417A1 (en) * 2019-08-27 2021-03-04 パナソニックIpマネジメント株式会社 Position-sensing circuit, position-sensing system, magnet member, position-sensing method, and program
JP2021110670A (en) * 2020-01-14 2021-08-02 株式会社ミツトヨ Rotary encoder

Cited By (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004507722A (en) * 2000-08-22 2004-03-11 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Angle measuring device and method
JP4660719B2 (en) * 2001-04-19 2011-03-30 マッスル株式会社 Position detection method and position detection apparatus
JP2005003625A (en) * 2003-06-16 2005-01-06 Matsushita Electric Ind Co Ltd Rotation angle detecting device
JP2008233069A (en) * 2007-02-23 2008-10-02 Ntn Corp Rotation detecting apparatus and bearing provided therewith
JP2008232426A (en) * 2007-02-23 2008-10-02 Ntn Corp Wheel bearing with rotation detection device
US7923993B2 (en) 2007-02-23 2011-04-12 Ntn Corporation Rotation detection device and rotation detector equipped bearing assembly
WO2008129872A1 (en) * 2007-04-17 2008-10-30 Ntn Corporation Rotation detector, and bearing with rotation detector
JP2008267868A (en) * 2007-04-17 2008-11-06 Ntn Corp Rotation detector, and bearing with rotation detector
JP2008267867A (en) * 2007-04-17 2008-11-06 Ntn Corp Rotation detector, and bearing with the rotation detector
WO2009041023A1 (en) * 2007-09-27 2009-04-02 Ntn Corporation Rotation detecting device, and bearing having the rotation detecting device
JP2009080058A (en) * 2007-09-27 2009-04-16 Ntn Corp Rotation detector and bearing with rotation detector
US8319493B2 (en) 2007-09-27 2012-11-27 Ntn Corporation Rotation detecting device and bearing assembly equipped with such rotation detecting device
JP2009097896A (en) * 2007-10-15 2009-05-07 Ntn Corp Shaft torque measuring device and measurement method of drive shaft
JP2009097950A (en) * 2007-10-16 2009-05-07 Ntn Corp Measuring device and measurement method of shaft torque in drive shaft
WO2010029742A1 (en) 2008-09-11 2010-03-18 Ntn株式会社 Rotation detecting device and bearing with rotation detecting device
EP2778624A1 (en) 2008-09-11 2014-09-17 NTN Corporation Rotation detecting device and bearing with rotation detecting device
EP2372313A4 (en) * 2008-12-24 2017-07-05 NTN Corporation Rotation detecting device and bearing having rotation detecting device
WO2011152266A1 (en) 2010-06-03 2011-12-08 Ntn株式会社 Magnetic encoder
US9250102B2 (en) 2010-06-03 2016-02-02 Ntn Corporation Magnetic encoder
JP5629836B2 (en) * 2012-01-30 2014-11-26 富士フイルム株式会社 Lens apparatus and movable optical element position detection method
US8942553B2 (en) 2012-01-30 2015-01-27 Fujifilm Corporation Lens device and position detection method of movable optical element
WO2013114705A1 (en) * 2012-01-30 2013-08-08 富士フイルム株式会社 Position detection method of lens device and movable optical element
US9691534B2 (en) 2012-08-16 2017-06-27 Ntn Corporation Magnetization device for magnetic encoder
WO2014027584A1 (en) 2012-08-16 2014-02-20 Ntn株式会社 Magnetization device for magnetic encoder
CN104541133B (en) * 2012-08-30 2016-03-16 富士胶片株式会社 Imaging lens system lens barrel and method of controlling operation thereof
WO2014034315A1 (en) * 2012-08-30 2014-03-06 富士フイルム株式会社 Image pickup lens tube and method for controlling motion thereof
JP5736518B2 (en) * 2012-08-30 2015-06-17 富士フイルム株式会社 Imaging lens barrel and operation control method thereof
JP5736520B2 (en) * 2012-08-30 2015-06-17 富士フイルム株式会社 Imaging lens barrel and operation control method thereof
JP5736519B2 (en) * 2012-08-30 2015-06-17 富士フイルム株式会社 Imaging lens barrel and operation control method thereof
CN104541133A (en) * 2012-08-30 2015-04-22 富士胶片株式会社 Image pickup lens tube and method for controlling motion thereof
WO2014034317A1 (en) * 2012-08-30 2014-03-06 富士フイルム株式会社 Image pickup lens tube and method for controlling motion thereof
US9274305B2 (en) 2012-08-30 2016-03-01 Fujifilm Corporation Imaging lens barrel and method for controlling operation of the same
WO2014034316A1 (en) * 2012-08-30 2014-03-06 富士フイルム株式会社 Image pickup lens tube and method for controlling motion thereof
US9307164B2 (en) 2012-08-30 2016-04-05 Fujifilm Corporation Imaging lens barrel and method for controlling operation of the same
US9372324B2 (en) 2012-08-30 2016-06-21 Fujifilm Corporation Imaging lens barrel and method for controlling operation of the same
JPWO2014034316A1 (en) * 2012-08-30 2016-08-08 富士フイルム株式会社 Imaging lens barrel and operation control method thereof
JPWO2014034317A1 (en) * 2012-08-30 2016-08-08 富士フイルム株式会社 Imaging lens barrel and operation control method thereof
JPWO2014034315A1 (en) * 2012-08-30 2016-08-08 富士フイルム株式会社 Imaging lens barrel and operation control method thereof
JP2015010982A (en) * 2013-07-01 2015-01-19 富士フイルム株式会社 Lens device and method for detecting position of movable optical element
JP6053985B2 (en) * 2014-03-18 2016-12-27 富士フイルム株式会社 Lens device, imaging device, and movable lens position detection method
WO2015141053A1 (en) * 2014-03-18 2015-09-24 富士フイルム株式会社 Lens apparatus, image pickup apparatus, and method for detecting movable lens position
US10061099B2 (en) 2014-03-18 2018-08-28 Fujifilm Corporation Lens device, imaging apparatus, and method of detecting position of movable lens
JP2019095373A (en) * 2017-11-27 2019-06-20 Tdk株式会社 Arithmetic processing device, angle sensor and steering device
WO2021039417A1 (en) * 2019-08-27 2021-03-04 パナソニックIpマネジメント株式会社 Position-sensing circuit, position-sensing system, magnet member, position-sensing method, and program
CN114072636A (en) * 2019-08-27 2022-02-18 松下知识产权经营株式会社 Position sensing circuit, position sensing system, magnet member, position sensing method, and program
JP2021110670A (en) * 2020-01-14 2021-08-02 株式会社ミツトヨ Rotary encoder

Similar Documents

Publication Publication Date Title
JPH0658766A (en) Absolute position detector and motor control apparatus
US5019776A (en) Magnetic position detection apparatus having two magnetic recording medium tracks with magnetoresistors arranged in a bridge circuit so as to eliminate even order harmonic distortion
US4599561A (en) Device for detecting the relative and absolute position of a moving body
US4649342A (en) Apparatus using inclined sensor for detecting relative displacement
WO1999013296A1 (en) Magnetic encoder
EP0235750A2 (en) Apparatus for magnetically detecting position or speed of moving body
EP0111866A2 (en) Apparatus for magnetically detecting positions
CN101629802A (en) Angle detecting apparatus and angle detecting method
JP4582298B2 (en) Magnetic position detector
JP4352189B2 (en) Magnetic encoder and motor with magnetic encoder
JPH0350965B2 (en)
US5172057A (en) Magnetic encoder including plural magnetic pole lines having differing magnetic pitches and plural magnetic resistance effect elements
US5422569A (en) Rotation detecting apparatus using magnetroresistive element with an arrangement of detection units
JPH10206104A (en) Position detecting apparatus
JP3233317B2 (en) Magnetic encoder
JPH0634390A (en) Position detecting device
KR20000010436A (en) Steering wheel sensor of vehicle
JP2550085B2 (en) Absolute position detector
JPS6246811B2 (en)
JP4374513B2 (en) Encoder, MR sensor and power steering device
JPS60114714A (en) Magnetic encoder
JP2805071B2 (en) Magnetic resistance element sensor for position detection
JP2539470B2 (en) Device that magnetically detects position and speed
JPS6111982Y2 (en)
JPH0618279A (en) Detecting apparatus for position