JP2539470B2 - Device that magnetically detects position and speed - Google Patents

Device that magnetically detects position and speed

Info

Publication number
JP2539470B2
JP2539470B2 JP62294094A JP29409487A JP2539470B2 JP 2539470 B2 JP2539470 B2 JP 2539470B2 JP 62294094 A JP62294094 A JP 62294094A JP 29409487 A JP29409487 A JP 29409487A JP 2539470 B2 JP2539470 B2 JP 2539470B2
Authority
JP
Japan
Prior art keywords
magnetic
tracks
track
recording medium
pitch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62294094A
Other languages
Japanese (ja)
Other versions
JPH01136018A (en
Inventor
昭一 川又
正 高橋
邦夫 宮下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP62294094A priority Critical patent/JP2539470B2/en
Publication of JPH01136018A publication Critical patent/JPH01136018A/en
Application granted granted Critical
Publication of JP2539470B2 publication Critical patent/JP2539470B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は磁気的に移動体の位置や速度を検出する装置
に関し、特に磁気抵抗効果素子(以下MR素子と略称す
る)を用いて位置や速度を検出する装置に関するもので
ある。
TECHNICAL FIELD The present invention relates to an apparatus for magnetically detecting the position and speed of a moving body, and in particular, using a magnetoresistive effect element (hereinafter abbreviated as MR element) The present invention relates to a device for detecting speed.

〔従来の技術〕[Conventional technology]

MR素子を用いて角度を検出するものとして、特公昭60
-45804号公報記載のものがある。
Japanese Patent Publication Sho 60
-There is one described in Japanese Patent No. 45804.

この公報にはMR素子と周期的磁場を発生する磁気記録
媒体との相対的配置関係について主として述べられてい
る。
This publication mainly describes the relative positional relationship between the MR element and the magnetic recording medium that generates a periodic magnetic field.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

本発明および従来技術で用いるこの種MR素子は、加え
られる磁界の方向によつて抵抗変化にヒステリシスが現
われることが実験的に確認された。このヒステリシスは
製造プロセスや製造されたMR素子の幅で大なるバラツキ
を有している。
It has been experimentally confirmed that the MR element of this type used in the present invention and the prior art exhibits hysteresis in resistance change depending on the direction of an applied magnetic field. This hysteresis has a large variation depending on the manufacturing process and the width of the manufactured MR element.

MR素子が5μm程度で非常に細い場合ヒステリシスはほ
とんどないが、20〜30μm程度の幅にするとヒステリシ
スが顕著に現われる。一方、抵抗変化率に基づく出力は
幅広にした方が大きいので、ヒステリシスがあつても幅
広のMR素子を用いることから余儀なくされている。
When the MR element is about 5 μm and very thin, there is almost no hysteresis, but when it is set to a width of about 20 to 30 μm, the hysteresis appears remarkably. On the other hand, since the output based on the resistance change rate is larger when it is wider, it is inevitable to use a wide MR element even if there is hysteresis.

このヒステリシスというのは、同一磁極からの磁界が
同一MRセンサに作用する場合、この磁界がMRセンサの右
方向から作用する場合と左方向から作用する場合では、
MRセンサの抵抗変化が異なるということである。
This hysteresis means that when the magnetic field from the same magnetic pole acts on the same MR sensor, when this magnetic field acts from the right direction of the MR sensor and when it acts from the left direction,
This means that the resistance change of the MR sensor is different.

1回転あるいは単位長さ当りの出力パルス数を多く
し、高精度、高分解能の装置を得ようとすると、このヒ
ステリシスが邪魔になる。すなわち、ヒステリシスを有
していても隣接する磁極と区別して検出する必要がある
ので、磁極の着磁ピツチを余り小さくすることが出来な
い。
This hysteresis becomes an obstacle when trying to obtain a highly accurate and high resolution device by increasing the number of output pulses per revolution or unit length. That is, even if there is hysteresis, it is necessary to detect the magnetic poles separately from the adjacent magnetic poles, and therefore the magnetizing pitch of the magnetic poles cannot be made too small.

ヒステリシスの様子を第11図ないし第13図に基づいて
説明する。
The state of hysteresis will be described with reference to FIGS. 11 to 13.

第11図は磁気センサ4と記録媒体3との関係を示す展
開図である。記録媒体3には記録ピツチλのN-S磁極の
磁気信号からなる磁気トラツクT1が配置されており、こ
れに対して磁気センサ4はMR素子R1〜R4を各々λ/2ずつ
離して配置している。これらのMR素子R1〜R4を第12図の
様にブリツジ接続する。この時、記録媒体3が移動すれ
ばMR素子R1〜R4の抵抗変化は第13図の様になる。第13図
はMR素子の磁界に対する抵抗変化を示す静特性を示す。
磁界が正方向と負方向では図示の様に抵抗変化が異なる
ヒステリシスを持つ特性である。ここで、記録媒体3が
移動して磁気トラツクT1によつてMR素子に加わる磁界が
図示の様な入力磁界Hiとすると、MR素子R1は位置と共に
図示右上R1の様な変化をする。また、MR素子R2はMR素子
R1に対して1λ/2離れているので図示R2の様な変化にな
る。これらR1,R2の抵抗変化はMR素子の静特性の影響で
図示の様に1サイクル毎に大小の変化となる。このた
め、MR素子R1とR2で構成する3端子出力e1は図示右中の
e1の波形となつて1サイクル毎の出力振幅と周期の大小
が発生する。同様にMR素子R3,R4の3端子出力も図示e2
の様になるのでブリツジ出力eは、図示右下の出力eに
なる。この出力も1サイクル毎に振幅及び周期の大小が
くり返され、大きな誤差となる。
FIG. 11 is a development view showing the relationship between the magnetic sensor 4 and the recording medium 3. On the recording medium 3, a magnetic track T 1 composed of a magnetic signal of the NS magnetic pole of the recording pitch λ is arranged, while the magnetic sensor 4 is arranged by separating the MR elements R 1 to R 4 by λ / 2. are doing. These MR elements R 1 to R 4 are bridge-connected as shown in FIG. At this time, if the recording medium 3 moves, the resistance changes of the MR elements R 1 to R 4 become as shown in FIG. FIG. 13 shows static characteristics showing the resistance change of the MR element with respect to the magnetic field.
As shown in the figure, the magnetic field has a hysteresis having different resistance changes in the positive and negative directions. Here, if the magnetic field applied to the MR element by the magnetic track T 1 by moving the recording medium 3 is the input magnetic field Hi as shown in the figure, the MR element R 1 changes with the position as shown in the upper right R 1 in the figure. . MR element R 2 is an MR element
Since it is 1λ / 2 away from R 1 , the change is as shown in R 2 . These resistance changes of R 1 and R 2 are large or small every cycle due to the influence of the static characteristics of the MR element. Therefore, the 3-terminal output e 1 composed of MR elements R 1 and R 2 is
With the waveform of e 1, the amplitude of the output and the size of the cycle occur every cycle. Similarly, the 3-terminal output of MR elements R 3 and R 4 is also shown in the figure e 2
Therefore, the bridge output e is the output e at the lower right of the figure. This output also repeats the magnitude of the amplitude and the cycle for each cycle, resulting in a large error.

上記従来技術はMR素子の静特性が正・負磁界で抵抗変
化が異なるヒステリシスを有することについて示摘され
ておらず、そのため出力に誤差を生じてしまう問題があ
つた。
The above-mentioned prior art has not disclosed that the static characteristic of the MR element has a hysteresis in which the resistance change is different between positive and negative magnetic fields, and therefore there is a problem that an error occurs in the output.

本発明の目的は、MR素子の静特性をヒステリシスがあ
つてもエンコーダ出力に誤差を生じない位置検出装置を
提供することにある。
An object of the present invention is to provide a position detection device that does not cause an error in the encoder output even if the static characteristics of the MR element have hysteresis.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は前記に着目してなされたものであり、相対的
に微小間隙をもつて移動する第1、第2の部材と、第1
の部材に担持された磁気記録媒体と、この磁気記録媒体
の移動方向に所定ピツチで多数の磁極を配した磁気トラ
ツクと、前記第2の部材に担持され、かつ前記磁気記録
媒体に近接させた磁気センサの基体と、前記磁極の磁界
に感応して内部抵抗が変化し、前記基体に担持された磁
気抵抗効果素子(以下MR素子と略称する)と、このMR素
子の抵抗変化を電気信号として取出して前記第1,第2の
部材相互の位置や速度を検出するものにおいて、 前記磁気トラツクを少なくとも2列設け、それぞれの
磁気トラツクには相互に他の磁気トラツクに対してピツ
チλだけずらしてそれぞれ磁極を設け、磁気センサ基体
には、前記両トラツクの磁界に感応する直線状のMR素子
を設け、二つの部材の相対移動方向が変つても、正しい
位置を示す出力信号を得るように構成したものである。
The present invention has been made in view of the above, and includes a first member, a second member that move with a relatively small gap, and a first member.
A magnetic recording medium carried by the member, a magnetic track having a large number of magnetic poles arranged in a predetermined pitch in the moving direction of the magnetic recording medium, and a magnetic track carried by the second member and brought close to the magnetic recording medium. The base of the magnetic sensor, the magnetoresistance effect element (hereinafter abbreviated as MR element) carried on the base whose internal resistance changes in response to the magnetic field of the magnetic pole, and the resistance change of this MR element are used as an electric signal. In the one for taking out and detecting the position and speed of the first and second members, at least two rows of the magnetic tracks are provided, and each magnetic track is displaced from each other by a pitch λ with respect to each other. Each magnetic pole is provided, and the magnetic sensor base is provided with a linear MR element that is sensitive to the magnetic fields of the two tracks. Even if the relative movement directions of the two members change, an output signal indicating the correct position can be obtained. It is those that you have configured.

〔作用〕[Action]

以上の様に各MR素子は、各々正・負磁界で動作するた
め、お互いにヒステリシスを平均化してしまう。それに
よつて、1サイクル毎の振幅の大小を補償するように作
用するので位置検出の出力に誤差かつ生じない。
As described above, since each MR element operates in a positive or negative magnetic field, the hysteresis is averaged out. As a result, the amplitude of each cycle is compensated, so that an error does not occur in the position detection output.

〔実施例〕〔Example〕

以下本発明の一実施例を第1図ないし第5図によつて
説明する。第1図は本発明の構成を示す。この図は回転
センサの例であり、回転軸1に第1の部材例えば回転ド
ラム2が固定してあり、その外周の磁気記録媒体3に記
録ピツチλのN・S磁極の磁気信号を全周に記録した2
つの磁気トラツクT1及びT2がお互いに磁気信号となる磁
極の記録位置をλずらして配置している。これに対向し
てMR素子R1,R2,R3及びR4で構成された第2の部材例えば
磁気センサ基体41を含む磁気センサ4を磁気トラツクT1
及びT2よりある間隔スペーシングを介して配置する。第
1図の磁気記録媒体3上の磁気トラツクT1,T2と磁気セ
ンサ4の関係を第2図(A)に展開図として示す。第2
図において、前述した様に磁気記録媒体3上の磁気トラ
ツクT1及びT2には、記録ピツチλでN・S磁極の磁気信
号を記録している。磁気トラツクT1及びT2は、MR素子R1
〜R4のヒステリシスを補償するため、磁気トラツクT1
磁気信号に対して、磁気トラツクT2の磁気信号は記録位
置を移動方向にλずらしている。磁気センサ4はMR素子
R1〜R4で構成されており、各MR素子は各々λ/2離して磁
気トラツクT1及びT2からの磁気信号を同じ様に受ける様
に両方のトラツクに対向している。この4個のMR素子R1
〜R4は第3図の様に接続する。一方、MR素子R1〜R4は第
1図及び第2図で示した様に磁気トラツクT1及びT2の磁
気信号がお互λだけずれているので、例えば、R1のMR素
子で言えば、磁気トラツクT1及びT2によりR1のMR素子は
上半分と下半分で正磁界及び負磁界を同じに受ける様な
動作をする。すなわち、R1の上半分が磁気トラツクT1
N・S磁極(S・N磁極)の磁界にあるとき、R1の下半
分は磁気トラツクT2のS・N磁極(N・S磁極)を磁界
を受ける。従つて、R1のMR素子は磁気トラツクT1からの
磁界を受けるR11と磁気トラツクT2の磁界を受けるR12
MR素子の直列接続と考える。同様にR2のMR素子はR21とR
22,R3のMR素子はR31とR32,R4のMR素子はR41とR42の直列
接続と考えることができるので、第3図の接続図は第4
図の接続図に置き換えられる。ここで、磁気抵抗素子の
静特性が第5図の様なヒステリシスを持つた特性であつ
たとする。磁気ドラム2が回転すると各磁気抵抗素子R1
〜R4には磁気トラツクT1及びT2からの磁気信号に応じた
磁界が加えられる。例えば磁気トラツクT1により磁気抵
抗素子R11に加えられる磁界が図示の様な入力磁界Hi
すると、この磁界は位置(磁気ドラム2の回転位置)に
よつて正負に変化するので、これに対応して磁気抵抗素
子R11の抵抗は図右上の実線様に変化する。この抵抗変
化は磁気抵抗素子のヒステリシスの影響で1サイクル毎
に大小を生じている。また、入力磁界Hiの1サイクルで
抵抗変化は2サイクル生じる。一方、磁気抵抗素子R12
は磁気トラツクT1の磁気信号に対して磁気信号の記録位
置をλだけずらした磁気トラツクT2からの磁界を受ける
ので、入力磁界Hiが180度ずれ、抵抗変化も破線のR12
様になる。このR11とR12の抵抗変化を比較してみるとJ
度抵抗変化の1サイクル位相がずれた様になる。従つ
て、第4図の様に磁気抵抗素子R11とR12を直列にして加
え合せると、第3図で示したMR素子R1の抵抗としては第
5図(R11+R12)の様な波形となり、磁気抵抗素子R11
とR12の抵抗変化の平均化された波形となつて1サイク
ル毎の振幅の大小はなくなる。また、同様にしてMR素子
R21とR22の合成出力は第5図の破線(R21+R22)の抵抗
変化となる。このため、第4図の3端子出力e1は第5図
右中の実線e1の様な波形となる。また、MR素子R31,R32
及びR41,R42で構成した3端子出力e2は位相が180度ずれ
るのみで全く同様になり、第5図右中の破線e2の様にな
る。従つて、ブリツジ出力はe1とe2の差として第5図右
下のeの様になる。この出力には1サイクル毎の振幅の
大小や周期の大小はなく精度の高い出力が得られる。
An embodiment of the present invention will be described below with reference to FIGS. 1 to 5. FIG. 1 shows the structure of the present invention. This drawing is an example of a rotation sensor, in which a first member, for example, a rotary drum 2 is fixed to a rotary shaft 1, and the magnetic signals of the N and S magnetic poles of the recording pitch λ are all around the magnetic recording medium 3 around the first member. Recorded in 2
The two magnetic tracks T 1 and T 2 are arranged such that the recording positions of the magnetic poles which become magnetic signals are shifted from each other by λ. The magnetic sensor 4 including a second member composed of the MR elements R 1 , R 2 , R 3 and R 4 facing this, for example, a magnetic sensor base 41, is connected to the magnetic track T 1.
And T 2 with a certain spacing. The relationship between the magnetic tracks T 1 and T 2 on the magnetic recording medium 3 of FIG. 1 and the magnetic sensor 4 is shown in FIG. 2 (A) as a developed view. Second
In the drawing, as described above, the magnetic signals of the N and S magnetic poles are recorded on the magnetic tracks T 1 and T 2 on the magnetic recording medium 3 by the recording pitch λ. The magnetic tracks T 1 and T 2 are MR elements R 1
To compensate for hysteresis to R 4, the magnetic signal of the magnetic track T 1, the magnetic signal of the magnetic track T 2 are are shifted λ the recording position in the movement direction. Magnetic sensor 4 is an MR element
Is composed of R 1 to R 4, each MR element are opposed to each lambda / 2 away both as receiving a magnetic signal from the magnetic track T 1 and T 2 in the same way to track. These four MR elements R 1
Connect ~ R 4 as shown in Fig. 3. On the other hand, since the magnetic signal of the MR element R 1 to R 4 are magnetic tracks T 1 and T 2 as shown in FIGS. 1 and 2 are shifted by contact each other lambda, for example, in MR elements R 1 In other words, the magnetic tracks T 1 and T 2 cause the MR element of R 1 to operate so that the upper half and the lower half receive the positive magnetic field and the negative magnetic field in the same manner. That is, the upper half of the R 1 is N · S pole of the magnetic track T 1 when in the magnetic field of the (S · N pole), S · N pole of the magnetic track T 2 are the lower half of R 1 (N · S pole) Receive a magnetic field. Therefore, the MR element of R 1 has a magnetic field of R 11 that receives the magnetic field from magnetic track T 1 and a magnetic field of R 12 that receives the magnetic field of magnetic track T 2 .
Consider it as a series connection of MR elements. Similarly, the MR element of R 2 is R 21 and R
Since the MR element of 22 and R 3 can be considered to be the series connection of R 31 and the MR element of R 32 and R 4 to R 41 and R 42 , the connection diagram of FIG.
Replaced by the connection diagram in the figure. Here, it is assumed that the static characteristic of the magnetoresistive element has a hysteresis characteristic as shown in FIG. When the magnetic drum 2 rotates, each magnetoresistive element R 1
Magnetic field corresponding to a magnetic signal from the magnetic track T 1 and T 2 are added in to R 4. For example, if the magnetic field applied to the magnetoresistive element R 11 by the magnetic track T 1 is an input magnetic field H i as shown in the figure, this magnetic field changes positively and negatively depending on the position (rotational position of the magnetic drum 2). Correspondingly, the resistance of the magnetoresistive element R 11 changes as shown by the solid line in the upper right of the figure. This resistance change is large or small every cycle due to the influence of the hysteresis of the magnetoresistive element. In addition, the resistance change occurs in two cycles in one cycle of the input magnetic field Hi. On the other hand, the magnetoresistive element R 12
Receives the magnetic field from the magnetic track T 2 that shifts the recording position of the magnetic signal by λ with respect to the magnetic signal of the magnetic track T 1 , the input magnetic field Hi is shifted by 180 degrees, and the resistance change is similar to the broken line R 12 . Become. If you compare the resistance changes of R 11 and R 12 , J
The phase of the resistance change is shifted by one cycle. Therefore, when the magnetoresistive elements R 11 and R 12 are added in series as shown in FIG. 4, the resistance of the MR element R 1 shown in FIG. 3 is as shown in FIG. 5 (R 11 + R 12 ). Waveform, the magnetoresistive element R 11
And the averaged waveform of the resistance change of R 12 , the amplitude of each cycle disappears. Similarly, MR element
The combined output of R 21 and R 22 is the resistance change of the broken line (R 21 + R 22 ) in FIG. Therefore, the three-terminal output e 1 in FIG. 4 has a waveform as shown by the solid line e 1 in the right part of FIG. In addition, MR elements R 31 , R 32
The three-terminal output e 2 constituted by R 41 and R 42 is exactly the same except that the phase is shifted by 180 degrees, and becomes like the broken line e 2 in the right side of FIG. Therefore, the output of the bridge becomes the difference e between e 1 and e 2 as shown by e in the lower right of FIG. This output does not have a large amplitude or a small cycle for each cycle, and a highly accurate output can be obtained.

尚、第2図(B)に示したように磁気トラツチT1,T2
間には磁極が存在しない。したがつて、この部分にMR素
子の感磁部があつても意味がなく、抵抗となつて、かえ
つて出力を低下する原因になる。その対策として、この
部分を幅広にしたのが第2図(B)である。これによれ
ば、幅広部R1′が抵抗にならないので大きな出力が得ら
れるものである。
As shown in FIG. 2 (B), the magnetic tracks T 1 , T 2
There is no magnetic pole between them. Therefore, it is meaningless to have the magnetic sensitive portion of the MR element in this portion, and it becomes a resistance, which in turn causes a decrease in output. As a countermeasure against this, FIG. 2B shows that this portion is widened. According to this, a large output can be obtained because the wide portion R 1 ′ does not become a resistance.

以上は磁気トラツクが2つの例であるが、3つ以上の
磁気トラツクで構成する他の実施例を第6図及び第7図
に示す。第6図は磁気トラツクと磁気センサの関係を示
す展開図である。磁気トラツクはT1〜T3の3つ(奇数
個)で構成しており、奇数番目のT1及びT3の磁気トラツ
クの磁気信号の記録位置は同じで偶数番目のT2の磁気ト
ラツクの磁気信号はT1及びT3の磁気信号に対してλだけ
記録位置をずらしている。一方、磁気センサ4のMR素子
R1〜R4の配置は第1図及び第2図で示したものと同じで
あるが、MR素子の長さL1は1個の磁気トラツクの幅TL
対してL1≒2TLとしてMR素子の両端側が磁気トラツクT1
及びT3にほぼ半分ずつ対向する様にしている。この様に
すると磁気センサ4と磁気トラツクT1〜T3との間でMR素
子の長手方向のずれが生じてもMR素子R1〜R4が磁気トラ
ツクT1〜T3から受ける正・負磁界の大きさを平等にでき
る。すなわち例えば、磁気信号のP点の位置において、
磁気センサ4が磁気トラツクT1側にずれたとすると、MR
素子R1〜R4は、磁気トラツクT3から受けるS・N磁極の
磁界は減少するが、磁気トラツクT1から受けるS・N磁
極の磁界は増加するので、磁気トラツクT2から受けるN
・S磁極の磁界と磁気トラツクT1及びT2から受けるS・
N磁極の磁界の等しくできるので磁気抵抗素子の長手方
向の位置ずれが生じてもMR素子のヒステリシスを補償で
きる。
The above is an example of two magnetic tracks, but another embodiment constituted by three or more magnetic tracks is shown in FIGS. 6 and 7. FIG. 6 is a development view showing the relationship between the magnetic track and the magnetic sensor. The magnetic track is three T 1 through T 3 constitutes in (odd number), the odd-numbered T 1 and T 3 of the magnetic track magnetic signal recording positions of even-numbered T 2 the same magnetic track The recording position of the magnetic signal is shifted by λ with respect to the magnetic signals of T 1 and T 3 . On the other hand, the MR element of the magnetic sensor 4
R 1 is the arrangement of to R 4 are the same as those shown in FIGS. 1 and 2, the width of the length L 1 of the MR element is one magnetic track T L with respect to L 1 ≒ 2T L Both ends of the MR element are magnetic tracks T 1
And T 3 are set to face each other by almost half. Positive and negative longitudinal direction of the MR element is also displaced occurs R 1 to R 4 of the MR element between the magnetic sensor 4 and the magnetic tracks T 1 through T 3 With this manner receives from the magnetic track T 1 through T 3 You can equalize the magnitude of the magnetic field. That is, for example, at the position of point P of the magnetic signal,
If the magnetic sensor 4 is displaced to the magnetic track T 1 side, MR
In the elements R 1 to R 4 , the magnetic field of the S / N magnetic poles received from the magnetic track T 3 decreases, but the magnetic field of the S / N magnetic poles received from the magnetic track T 1 increases, so that the elements R 1 to R 4 receive the N from the magnetic track T 2.
・ S received from the magnetic field of the S magnetic pole and the magnetic tracks T 1 and T 2
Since the magnetic fields of the N magnetic poles can be made equal to each other, hysteresis of the MR element can be compensated even if the longitudinal displacement of the magnetoresistive element occurs.

第7図は、磁気トラツクをT1〜T4の4つ(偶数個)で
構成した例であり、第6図と同様に奇数番目の磁半トラ
ツクT1及びT3の磁気信号の記録位置は同じであるが、偶
数番目の磁気トラツクT2及びT4の磁気信号は、T1及びT3
の磁気信号に対してλだけ記録位置をずらしている。磁
気センサ4の4本のMR素子Ra1〜Ra4の配置等は第6図の
ものと同じであるが、MR素子Ra1〜Ra2の長さL1を4つ
(偶数個)の磁気トラツクのうち最内側の2つの磁気ト
ラツクT2及びT3のトラツク幅TL2とほぼ同じにしてい
る。この様にすると、第6図のものと同じ様にMR素子の
長手方向の位置ずれがあつても、MR素子Ra1〜Ra4はN・
S磁極及びS・N磁極の磁界を均等に受けるので、MR素
子のヒステリシスを補償することができる。
FIG. 7 shows an example in which the magnetic tracks are composed of four (even number) T 1 to T 4 , and the magnetic signal recording positions of the odd-numbered magnetic half-tracks T 1 and T 3 are the same as in FIG. Although the same, the magnetic signal of the even-numbered magnetic tracks T 2 and T 4 are, T 1 and T 3
The recording position is shifted by λ with respect to the magnetic signal of. The arrangement and the like of the four MR elements R a1 to R a4 of the magnetic sensor 4 are the same as those in FIG. 6, but the length L 1 of the MR elements R a1 to R a2 is four (even number) of magnetic fields. The track width T L2 of the innermost two magnetic tracks T 2 and T 3 of the tracks is made substantially the same. By doing so, even if the MR element is displaced in the longitudinal direction as in the case of FIG. 6, the MR elements R a1 to R a4 are N.
Since the magnetic fields of the S magnetic pole and the S / N magnetic pole are evenly received, the hysteresis of the MR element can be compensated.

また、以上の説明では磁気センサ4として1相出力の
例で説明したが、第8図は2相出力の他の実施例を示
す。第8図の磁気記録媒体3上の磁気トラツクT1及びT2
と磁気センサ4の関係を示す展開図である。磁気トラツ
クT1及びT2の構成は第1図の実施例と同じである。磁気
センサ4のMR素子はRa1,Ra2,Ra3,Ra4,Rb1,Rb2,Rb3及びR
b4の8本で構成しており、各MR素子の間隔はλ/4ずらし
て配置している。この8本のMR素子は第9図の様に接続
される。各MR素子の抵抗変化は前の実施例と同じであ
る。第8図では2相出力を得るために、MR素子Rb1,Rb2,
Rb3及びRa4をMR素子Ra1,Ra2,Ra3及びRa4をλ/4位置をず
らして配置しているので、位相差のみがeaより90度ずれ
た第5図と同様の出力ebが得られる。この実施例によれ
ば磁気センサの出力をお互いに90度ずれた2相出力とし
ているので回転体の回転方向を判別できる回転センサと
して使用できる。
Further, in the above description, the magnetic sensor 4 is described as an example of one-phase output, but FIG. 8 shows another embodiment of two-phase output. Magnetic tracks T 1 and T 2 on the magnetic recording medium 3 of FIG.
4 is a development view showing the relationship between the magnetic sensor 4 and the magnetic sensor 4. The structure of the magnetic tracks T 1 and T 2 is the same as that of the embodiment shown in FIG. The MR elements of the magnetic sensor 4 are R a1 , R a2 , R a3 , R a4 , R b1 , R b2 , R b3 and R
It is composed of eight b4 , and the MR elements are arranged with a gap of λ / 4. The eight MR elements are connected as shown in FIG. The resistance change of each MR element is the same as in the previous embodiment. In FIG. 8, in order to obtain a two-phase output, MR elements R b1 , R b2 ,
Since R b3 and R a4 are arranged so that the MR elements R a1 , R a2 , R a3 and R a4 are displaced from each other by λ / 4 position, only the phase difference is shifted by 90 degrees from e a . The output e b is obtained. According to this embodiment, since the outputs of the magnetic sensors are two-phase outputs which are deviated from each other by 90 degrees, it can be used as a rotation sensor capable of discriminating the rotating direction of the rotating body.

第10図は磁気トラツクT1及びT2を各々別の回転ドラム
2及び2′で構成した例である。この様にすると回転ド
ラムを新たに作る必要がないので従来使つていた回転ド
ラムを流用できる効果がある。
FIG. 10 shows an example in which the magnetic tracks T 1 and T 2 are composed of separate rotating drums 2 and 2 ', respectively. In this way, there is no need to newly create a rotary drum, and thus there is an effect that the rotary drum that has been used conventionally can be diverted.

以上の例では、回転体の例で説明したが回転体以外で
も直線運動を行うものの位置検出に使用しても同様の効
果が得られる。さらに回転ドラム全体がプラスチツクマ
グネツト等の永久磁石で構成しても同様である。
In the above example, the example of the rotating body has been described, but the same effect can be obtained by using the rotating body other than the rotating body to detect the position. The same applies even if the entire rotary drum is made of a permanent magnet such as a plastic magnet.

〔発明の効果〕〔The invention's effect〕

以上説明したように本発明は、相対的に微小間隙をも
つて移動する第1,第2の部材と、第1の部材に担持され
た磁気記録媒体と、この磁気記録媒体の移動方向に所定
ピツチで多数の磁極を配した磁気トラツクと、前記第2
の部材に担持され、かつ前記磁気記録媒体に近接させた
磁気センサの基体と、前記磁極の磁界に感応して内部抵
抗が変化し、前記基体に担持された磁気抵抗効果素子
(以下MR素子と略称する)と、このMR素子の抵抗変化を
電気信号として取出して前記第1,第2の部材相互の位置
や速度を検出するものにおいて、 前記磁気トラツクを少なくとも2列設け、それぞれの
磁気トラツクには相互に他の磁気トラツクに対してピツ
チλだけずらしてそれぞれ磁極を設け、磁気センサ基体
には、前記両トラツクの磁界に感応する直線状のMR素子
を設けたので、MR素子の検出信号からヒステリシスを除
去できるので、第1,第2の部材の相対移動方向が変つて
も第1,第2の部材の正確な相対位置や正しい速度を検出
できるものである。
As described above, according to the present invention, the first and second members that move with a relatively small gap, the magnetic recording medium carried by the first member, and the predetermined direction in the moving direction of the magnetic recording medium are provided. A magnetic track having a large number of magnetic poles arranged by a pitch;
Of the magnetic sensor, which is carried by the member of (1) and which is brought close to the magnetic recording medium, and the magnetoresistive effect element (hereinafter referred to as MR element) carried by the base whose internal resistance changes in response to the magnetic field of the magnetic pole. Abbreviated), the resistance change of the MR element is extracted as an electric signal to detect the position and speed of the first and second members, and at least two rows of the magnetic tracks are provided, and each magnetic track is provided in each of the magnetic tracks. Are provided with magnetic poles shifted from each other by pitch λ with respect to each other, and a linear MR element sensitive to the magnetic fields of the two tracks is provided on the magnetic sensor base. Since the hysteresis can be eliminated, the accurate relative position and correct velocity of the first and second members can be detected even if the relative movement directions of the first and second members change.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の実施例を示す構成図、第2図(A)は
第1図の磁気記録媒体と磁気センサの関係を示す展開
図、第2図(B)は改良された磁気センサの展開図、第
3図はMR素子の接続図、第4図はMR素子が動作している
時の等価的な接続図、第5図は本発明の動作説明図、第
6図ないし第8図の他の実施例による磁気記録媒体と磁
気センサの展開図、第9図は他の実施例によるMR素子の
接続図、第10図は他の実施例を示す構成図、第11図は従
来技術の磁気記録媒体と磁気センサの展開図、第12図は
従来技術のMR素子の接続図、第13図は従来技術の動作説
明図である。 1……回転軸、2,2′……回転ドラム、3……磁気記録
媒体、4……磁気センサ、R……磁気抵抗効果素子、λ
……磁気信号の記録ピツチ、T1,T2……磁気トラツク、e
1,e2,ea1,ea2,eb1,eb2……3端子出力電圧、e,ea,eb
…ブリツジ出力電圧、Hi……入力磁界。
1 is a block diagram showing an embodiment of the present invention, FIG. 2 (A) is a development view showing the relationship between the magnetic recording medium of FIG. 1 and a magnetic sensor, and FIG. 2 (B) is an improved magnetic sensor. Fig. 3 is a connection diagram of the MR element, Fig. 4 is an equivalent connection diagram when the MR element is operating, Fig. 5 is an operation explanatory diagram of the present invention, and Figs. FIG. 9 is a development view of a magnetic recording medium and a magnetic sensor according to another embodiment of the figure, FIG. 9 is a connection diagram of an MR element according to another embodiment, FIG. 10 is a configuration diagram showing another embodiment, and FIG. FIG. 12 is a development view of a magnetic recording medium and a magnetic sensor of the technology, FIG. 12 is a connection diagram of a MR element of the related art, and FIG. 13 is an operation explanatory diagram of the related art. 1 ... Rotating shaft, 2, 2 '... Rotating drum, 3 ... Magnetic recording medium, 4 ... Magnetic sensor, R ... Magnetoresistive effect element, λ
…… Magnetic signal recording pitch, T 1 , T 2 …… Magnetic track, e
1 , e 2 , e a1 , e a2 , e b1 , e b2 …… 3-terminal output voltage, e, e a , e b
… Bridge output voltage, Hi …… Input magnetic field.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭58−154612(JP,A) 特開 昭62−192615(JP,A) 特開 昭64−16924(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (56) Reference JP-A-58-154612 (JP, A) JP-A-62-192615 (JP, A) JP-A 64-16924 (JP, A)

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】相対的に微小間隙をもつて移動する第1、
第2の部材と、第1の部材に担持された磁気記録媒体
と、この磁気記録媒体の移動方向に所定ピツチで多数の
磁極を配した磁気トラツクと、前記第2の部材に担持さ
れ、かつ前記磁気記録媒体に近接させた磁気センサの基
体と、前記磁極の磁界に感応して内部抵抗が変化し、前
記基体に担持された磁気抵抗効果素子(以下MR素子と略
称する)と、このMR素子の抵抗変化を電気信号として取
出して前記第1,第2の部材相互の位置や速度を検出する
ものにおいて、 前記磁気トラツクを少なくとも2列設け、それぞれの磁
気トラツクには相互に他の磁気トラツクに対してピツチ
λだけずらしてそれぞれ磁極を設け、磁気センサ基体に
は、前記両トラツクの磁界に感応する直線状のMR素子を
設けたことを特徴とする磁気的に位置や速度を検出する
装置。
1. A first device that moves with a relatively small gap,
A second member, a magnetic recording medium carried by the first member, a magnetic track having a large number of magnetic poles arranged in a predetermined pitch in the moving direction of the magnetic recording medium, and carried by the second member, A base of a magnetic sensor which is placed close to the magnetic recording medium, a magnetoresistive effect element (hereinafter abbreviated as MR element) carried on the base whose internal resistance changes in response to the magnetic field of the magnetic pole, and the MR In a device for detecting a change in resistance of an element as an electric signal to detect a position and a velocity between the first and second members, at least two rows of the magnetic tracks are provided, and each magnetic track mutually has another magnetic track. A magnetic position and velocity detecting device characterized in that magnetic poles are provided by being shifted by pitch λ with respect to each other, and linear MR elements that are sensitive to the magnetic fields of the two tracks are provided on the magnetic sensor base body. .
【請求項2】前記特許請求の範囲第1項記載のものにお
いて、 前記磁気トラツクを3列以上設け、隣接する磁気トラツ
ク相互は他の磁気トラツクに対してピツチλだけずらし
て磁極を配し、一方、前記MR素子の長さを1つの磁気ト
ラツクの幅の2倍程度の長さとし、かつこのMR素子の中
心を前記磁気トラツクのうち中央あるいは中央付近の磁
気トラツクに合せるように配置したことを特徴とする磁
気的に位置や速度を検出する装置。
2. The apparatus according to claim 1, wherein the magnetic tracks are provided in three or more rows, and adjacent magnetic tracks are arranged with magnetic poles shifted from each other by pitch λ. On the other hand, the length of the MR element is set to be twice as long as the width of one magnetic track, and the center of the MR element is arranged so as to be aligned with the center of the magnetic track or a magnetic track near the center. A device that magnetically detects position and speed.
【請求項3】前記特許請求の範囲第1項記載のものにお
いて、 複数の磁気トラツクを同一の磁気記録媒体に形成したこ
とを特徴とする磁気的に位置や速度を検出する装置。
3. An apparatus for magnetically detecting a position and velocity according to claim 1, wherein a plurality of magnetic tracks are formed on the same magnetic recording medium.
【請求項4】前記特許請求の範囲第1項記載のものにお
いて、 複数の磁気トラツクは、それぞれ独立の磁気記録媒体に
形成したことを特徴とする磁気的に位置や速度を検出す
る装置。
4. An apparatus for magnetically detecting position and velocity according to claim 1, wherein the plurality of magnetic tracks are formed on independent magnetic recording media.
JP62294094A 1987-11-24 1987-11-24 Device that magnetically detects position and speed Expired - Lifetime JP2539470B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62294094A JP2539470B2 (en) 1987-11-24 1987-11-24 Device that magnetically detects position and speed

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62294094A JP2539470B2 (en) 1987-11-24 1987-11-24 Device that magnetically detects position and speed

Publications (2)

Publication Number Publication Date
JPH01136018A JPH01136018A (en) 1989-05-29
JP2539470B2 true JP2539470B2 (en) 1996-10-02

Family

ID=17803210

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62294094A Expired - Lifetime JP2539470B2 (en) 1987-11-24 1987-11-24 Device that magnetically detects position and speed

Country Status (1)

Country Link
JP (1) JP2539470B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0348119A (en) * 1989-07-17 1991-03-01 Japan Servo Co Ltd Position detecting apparatus
JPH0348120A (en) * 1989-07-17 1991-03-01 Japan Servo Co Ltd Position detecting apparatus

Also Published As

Publication number Publication date
JPH01136018A (en) 1989-05-29

Similar Documents

Publication Publication Date Title
US4599561A (en) Device for detecting the relative and absolute position of a moving body
US5019776A (en) Magnetic position detection apparatus having two magnetic recording medium tracks with magnetoresistors arranged in a bridge circuit so as to eliminate even order harmonic distortion
EP0111866B1 (en) Apparatus for magnetically detecting positions
US4866382A (en) Magnetic rotary encoder system having a multi-element magnetoresistive sensor
JPH0421805B2 (en)
US4713613A (en) Device for magnetically detecting displacement of non-magnetic movable member
JP2008008699A (en) Rotation detecting apparatus
JP2539470B2 (en) Device that magnetically detects position and speed
JPS59147213A (en) Magnetic rotary sensor
JPS6363050B2 (en)
JP3063044B2 (en) Absolute encoder
JP2722605B2 (en) Magnetic encoder
JP2550085B2 (en) Absolute position detector
JPH0634390A (en) Position detecting device
JPS6184504A (en) Magnetic sensor of position detecting device
JPH07104180B2 (en) Magnetic rotary encoder system
JP2619621B2 (en) Encoder device
JPH0330089B2 (en)
JPH052925B2 (en)
JP2527424B2 (en) Magnetic rotary encoder
JPH0618279A (en) Detecting apparatus for position
JPS62245918A (en) Permanent magnet drum and permanent magnet body
JPH0469348B2 (en)
JP2929714B2 (en) Angle detector
JPH0711429B2 (en) Encoder device