JPH01136018A - Apparatus for magnetically detecting position and speed - Google Patents

Apparatus for magnetically detecting position and speed

Info

Publication number
JPH01136018A
JPH01136018A JP29409487A JP29409487A JPH01136018A JP H01136018 A JPH01136018 A JP H01136018A JP 29409487 A JP29409487 A JP 29409487A JP 29409487 A JP29409487 A JP 29409487A JP H01136018 A JPH01136018 A JP H01136018A
Authority
JP
Japan
Prior art keywords
magnetic
tracks
recording medium
track
elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29409487A
Other languages
Japanese (ja)
Other versions
JP2539470B2 (en
Inventor
Shoichi Kawamata
昭一 川又
Tadashi Takahashi
正 高橋
Kunio Miyashita
邦夫 宮下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP62294094A priority Critical patent/JP2539470B2/en
Publication of JPH01136018A publication Critical patent/JPH01136018A/en
Application granted granted Critical
Publication of JP2539470B2 publication Critical patent/JP2539470B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To perform accurate detection by preventing the generation of histeresis in the direction signal of an MR element, in a position and speed detection apparatus using the MR element, by using two rows of magnetic tracks shifted by a predetermined pitch. CONSTITUTION:Two rows of magnetic tracks T1, T2 shifted by a predetermined pitch lambda are provided in the moving direction of a magnetic recording medium 3 and linear MR elements (magnetoresistance effect elements) R1-R4 are provided to a magnetic sensor substrate 41. By this constitution, since the MR elements R1-R4 are operated by positive and negative magnetic fields by the aforementioned respective magnetic tracks T1, T2, even when there is histeresis in the static characteristics of the MR elements R1-R4, said characteristics are averaged. Therefore, the error of encoder output based on histeresis can be reduced.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は磁気的に移動体の位置や速度を検出する装置に
関し、特に磁気抵抗効果素子(以下MR素子と略称する
)を用いて位置や速度を検出する装置に関するものであ
る。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a device for magnetically detecting the position and speed of a moving object, and in particular, the present invention relates to a device for magnetically detecting the position and speed of a moving object, and in particular, detecting the position and speed using a magnetoresistive element (hereinafter abbreviated as MR element). The present invention relates to a device for detecting speed.

〔従来の技術〕[Conventional technology]

MR素子を用いて角度を検出するものとして、特公昭6
0−45804号公報記載のものがある。
To detect the angle using an MR element,
There is one described in Publication No. 0-45804.

この公報にはMR素子と周期的磁場を発生する磁気記録
媒体との相対的配置関係について主として述べられてい
る。
This publication mainly describes the relative arrangement relationship between the MR element and the magnetic recording medium that generates a periodic magnetic field.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明および従来技術で用いるこの種MR素子は、加え
られる磁界の方向によって抵抗変化にヒステリシスが現
われることが実験的に確認された。
It has been experimentally confirmed that in this type of MR element used in the present invention and the prior art, hysteresis appears in the resistance change depending on the direction of the applied magnetic field.

このヒステリシスは製造プロセスや製造されたMR素子
の幅で大なるバラツキを有している。
This hysteresis has large variations depending on the manufacturing process and the width of the manufactured MR element.

MR素子が5μm程度で非常に細い場合ヒステリシスは
ほとんどないが、20〜30μm程度の幅にするとヒス
テリシスが顕著に現われる。一方。
When the MR element is very thin, about 5 μm, there is almost no hysteresis, but when the width is about 20 to 30 μm, hysteresis becomes noticeable. on the other hand.

抵抗変化率に基づく出力は幅広にした方が大きいので、
ヒステリシスがあっても幅広のMR素子を用いることか
ら余儀なくされている。
The output based on the rate of change in resistance is greater when the width is wider, so
Even if there is hysteresis, it is necessary to use a wide MR element.

このヒステリシスというのは、同一磁極からの磁界が同
−MRセンサに作用する場合、この磁界がMRセンサの
右方向から作用する場合と左方向から作用する場合では
、MRセンサの抵抗変化が異なるということである。
This hysteresis means that when a magnetic field from the same magnetic pole acts on the same MR sensor, the change in resistance of the MR sensor will be different depending on whether the magnetic field acts from the right side or the left side of the MR sensor. That's true.

1回転あるいは単位長さ当りの出力パルス数を多くし、
高精度、高分解能の装置を得ようとすると、このヒステ
リシスが邪魔になる。すなわち、ヒステリシスを有して
いても隣接する磁極と区別して検出する必要があるので
、磁極の着磁ピッチを余り小さくすることが出来ない。
Increase the number of output pulses per revolution or unit length,
This hysteresis becomes an obstacle when trying to obtain a high-precision, high-resolution device. That is, even if there is hysteresis, it is necessary to detect the magnetic poles separately from adjacent magnetic poles, so the magnetization pitch of the magnetic poles cannot be made very small.

ヒステリシスの様子を第11図ないし第13図に基づい
て説明する。
The state of hysteresis will be explained based on FIGS. 11 to 13.

第11図は磁気センサ4と記録媒体3との関係を示す展
開図である。記録媒体3には記録ピッチλのN−S磁極
の磁気信号からなる磁気トラックTzが配置されており
、これに対して磁気センサ4はMR素子R1〜R4を各
々λ/2ずつ離して配置している。これらのMR素子R
1〜R4を第12図の様にブリッジ接続する。この時、
記録媒体3が移動すればMR素子R1−R4の抵抗変化
は第13図の様になる。第13図はMR素子の磁界に対
する抵抗変化を示す静特性を示す。磁界が正方向と負方
向では図示の様に抵抗変化が異なるヒステリシスを持つ
特性である。ここで、記録媒体3が移動して磁気トラッ
クT1によってMR素子に加わる磁界が図示の様な入力
磁界Hiとすると。
FIG. 11 is a developed view showing the relationship between the magnetic sensor 4 and the recording medium 3. A magnetic track Tz consisting of magnetic signals of N-S magnetic poles with a recording pitch λ is arranged on the recording medium 3, and the magnetic sensor 4 has MR elements R1 to R4 arranged at a distance of λ/2 from each other. ing. These MR elements R
1 to R4 are bridge-connected as shown in FIG. At this time,
When the recording medium 3 moves, the resistance changes of the MR elements R1-R4 become as shown in FIG. FIG. 13 shows the static characteristics of the MR element showing the resistance change with respect to the magnetic field. As shown in the figure, it has a characteristic of having hysteresis in which the resistance changes are different when the magnetic field is in the positive direction and in the negative direction. Here, suppose that the magnetic field applied to the MR element by the magnetic track T1 as the recording medium 3 moves becomes an input magnetic field Hi as shown in the figure.

MR素子R1は位置と共に図示右上R1の様な変化をす
る。また、MR素子RzはMR素子Rsに対して1λ/
2tllれているので図示R2の様な変化になる。これ
らR1,R2の抵抗変化はMR素子の静特性の影響で図
示の様に1サイクル毎に大小の変化となる。このため、
MR素子R1とR2で構成する3端子出力e1は図示布
中の01の波形となって1サイクル毎の出力振幅と周期
の大小が発生する。同様にMR素子R3,R4の3端子
出力も図示e2の様になるのでブリッジ出力eは、図示
右下の出力eになる。この出力も1サイクル毎に振幅及
び周期の大小がくり返され、大きな誤差となる。
The MR element R1 changes with position as shown in the upper right R1 in the figure. Furthermore, the MR element Rz is 1λ/
Since the change is 2tll, the change will be as shown in R2 in the diagram. The resistance changes of these R1 and R2 change in magnitude every cycle as shown in the figure due to the static characteristics of the MR element. For this reason,
The three-terminal output e1 composed of the MR elements R1 and R2 has a waveform of 01 in the diagram, and the output amplitude and period vary in magnitude for each cycle. Similarly, since the three-terminal outputs of the MR elements R3 and R4 are as shown in e2 in the figure, the bridge output e becomes the output e at the lower right in the figure. This output also repeats the amplitude and period in each cycle, resulting in a large error.

上記従来技術はMR素子の静特性が正・負磁界で抵抗変
化が異なるヒステリシスを有することについて示摘され
ておらず、そのため出力に誤差を生じてしまう問題があ
った。
The above-mentioned conventional technology does not indicate that the static characteristics of the MR element have hysteresis, in which resistance changes differ depending on positive and negative magnetic fields, and therefore there is a problem in that errors occur in the output.

本発明の目的は、MR素子の静特性にヒステリシスがあ
ってもエンコーダ出力に誤差を生じない位置検出装置を
提供することにある。
An object of the present invention is to provide a position detection device that does not cause errors in encoder output even if there is hysteresis in the static characteristics of an MR element.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は前記に着目してなされたものであり、相対的に
微小間隙をもって移動する第1、第2の部材と、第1の
部材に担持された磁気記録媒体と、この磁気記録媒体の
移動方向に所定ピッチで多数の磁極を配した磁気トラッ
クと、前記第2の部材に担持され、かつ前記磁気記録媒
体に近接させた磁気センサの基体と、前記磁極の磁界に
感応して内部抵抗が変化し、前記基体に担持された磁気
抵抗効果素子(以下MR素子と略称する)と、このMR
素子の抵抗変化を電気信号として取出して前記第1.第
2の部材相互の位置や速度を検出するものにおいて、 前記磁気トラックを少なくとも2列設け、それぞれの磁
気トラックには相互に他の磁気トラックに対してピッチ
λだけずらしてそれぞれ磁極を設け、磁気センサ基体に
は、前記両トラックの磁界に感応する直線状のMR素子
を設け、二つの部材の相対移動方向が変っても、正しい
位置を示す出力信号を得るように構成したものである。
The present invention has been made focusing on the above, and includes first and second members that relatively move with a minute gap, a magnetic recording medium supported by the first member, and movement of the magnetic recording medium. a magnetic track having a large number of magnetic poles arranged at a predetermined pitch in a direction; a base body of a magnetic sensor carried by the second member and placed close to the magnetic recording medium; A magnetoresistive element (hereinafter abbreviated as MR element) that changes and is supported on the base, and this MR
The change in resistance of the element is extracted as an electrical signal and used as the first signal. In the device for detecting the mutual positions and speeds of the second members, at least two rows of the magnetic tracks are provided, each magnetic track is provided with a magnetic pole shifted by a pitch λ with respect to the other magnetic track, and the magnetic The sensor base is provided with a linear MR element that is sensitive to the magnetic fields of both tracks, so that even if the direction of relative movement of the two members changes, an output signal indicating the correct position can be obtained.

〔作用〕[Effect]

以上の様に各MR素子は、各々正・負磁界で動作するた
め、お互いにヒステリシスを平均化してしまう。それに
よって、1サイクル毎の振幅の大小を補償するように作
用するので位置検出の出力に誤差かつ生じない。
As described above, since each MR element operates with positive and negative magnetic fields, their hysteresis is averaged out. This acts to compensate for the magnitude of the amplitude for each cycle, so that no errors occur in the position detection output.

〔実施例〕〔Example〕

以下本発明の一実施例を第1図ないし第5図によって説
明する。第1図は本発明の構成を示す。
An embodiment of the present invention will be described below with reference to FIGS. 1 to 5. FIG. 1 shows the configuration of the present invention.

この図は回転センサの例であり、回転軸1に第1の部材
例えば回転ドラム2が固定してあり、その外周の磁気記
録媒体3に記録ピッチλのN−3磁極の磁気信号を全周
に記録した2つの磁気トラックTl及びT2がお互いに
磁気信号となる磁極の記録位置をλずらして配置してい
る。これに対向してMR素子R1,R21R3及びR4
で構成された第2の部材例えば磁気センサ基体41を含
む磁気センサ4を磁気トラックTI及びT2よりある間
隔スペーシングを介して配置する。第1図の磁気記録媒
体3上の磁気トラックTl、T2と磁気センサ4の関係
を第2図(A)に展開図として示す。第2図において、
前述した様に磁気記録媒体3I−、の磁気トラックT1
及びT2には、記録ピッチλでN・S8&極の磁気信号
を記録している。磁気トラックTz及びT2は、MR素
子R1〜R4のヒステリシスを補償するため、磁気トラ
ックT1の磁気信号に対して、磁気トラックT2の磁気
信号は記録位置を移動方向にλずらしている。磁気セン
サ4はMR素子R1〜R4で構成されており、各MR素
子は各々λ/2離して磁気トラックT1及びT2からの
磁気信号を同じ様に受ける様に両方のトラックに対向し
ている。この4個のMR素子R1〜R4は第3図の様に
接続する。一方、MR素子R1〜R4は第1図及び第2
図で示した様に磁気トラックT1及びT2の磁気信号が
お互λだけずれているので、例えば、R1のMR素子で
言えば、磁気トラックT1及びT2によりR1のMR素
子は上半分と下半分で正磁界及び負磁界を同じに受ける
様な動作をする。すなわち、Riの上半分が磁気トラッ
クT+のN−3磁極(S −N磁極)の磁界にあるとき
、R1の下半分は磁気トラックT2のS・N磁極(N−
8faViA)の磁界を受ける。従って。
This figure shows an example of a rotation sensor, in which a first member such as a rotating drum 2 is fixed to a rotating shaft 1, and a magnetic signal of N-3 magnetic poles with a recording pitch λ is transmitted to a magnetic recording medium 3 on the outer circumference of the first member, for example, a rotating drum 2. The two magnetic tracks Tl and T2 recorded on the magnetic tracks T1 and T2 are arranged such that the recording positions of the magnetic poles, which serve as magnetic signals, are shifted from each other by λ. Opposing this, MR elements R1, R21R3 and R4
A second member, such as a magnetic sensor 4 including a magnetic sensor substrate 41, is arranged at a certain distance spacing from the magnetic tracks TI and T2. The relationship between the magnetic tracks Tl and T2 on the magnetic recording medium 3 in FIG. 1 and the magnetic sensor 4 is shown in a developed view in FIG. 2(A). In Figure 2,
As mentioned above, the magnetic track T1 of the magnetic recording medium 3I-
And in T2, magnetic signals of N, S8 & poles are recorded at a recording pitch λ. In the magnetic tracks Tz and T2, in order to compensate for the hysteresis of the MR elements R1 to R4, the recording position of the magnetic signal of the magnetic track T2 is shifted by λ in the movement direction with respect to the magnetic signal of the magnetic track T1. The magnetic sensor 4 is composed of MR elements R1 to R4, and each MR element is spaced apart from each other by λ/2 and faces the magnetic tracks T1 and T2 so as to receive the magnetic signals from the tracks in the same manner. These four MR elements R1 to R4 are connected as shown in FIG. On the other hand, the MR elements R1 to R4 are shown in FIGS.
As shown in the figure, the magnetic signals of the magnetic tracks T1 and T2 are shifted by λ, so for example, in the case of the MR element of R1, the MR element of R1 is divided into the upper half and the lower half by the magnetic tracks T1 and T2. It operates in such a way that it receives both positive and negative magnetic fields. That is, when the upper half of Ri is in the magnetic field of the N-3 magnetic pole (S-N magnetic pole) of the magnetic track T+, the lower half of R1 is in the magnetic field of the N-3 magnetic pole (S-N magnetic pole) of the magnetic track T2.
It receives a magnetic field of 8faViA). Therefore.

RiのMR素子は磁気トラックT1からの磁界を受ける
R11と磁気トラックT2の磁界を受けるRlzのMR
素子の直列接続と考える。同様にR2のMR素子はRz
lとRzz、RaのMR素子はRatとR3Z、R4の
MR素子はRasとR42の直列接続と考えることがで
きるので、第3図の接続図は第4図の接続図に置き換え
られる。ここで、磁気抵抗素子の静特性が第5図の様な
ヒステリシスを持った特性であったとする。磁気ドラム
2が回転すると各磁気抵抗素子R1〜R4には磁気トラ
ックT1及びT2からの磁気信号に応じた磁界が加えら
れる。例えば磁気トラックTlにより磁気抵抗素子R1
tに加えられる磁界が図示の様な入力磁界H1とすると
、この磁界は位置(磁気ドラム2の回転位Jiff)に
よって正負に変化するので、これに対応して磁気抵抗素
子Rssの抵抗は同右上の実線様に変化する。この抵抗
変化は磁気抵抗素子のヒステリシスの影響で1サイクル
毎に大小を生じている。また、入力磁界Hiの1サイク
ルで抵抗変化は2サイクル生じる。一方、磁気抵抗素子
R12は磁気トラックTIの磁気信号に対して磁気信号
の記録位置をλだけずらした磁気トラックT2からの磁
界を受けるので、入力磁界Hiが180度ずれ、抵抗変
化も破線のRrzの様になる。このR11とRsxの抵
抗変化を比較してみるとJ度抵抗変化の1サイクル位相
がずれた様になる。従って。
The MR element of Ri receives the magnetic field from the magnetic track T1, and the MR element of Rlz receives the magnetic field from the magnetic track T2.
Think of it as a series connection of elements. Similarly, the MR element of R2 is Rz
Since the MR elements of 1, Rzz, and Ra can be considered to be a series connection of Rat and R3Z, and the MR element of R4 is a series connection of Ras and R42, the connection diagram of FIG. 3 can be replaced with the connection diagram of FIG. 4. Here, it is assumed that the static characteristics of the magnetoresistive element have hysteresis as shown in FIG. When the magnetic drum 2 rotates, a magnetic field corresponding to the magnetic signals from the magnetic tracks T1 and T2 is applied to each of the magnetoresistive elements R1 to R4. For example, the magnetic track Tl causes the magnetoresistive element R1 to
If the magnetic field applied to t is the input magnetic field H1 as shown in the figure, this magnetic field changes from positive to negative depending on the position (rotational position Jiff of the magnetic drum 2), so the resistance of the magnetoresistive element Rss corresponds to It changes like a solid line. This resistance change varies in size every cycle due to the hysteresis of the magnetoresistive element. Furthermore, two cycles of resistance change occur in one cycle of the input magnetic field Hi. On the other hand, the magnetoresistive element R12 receives a magnetic field from the magnetic track T2 in which the recording position of the magnetic signal is shifted by λ with respect to the magnetic signal of the magnetic track TI, so the input magnetic field Hi is shifted by 180 degrees and the resistance change is also as indicated by the broken line Rrz. It will look like this. Comparing the resistance changes of R11 and Rsx, it appears that the phase of the resistance change is shifted by J degrees by one cycle. Therefore.

第4図の様に磁気抵抗素子R11とR12を直列にして
加え合せると、第3図で示したMR素子R1の抵抗とし
ては第5図(R11+R12)の様な波形となり、磁気
抵抗素子RrtとR12の抵抗変化の平均化された波形
となって1サイクル毎の振幅の大小はなくなる。また、
同様に′してMR素子R21とR22の合成出力は第5
図の破線(Rzx + R2z)の抵抗変化となる。こ
のため、第4図の3端子出力e1は第5図布中の実線e
1の様な波形となる。
When magnetoresistive elements R11 and R12 are connected in series and added together as shown in Fig. 4, the resistance of MR element R1 shown in Fig. 3 has a waveform as shown in Fig. 5 (R11+R12), and magnetoresistive element Rrt and The waveform becomes an average of the resistance change of R12, and the amplitude of each cycle is not large or small. Also,
Similarly, the combined output of MR elements R21 and R22 is the fifth
The resistance change is shown by the broken line (Rzx + R2z) in the figure. Therefore, the three-terminal output e1 in FIG. 4 is the solid line e in the cloth in FIG.
It will have a waveform like 1.

また、MR素子Rsl、 R32及びR4□、 R4□
で構成した3端子出力e2は位相が180度ずれるのみ
で全く同様になり、第5図布中の破線e2の様になる。
In addition, MR elements Rsl, R32 and R4□, R4□
The three-terminal output e2 configured as shown in FIG.

従って、ブリッジ出力はelと02の差として第5図右
下のeの様になる。この出力には1サイクル毎の振幅の
大小や周期の大小はなく精度の高い出力が得られる。
Therefore, the bridge output becomes the difference between el and 02 as shown in e in the lower right corner of FIG. This output has no amplitude or cycle size for each cycle, and a highly accurate output can be obtained.

尚、第2図(B)に示したように磁気トラフチ11,1
2間には磁極が存在しない。したがって。
In addition, as shown in FIG. 2(B), the magnetic troughs 11, 1
There are no magnetic poles between the two. therefore.

この部分にMR素子の感磁部があっても意味がなく、抵
抗となって、かえって出力を低下する原因になる。その
対策として、この部分を幅広にしたのが第2図(B)で
ある。これによれば1幅広部Rz’  が抵抗にならな
いので大きな出力が得られるものである。
There is no point in having a magnetically sensitive part of the MR element in this part, and it becomes a resistance and causes a decrease in the output. As a countermeasure, this part was made wider as shown in Fig. 2 (B). According to this, a large output can be obtained since the first wide portion Rz' does not act as a resistance.

以上は磁気トラックが2つの例であるが、3つ以上の磁
気トラックで構成する他の実施例を第6図及び第7図に
示す。第6図は磁気トラックと磁気センサの関係を示す
展開図である。磁気トラックはT1〜T8の3つ(奇数
個)で構成しており、奇数番目のT1及びT3の磁気ト
ラックの磁気信号の記録位置は同じで偶数番目のT2の
磁気トラックの磁気信号はT1及びT3の磁気信号に対
してλだけ記録位置をずらしている。一方、磁気センサ
4のMR素子Rl” R4の配置は第1図及び第2図で
示したものと同じであるが、MR素子の長さLlは1個
の磁気トラックの幅Tしに対してL L”F2TLとし
てMR素子の両端側が磁気トラックTr及びT3にほぼ
半分ずつ対向する様にしている。この様にすると磁気セ
ンサ4と磁気トラックT1〜T8との間でMR素子の長
手方向のずれが生じてもMR素子Rs ” R4が磁気
トラックT1〜T3から受ける正・負磁界の大きさを平
等にできる。
Although the above example uses two magnetic tracks, other embodiments configured with three or more magnetic tracks are shown in FIGS. 6 and 7. FIG. 6 is a developed view showing the relationship between the magnetic track and the magnetic sensor. The magnetic tracks are composed of three (odd number) T1 to T8, and the recording positions of the magnetic signals of the odd-numbered magnetic tracks T1 and T3 are the same, and the magnetic signals of the even-numbered magnetic tracks T2 are the same. The recording position is shifted by λ with respect to the magnetic signal of T3. On the other hand, the arrangement of the MR element Rl''R4 of the magnetic sensor 4 is the same as that shown in Figs. 1 and 2, but the length Ll of the MR element is different from the width T of one magnetic track. As L L''F2TL, both ends of the MR element are arranged to face approximately half of the magnetic tracks Tr and T3. In this way, even if there is a shift in the longitudinal direction of the MR element between the magnetic sensor 4 and the magnetic tracks T1 to T8, the magnitude of the positive and negative magnetic fields that the MR element Rs''R4 receives from the magnetic tracks T1 to T3 can be equalized. Can be done.

すなわち例えば、磁気信号のP点の位置において、磁気
センサ4が磁気トラックTi側にずれたとすると、MR
素子R1−R4は、磁気トラックT3から受けるS−N
磁極の磁界は減少するが、磁気トラックT1から受ける
S−N磁極の磁界は増加するので、磁気トラックT2か
ら受けるN−3磁極の磁界と磁気トラックT1及びT2
から受けるS・N磁極の磁界の等しくできるので磁気抵
抗素子の長手方向の位置ずれが生じてもMR素子のヒス
テリシスを補償できる。
That is, for example, if the magnetic sensor 4 is shifted toward the magnetic track Ti at the position of point P of the magnetic signal, the MR
Elements R1-R4 receive S-N from magnetic track T3.
Although the magnetic field of the magnetic pole decreases, the magnetic field of the S-N magnetic pole received from the magnetic track T1 increases, so that the magnetic field of the N-3 magnetic pole received from the magnetic track T2 and the magnetic tracks T1 and T2
Since the magnetic fields of the S and N magnetic poles received from the magneto-resistance element can be made equal, the hysteresis of the MR element can be compensated for even if the longitudinal positional deviation of the magnetoresistive element occurs.

第7図は、磁気トラックをT!〜T4の4つ(偶数個)
で構成した例であり、第6図と同様に奇数番目の磁半ト
ラックT1及びT3の磁気信号の記録位置は同じである
が、偶数番目の磁気トラックT2及びT4の磁気信号は
、T1及びT3の磁気信号に対してλだけ記録位置をず
らしている。磁気センサ4の4本のMR素子Rai〜R
atの配置等は第6図のものと同じであるが、MR素子
Ra i ” Ra 2の長さLlを4つ(偶数個)の
磁気トラックのうち最内側の2つの磁気トラックT2及
びTδのトラック幅Tbzとほぼ同じにしている。この
様にすると、第6図のものと同じ様にMR素子の長手方
向の位置ずれがあっても、MR素子Rar〜Ra4はN
−3磁極及びS−N磁極の磁界を均等に受けるので、M
 R素子のヒステリシスを補償することができる。
Figure 7 shows the magnetic track T! ~4 T4 (even number)
Similarly to FIG. 6, the recording positions of the magnetic signals of the odd-numbered magnetic half tracks T1 and T3 are the same, but the magnetic signals of the even-numbered magnetic tracks T2 and T4 are The recording position is shifted by λ with respect to the magnetic signal. Four MR elements Rai to R of the magnetic sensor 4
The arrangement of at is the same as that in Fig. 6, but the length Ll of the MR element Ra i '' Ra 2 is set to the innermost two magnetic tracks T2 and Tδ of the four (even number) magnetic tracks. It is made almost the same as the track width Tbz.In this way, even if there is a positional shift in the longitudinal direction of the MR element like the one in FIG.
-3 magnetic pole and S-N magnetic pole are equally received, so M
The hysteresis of the R element can be compensated for.

また1以上の説明では磁気センサ4として1相出力の例
で説明したが、第8図は2相出力の他の実施例を示す。
Further, in the above description, the magnetic sensor 4 has been described as an example of a one-phase output, but FIG. 8 shows another embodiment of a two-phase output.

第8図の磁気記録媒体3上の磁気トラックT1及びT2
と磁気センサ4の関係を示す展開図である。磁気トラッ
クT1及びT2の構成は第1図の実施例と同じである。
Magnetic tracks T1 and T2 on the magnetic recording medium 3 in FIG.
FIG. The configuration of magnetic tracks T1 and T2 is the same as in the embodiment of FIG.

磁気センサ4のMR素子はRaae Raat Raa
e Raat Rb1y RbZ+Rba及びRb4の
8本で構成しており、各MR素子の間隔はλ/4ずらし
て配置している。この8本のMR素子は第9図の様に接
続される。各MR素子の抵抗変化は前の実施例と同じあ
る。第8図では2相出力を得るために、MR素子Rb 
s HRb 2 gRl、3及びR1,4をMR素子R
at+ Raz+ Raa及びRa4をλ/4位置をず
らして配置しているので。
The MR element of the magnetic sensor 4 is Raae Raat Raa
It is composed of eight MR elements: e Raat Rb1y RbZ+Rba and Rb4, and the intervals between the respective MR elements are shifted by λ/4. These eight MR elements are connected as shown in FIG. The resistance change of each MR element is the same as in the previous embodiment. In FIG. 8, in order to obtain a two-phase output, the MR element Rb
s HRb 2 gRl, 3 and R1, 4 as MR element R
at+ Raz+ Raa and Ra4 are arranged with their positions shifted by λ/4.

位相差のみがeaより90度ずれた第5図と同様の出力
ebが得られる。この実施例によれば磁気センサの出力
をお互いに90度ずれた2相出力としているので回転体
の回転方向を判別できる回転センサとして使用できる。
An output eb similar to that shown in FIG. 5 is obtained in which only the phase difference is shifted by 90 degrees from ea. According to this embodiment, since the output of the magnetic sensor is a two-phase output that is shifted by 90 degrees from each other, it can be used as a rotation sensor capable of determining the rotation direction of a rotating body.

第10図は磁気トラックTI及びTlを各々別の回転ド
ラム2及び2′で構成した例である。この様にすると回
転ドラムを新たに作る必要がないので従来使っていた回
転ドラムを流用できる効果がある。
FIG. 10 shows an example in which the magnetic tracks TI and Tl are constructed from separate rotating drums 2 and 2', respectively. In this way, there is no need to create a new rotating drum, so there is an effect that the previously used rotating drum can be used.

以上の例では1回転体の例で説明したが回転体以外でも
直線運動を行うものの位置検出に使用しても同様の効果
が得られる。さらに回転ドラム全体がプラスチックマグ
ネット等の永久磁石で構成しても同様である。
In the above example, an example of a single rotating body has been explained, but the same effect can be obtained even if it is used to detect the position of an object other than a rotating body that performs linear motion. Further, the same effect can be obtained even if the entire rotating drum is made of a permanent magnet such as a plastic magnet.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、相対的に微小間隙をもっ
て移動する第1.第2の部材と、第1の部材に担持され
た6j1気記録媒体と、この磁気記録媒体の移動方向に
所定ピッチで多数の磁極を配した磁気トラックと、前記
第2の部材に担持され、かつ前記磁気記録媒体に近接さ
せた磁気センサの基体と、前記磁極の磁界に感応して内
部抵抗が変化し、前記基体に担持された磁気抵抗効果素
子(以下MR素子と略称する)と、このMR素子の抵抗
変化を電気信号として取出して前記第1.第2の部材相
互の位置や速度を検出するものにおいて、 前記磁気トラックを少なくとも2列設け、それぞれの磁
気トラックには相互に他の磁気トラックに対してピッチ
λだけずらしてそれぞれ磁極を設け、磁気センサ基体に
は、前記両トラックの磁界に感応する直線状のMR素子
を設けたので、MR素子の検出信号からヒステリシスを
除去できるので、第1.第2の部材の相対移動方向が変
っても第1.第2の部材の正確な相対位置や正しい速度
を検出できるものである。
As explained above, the present invention provides a first lens that moves with a relatively small gap. a second member, a 6J1 recording medium supported by the first member, a magnetic track having a large number of magnetic poles arranged at a predetermined pitch in the direction of movement of the magnetic recording medium, and a magnetic track supported by the second member; and a base body of a magnetic sensor placed close to the magnetic recording medium; a magnetoresistive element (hereinafter abbreviated as MR element) whose internal resistance changes in response to the magnetic field of the magnetic pole and supported on the base body; The resistance change of the MR element is extracted as an electrical signal and the first. In the device for detecting the mutual positions and speeds of the second members, at least two rows of the magnetic tracks are provided, each magnetic track is provided with a magnetic pole shifted by a pitch λ with respect to the other magnetic track, and the magnetic Since the sensor base is provided with a linear MR element that is sensitive to the magnetic fields of both tracks, hysteresis can be removed from the detection signal of the MR element. Even if the relative movement direction of the second member changes, the first member. The accurate relative position and correct speed of the second member can be detected.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例を示す構成図、第2図(A)は
第1図の磁気記録媒体と磁気センサの関係を示す展開図
、第2図(B)は改良された磁気センサの展開図、第3
図はMR素子の接続図、第4図はMR素子が動作してい
る時の等価的な接続図、第5図は本発明の動作説明図、
第6図ないし第8図の他の実施例による磁気記録媒体と
磁気セと磁気センサの展開図、第12図は従来技術のM
R素子の接続図、第13図は従来技術の動作説明図であ
る。 1・・・回転軸、2,2′・・・回転ドラム、3・・・
磁気記録媒体、4・・・磁気センサ、R・・・磁気抵抗
効果素子、λ・・・磁気信号の記録ピッチ、Tl、Tl
・・・磁気トラック、 ex、 e2. eal+ e
a2.ebl+ ebz”’3端子出力電圧、e、ea
、eb・・・ブリッジ出力電圧、Hi・・・入力磁界。
FIG. 1 is a configuration diagram showing an embodiment of the present invention, FIG. 2 (A) is a developed view showing the relationship between the magnetic recording medium and the magnetic sensor in FIG. 1, and FIG. 2 (B) is an improved magnetic sensor. Developed diagram, 3rd
The figure is a connection diagram of the MR element, FIG. 4 is an equivalent connection diagram when the MR element is operating, and FIG. 5 is a diagram explaining the operation of the present invention.
FIGS. 6 to 8 are developed views of the magnetic recording medium, magnetic sensor, and magnetic sensor according to other embodiments, and FIG. 12 is the conventional M
The connection diagram of the R element, FIG. 13, is an explanatory diagram of the operation of the prior art. 1... Rotating shaft, 2, 2'... Rotating drum, 3...
Magnetic recording medium, 4... Magnetic sensor, R... Magnetoresistive element, λ... Recording pitch of magnetic signal, Tl, Tl
...magnetic track, ex, e2. eal+e
a2. ebl+ebz"'3 terminal output voltage, e, ea
, eb...Bridge output voltage, Hi...Input magnetic field.

Claims (1)

【特許請求の範囲】 1、相対的に微小間隙をもつて移動する第1、第2の部
材と、第1の部材に担持された磁気記録媒体と、この磁
気記録媒体の移動方向に所定ピッチで多数の磁極を配し
た磁気トラックと、前記第2の部材に担持され、かつ前
記磁気記録媒体に近接させた磁気センサの基体と、前記
磁極の磁界に感応して内部抵抗が変化し、前記基体に担
持された磁気抵抗効果素子(以下MR素子と略称する)
と、このMR素子の抵抗変化を電気信号として取出して
前記第1、第2の部材相互の位置や速度を検出するもの
において、 前記磁気トラックを少なくとも2列設け、それぞれの磁
気トラックには相互に他の磁気トラックに対してピッチ
λだけずらしてそれぞれ磁極を設け、磁気センサ基体に
は、前記両トラックの磁界に感応する直線状のMR素子
を設けたことを特徴とする磁気的に位置や速度を検出す
る装置。 2、前記特許請求の範囲第1項記載のものにおいて、 前記磁気トラックを3列以上設け、隣接する磁気トラッ
ク相互は他の磁気トラックに対してピッチλだけずらし
て磁極を配し、一方、前記MR素子の長さを1つの磁気
トラックの幅の2倍程度の長さとし、かつこのMR素子
の中心を前記磁気トラックのうち中央あるいは中央付近
の磁気トラックに合せるように配置したことを特徴とす
る磁気的に位置や速度を検出する装置。 3、前記特許請求の範囲第1項記載のものにおいて、 複数の磁気トラックを同一の磁気記録媒体に形成したこ
とを特徴とする磁気的に位置や速度を検出する装置。 4、前記特許請求の範囲第1項記載のものにおいて、 複数の磁気トラックは、それぞれ独立の磁気記録媒体に
形成したことを特徴とする磁気的に位置や速度を検出す
る装置。
[Claims] 1. First and second members that move with a relatively small gap, a magnetic recording medium supported by the first member, and a predetermined pitch in the direction of movement of the magnetic recording medium. a magnetic track having a large number of magnetic poles arranged thereon; a base body of a magnetic sensor carried by the second member and brought close to the magnetic recording medium; Magnetoresistive element (hereinafter abbreviated as MR element) supported on the base
The resistance change of the MR element is extracted as an electric signal to detect the mutual position and speed of the first and second members, wherein at least two rows of the magnetic tracks are provided, and each magnetic track has a Magnetic position and velocity characterized in that magnetic poles are provided on each magnetic track shifted by a pitch λ with respect to other magnetic tracks, and a linear MR element sensitive to the magnetic fields of both tracks is provided on the magnetic sensor base. A device that detects 2. In the device according to claim 1, the magnetic tracks are provided in three or more rows, and the magnetic poles of adjacent magnetic tracks are shifted from each other by a pitch λ with respect to the other magnetic tracks. The length of the MR element is approximately twice the width of one magnetic track, and the MR element is arranged so that the center of the MR element is aligned with the center or a magnetic track near the center of the magnetic tracks. A device that magnetically detects position and speed. 3. An apparatus for magnetically detecting position and velocity according to claim 1, characterized in that a plurality of magnetic tracks are formed on the same magnetic recording medium. 4. The device according to claim 1, wherein the plurality of magnetic tracks are formed on independent magnetic recording media.
JP62294094A 1987-11-24 1987-11-24 Device that magnetically detects position and speed Expired - Lifetime JP2539470B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62294094A JP2539470B2 (en) 1987-11-24 1987-11-24 Device that magnetically detects position and speed

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62294094A JP2539470B2 (en) 1987-11-24 1987-11-24 Device that magnetically detects position and speed

Publications (2)

Publication Number Publication Date
JPH01136018A true JPH01136018A (en) 1989-05-29
JP2539470B2 JP2539470B2 (en) 1996-10-02

Family

ID=17803210

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62294094A Expired - Lifetime JP2539470B2 (en) 1987-11-24 1987-11-24 Device that magnetically detects position and speed

Country Status (1)

Country Link
JP (1) JP2539470B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0348119A (en) * 1989-07-17 1991-03-01 Japan Servo Co Ltd Position detecting apparatus
JPH0348120A (en) * 1989-07-17 1991-03-01 Japan Servo Co Ltd Position detecting apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0348119A (en) * 1989-07-17 1991-03-01 Japan Servo Co Ltd Position detecting apparatus
JPH0348120A (en) * 1989-07-17 1991-03-01 Japan Servo Co Ltd Position detecting apparatus

Also Published As

Publication number Publication date
JP2539470B2 (en) 1996-10-02

Similar Documents

Publication Publication Date Title
US5019776A (en) Magnetic position detection apparatus having two magnetic recording medium tracks with magnetoresistors arranged in a bridge circuit so as to eliminate even order harmonic distortion
EP0111866B1 (en) Apparatus for magnetically detecting positions
JP4319153B2 (en) Magnetic sensor
JPS62204118A (en) Magnetically detecting device for position or speed
US4785241A (en) Encoder unit using magnetoresistance effect element
JP4582298B2 (en) Magnetic position detector
JPH0350965B2 (en)
JPH01136018A (en) Apparatus for magnetically detecting position and speed
JPS59147213A (en) Magnetic rotary sensor
JP2722605B2 (en) Magnetic encoder
JPH0634390A (en) Position detecting device
JPH074986A (en) Reference position detector
JP2619621B2 (en) Encoder device
JPH11311543A (en) Magnetoresistive element and magnetic detector
JP3013140B2 (en) Encoder
JPS6395315A (en) Magnetic position detector
JPH10227805A (en) Rotation sensor
JPH052925B2 (en)
JPS62137514A (en) Magnetic sensor
JPS62245918A (en) Permanent magnet drum and permanent magnet body
JPH0342514A (en) Rotation position detector
JPH03205509A (en) Detector for detecting position or speed magnetically
JPS60196618A (en) Rotation detector
JPH0914990A (en) Magneto-resistance sensor
JPH0711429B2 (en) Encoder device