JPH0914990A - Magneto-resistance sensor - Google Patents
Magneto-resistance sensorInfo
- Publication number
- JPH0914990A JPH0914990A JP7188334A JP18833495A JPH0914990A JP H0914990 A JPH0914990 A JP H0914990A JP 7188334 A JP7188334 A JP 7188334A JP 18833495 A JP18833495 A JP 18833495A JP H0914990 A JPH0914990 A JP H0914990A
- Authority
- JP
- Japan
- Prior art keywords
- magnetic
- width
- output
- patterns
- basic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000005389 magnetism Effects 0.000 abstract description 4
- 238000010586 diagram Methods 0.000 description 13
- 238000001514 detection method Methods 0.000 description 6
- 238000005452 bending Methods 0.000 description 3
- 238000010276 construction Methods 0.000 description 2
- 230000005415 magnetization Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
Landscapes
- Transmission And Conversion Of Sensor Element Output (AREA)
- Measuring Magnetic Variables (AREA)
- Hall/Mr Elements (AREA)
Abstract
Description
【0001】[0001]
【目次】以下の順序で本発明を説明する。 産業上の利用分野 従来の技術(図12及び図13) 発明が解決しようとする課題(図12及び図13) 課題を解決するための手段 作用 実施例 (1)第1実施例(図1〜図8) (2)第2実施例(図4、図5、図8〜図10) (3)他の実施例(図11) 発明の効果[Table of Contents] The present invention will be described in the following order. Field of Industrial Application Conventional Technology (FIGS. 12 and 13) Problems to be Solved by the Invention (FIGS. 12 and 13) Means for Solving the Problems Action Example (1) First Example (FIGS. 1 to 1) 8) (2) Second embodiment (FIGS. 4, 5, and 8 to 10) (3) Other embodiment (FIG. 11)
【0002】[0002]
【産業上の利用分野】本発明は磁気抵抗センサに関し、
例えば磁気抵抗素子(以下、MR素子とする)を用いて
回転ドラム等の回転周波数を検出するものに適用し得
る。FIELD OF THE INVENTION The present invention relates to a magnetoresistive sensor,
For example, it can be applied to a device that detects the rotation frequency of a rotating drum or the like using a magnetoresistive element (hereinafter referred to as MR element).
【0003】[0003]
【従来の技術】従来、回転ドラム等の回転周波数を検出
する周波数発電機として、例えばMRセンサが用いられ
ている。MRセンサはN極、S極を等間隔で回転ドラム
に着磁した磁石でなるMRマグネツトをMR素子に対し
て面対向に配し、回転ドラムが回転することによつて生
じる磁界の変化をMR素子で検出し、この結果得られる
MR出力を周波数信号として出力するようになされてい
る。2. Description of the Related Art Conventionally, for example, an MR sensor has been used as a frequency generator for detecting the rotation frequency of a rotating drum or the like. In the MR sensor, MR magnets, which are magnets having N and S poles magnetized at equal intervals on a rotating drum, are arranged face-to-face with respect to the MR element, and changes in the magnetic field caused by the rotation of the rotating drum are detected by the MR sensor. The element detects the MR output and outputs the resulting MR output as a frequency signal.
【0004】[0004]
【発明が解決しようとする課題】ところでMRセンサを
組立てる際の部品成型精度の問題又は動作中の温度の変
化等が原因でMR素子とMRマグネツトとの間のギヤツ
プが所定ギヤツプ長に比して狭くなつた場合、図12
(A)に示すように、MR素子の電極から検出されるM
R出力の中心付近の出力波形が湾曲するようになる。M
Rセンサは、図12(B)に示すように、MR出力と電
源電圧Vccの1/2の電圧値との交点でパルスを発生さ
せ、これを位置信号として用いているため、出力波形の
中心付近の湾曲はパルスの発生位置の精度をばらつかせ
るという問題があつた。By the way, the gear gap between the MR element and the MR magnet is shorter than the predetermined gear tap length due to the problem of the precision of molding the parts when assembling the MR sensor or the temperature change during the operation. Figure 12
As shown in (A), M detected from the electrodes of the MR element
The output waveform near the center of the R output becomes curved. M
As shown in FIG. 12B, the R sensor generates a pulse at the intersection of the MR output and the voltage value of ½ of the power supply voltage V cc , and uses this as a position signal. The curvature near the center causes a problem that the accuracy of the pulse generation position varies.
【0005】特に三相のMRセンサとして用いる場合、
図13に示すように、三相のMR出力A、B、Cのクロ
ス点(○〜○)間を直線と仮定して内挿している。この
ためMR出力A、B、Cの中心付近の出力波形の湾曲
は、検出精度を著しく悪化させる問題があつた。Particularly when used as a three-phase MR sensor,
As shown in FIG. 13, interpolation is performed by assuming that the cross points (◯ to ◯) of the three-phase MR outputs A, B, and C are straight lines. Therefore, the curve of the output waveform near the center of the MR outputs A, B, and C has a problem that the detection accuracy is significantly deteriorated.
【0006】さらに、MR素子とMRマグネツトの組み
合わせによつては、MR素子とMRマグネツトとの間の
ギヤツプが所定ギヤツプ長に比して広くなつた場合、A
M変動に影響が生じる問題があつた。Further, depending on the combination of the MR element and the MR magnet, if the gear gap between the MR element and the MR magnet is wider than the predetermined gear length, A
There was a problem that the change in M was affected.
【0007】本発明は以上の点を考慮してなされたもの
で、MR素子とMRマグネツト間のギヤツプ長にかかわ
らず、MR出力の出力波形による検出精度及びAM変動
を向上し得る磁気抵抗センサを提案しようとするもので
ある。The present invention has been made in consideration of the above points, and a magnetoresistive sensor capable of improving the detection accuracy and the AM fluctuation due to the output waveform of the MR output regardless of the gap length between the MR element and the MR magnet. It is a proposal.
【0008】[0008]
【課題を解決するための手段】かかる課題を解決するた
め本発明においては、磁気抵抗センサにおいて、磁石手
段のN極及びS極の並び方向に対して略直交する方向に
伸張し、かつN極及びS極の並び方向に磁極幅の0.3 〜
1倍の感磁パターン幅を有する磁気抵抗素子の折り返し
帯状パターンが形成された複数の基礎感磁パターンでな
る第1及び第2の感磁パターンを、磁石手段の並び方向
に上記磁極幅の(m+1/2)倍の間隔で並べてシリー
ズ接続し、当該第1及び第2の感磁パターンの両端に直
流電圧を印加すると共に、接続点を出力端子として出力
を得る磁気抵抗素子を設ける。In order to solve the above problems, in the present invention, in a magnetoresistive sensor, the magnetic pole is extended in a direction substantially orthogonal to the direction in which the N pole and the S pole of the magnet means are arranged, and the N pole is extended. And the pole width in the direction of the S poles is 0.3 to
The first and second magnetic sensitive patterns, which are a plurality of basic magnetic sensitive patterns in which the folded strip-shaped patterns of the magnetoresistive element having the magnetic sensitive pattern width of 1 times, are formed in the magnetic pole width ( A magnetoresistive element is provided which is arranged in series at an interval of m + 1/2) times and is connected in series to apply a DC voltage to both ends of the first and second magnetically sensitive patterns and to obtain an output using the connection point as an output terminal.
【0009】[0009]
【作用】磁気抵抗センサに用いられる磁気抵抗素子は、
磁石手段のN極及びS極の並び方向に対して略直交する
方向に伸張し、かつN極及びS極の並び方向に磁極幅の
0.3 〜1倍の感磁パターン幅を有する磁気抵抗素子の折
り返し帯状パターンが形成された複数の基礎感磁パター
ンでなる第1及び第2の感磁パターンを、磁石手段の並
び方向に上記磁極幅の(m+1/2)倍の間隔で並べて
シリーズ接続し、当該第1及び第2の感磁パターンの両
端に直流電圧を印加すると共に、接続点を出力端子とし
て出力を得ることにより、磁気抵抗素子と磁石手段間の
ギヤツプが狭くなつた場合でもMR出力の出力波形によ
る検出精度を向上し、磁気抵抗素子と磁石手段間のギヤ
ツプが広くなつた場合のAM変動を向上し得る。[Operation] The magnetoresistive element used in the magnetoresistive sensor is
The magnet means extends in a direction substantially orthogonal to the arrangement direction of the N and S poles, and has a magnetic pole width in the arrangement direction of the N and S poles.
The first and second magnetic sensitive patterns, which are a plurality of basic magnetic sensitive patterns in which the folded strip-shaped patterns of the magnetoresistive element having a magnetic sensitive pattern width of 0.3 to 1 times, are formed in the magnetic pole width in the arrangement direction of the magnet means. (M + 1/2) times of the above, they are connected in series and connected in series, a DC voltage is applied to both ends of the first and second magnetically sensitive patterns, and an output is obtained by using the connection point as a magnetoresistive element. Even if the gear gap between the magnet means and the magnet means is narrowed, the detection accuracy by the output waveform of the MR output can be improved, and the AM fluctuation when the gear gap between the magnetoresistive element and the magnet means is widened can be improved.
【0010】[0010]
【実施例】以下図面について、本発明の一実施例を詳述
する。BRIEF DESCRIPTION OF THE DRAWINGS FIG.
【0011】(1)第1実施例 図1において、1は全体としてMRセンサを示し、円筒
形状の回転系の磁気ドラム2の側面に着磁されたMRマ
グネツト3に、磁気検出する磁気抵抗素子(以下、MR
素子とする)4が面対向するように配置されている。M
Rマグネツト3は、磁極幅λのN極及びS極が交互に等
間隔で着磁されている。MR素子4は、図2に示すよう
に2つの矩形帯状の基礎感磁パターン4A及び4Bでな
る第1の感磁パターン群5Aと2つの矩形帯状の基礎感
磁パターン4C及び4Dでなる第2の感磁パターン群5
Bとをシリーズ接続してダブルパターンに形成されてい
る。この基礎感磁パターン4A、4B、4C及び4Dの
矩形部分はパターン間が平行になるように折り曲げられ
て、中心線間の間隔がMRマグネツト3の磁極幅λの1
/2の幅に設定される。(1) First Embodiment In FIG. 1, reference numeral 1 denotes an MR sensor as a whole, and a magnetoresistive element for magnetic detection is provided on an MR magnet 3 magnetized on a side surface of a cylindrical rotating magnetic drum 2. (Hereafter, MR
The elements 4) are arranged so as to face each other. M
The R magnet 3 has N poles and S poles having a magnetic pole width λ alternately magnetized at equal intervals. As shown in FIG. 2, the MR element 4 includes a first magnetic sensitive pattern group 5A composed of two rectangular strip-shaped basic magnetic sensitive patterns 4A and 4B and a second rectangular magnetic strip-shaped basic magnetic sensitive pattern 4C and 4D. Magnetism pattern group 5
B and B are connected in series to form a double pattern. The rectangular portions of the basic magnetic sensitive patterns 4A, 4B, 4C and 4D are bent so that the patterns are parallel to each other, and the distance between the center lines is 1 of the magnetic pole width λ of the MR magnet 3.
It is set to the width of / 2.
【0012】MR素子4の両端にはそれぞれ接地端子
6、電源電圧Vcc端子7が形成され、この接地端子6と
電源電圧Vcc端子7との中点に出力端子8が形成されて
いる。MRセンサ1では、図3に示すように矢印aで示
されるMRマグネツト3のN極とS極の磁極の並び方向
に対して、矢印bで示されるMR素子4の方向とが直交
した状態から所定角度傾けられると共に、所定のギヤツ
プ長gを保持して配される。MRセンサ1は、このMR
素子4に電源電圧Vccを印加し、MRマグネツト3をM
R素子4に対して相対的に移動させ、このMRマグネツ
ト3の相対的な移動によつて生じる磁界の変化をMR素
子4によつて検出し、出力端子8よりMR出力VMRとし
て出力する。A ground terminal 6 and a power supply voltage V cc terminal 7 are formed at both ends of the MR element 4, and an output terminal 8 is formed at the midpoint between the ground terminal 6 and the power supply voltage V cc terminal 7. In the MR sensor 1, as shown in FIG. 3, from the state where the direction of the MR element 4 shown by the arrow b is orthogonal to the direction in which the magnetic poles of the N pole and the S pole of the MR magnet 3 shown by the arrow a are aligned. It is tilted at a predetermined angle and is arranged with a predetermined gear length g. The MR sensor 1 uses this MR
Apply the power supply voltage V cc to the element 4 and set the MR magnet 3 to M
The MR element 4 is moved relative to the R element 4, and the change in the magnetic field caused by the relative movement of the MR magnet 3 is detected by the MR element 4 and output from the output terminal 8 as the MR output V MR .
【0013】MR素子4の基礎感磁パターン幅dは、図
2及び図3に示すように、基礎感磁パターン4A〜4D
のそれぞれの矩形パターン幅の中心間距離とし、d=25
〔μm〕となる。また本実施例においては磁極幅λ= 2
00〔μm〕なので、基礎感磁パターン4B及び4Cの中
心線間は磁極幅λの1/2幅となる 100〔μm〕と設定
される。The basic magnetic sensitive pattern width d of the MR element 4 is, as shown in FIGS. 2 and 3, basic magnetic sensitive patterns 4A to 4D.
The distance between the centers of the rectangular pattern widths of
[Μm]. In this embodiment, the magnetic pole width λ = 2
Since it is 00 [μm], the distance between the center lines of the basic magnetically sensitive patterns 4B and 4C is set to 100 [μm], which is half the magnetic pole width λ.
【0014】ここで、MR素子4の伸張方向bとMRマ
グネツト3の磁極の並び方向aとのなす角度を直交状態
からずらし変化させると、方向aとbとの直交状態から
の傾き角度の変化に応じて基礎感磁パターン幅dは変化
する。すなわち基礎感磁パターン幅dはMRマグネツト
3の磁極の並び方向aに平行な方向への基礎感磁パター
ン4A〜4Dの横切り幅となる。このようにして基礎感
磁パターン幅dを変化させ、その結果、基礎感磁パター
ン幅dと磁極幅λとの比d/λを変化させることによつ
てMR出力を変化させ得る。When the angle formed by the extension direction b of the MR element 4 and the direction a in which the magnetic poles of the MR magnet 3 are arranged is changed from the orthogonal state, the inclination angle is changed from the orthogonal state of the directions a and b. The basic magnetic sensitive pattern width d changes in accordance with. That is, the basic magnetic sensitive pattern width d is the width of the basic magnetic sensitive patterns 4A to 4D in the direction parallel to the direction a in which the magnetic poles of the MR magnet 3 are arranged. In this way, the basic magnetic sensitive pattern width d is changed, and as a result, the MR output can be changed by changing the ratio d / λ of the basic magnetic sensitive pattern width d and the magnetic pole width λ.
【0015】以上の構成において、図4(A)に示すよ
うに、MRマグネツト3の並び方向aとMR素子4の方
向bとが直交している場合、MR出力VMRは出力波形の
中心部が湾曲しているのが観測される。湾曲が観測され
るのは、MR素子4とMRマグネツト3のギヤツプ長g
が25〔μm〕から100 〔μm〕の間で、このとき磁極幅
λに対する感磁パターン幅dの比はd/λ=0.125 であ
る。In the above structure, as shown in FIG. 4A, when the arrangement direction a of the MR magnet 3 and the direction b of the MR element 4 are orthogonal to each other, the MR output V MR is the central portion of the output waveform. Is observed to be curved. The curvature is observed when the gear length g of the MR element 4 and the MR magnet 3 is
Is 25 [μm] to 100 [μm], and the ratio of the magnetic sensitive pattern width d to the magnetic pole width λ is d / λ = 0.125.
【0016】続いてこのMR素子4の並び方向bをMR
マグネツト3の磁極の並び方向aに対して直交させた状
態から傾かせ、基礎感磁パターン幅dを広げる。このと
きd/λとMR出力VMRとの関係は、d/λ=0.191
(図4(B))、d/λ=0.256 (図4(C))、d/
λ=0.322 (図4(D))となり、d/λを大きくする
に従つてMR出力VMRの中心部における出力波形の湾曲
が少なくなつていくのが観測される。Next, the MR element 4 is aligned in the MR direction b.
The basic magnetic sensitive pattern width d is widened by inclining the magnet 3 from a state orthogonal to the magnetic pole arrangement direction a. At this time, the relationship between d / λ and MR output V MR is d / λ = 0.191
(FIG. 4 (B)), d / λ = 0.256 (FIG. 4 (C)), d /
It becomes λ = 0.322 (FIG. 4 (D)), and it is observed that the curvature of the output waveform in the central portion of the MR output V MR decreases as the d / λ increases.
【0017】すなわち基礎感磁パターン幅dを傾けない
状態で、d/λ=0.125 とした場合、ギヤツプ長g25
〔μm〕から100 〔μm〕の間で見られたMR出力VMR
の中心部における出力波形の湾曲は、MR素子4を傾け
たd/λ=0.256 では略見られなくなり、さらにd/λ
=0.322 においては、ギヤツプ長g=25〔μm〕におい
ても湾曲が見られなくなつているのが確認できる。また
d/λをさらに大きくしても湾曲は現れなくなつている
のが確認できる(図5及び図6)。従つて基礎感磁パタ
ーン幅dを0.3 λ以上にすれば、ギヤツプ長gが狭くな
つた場合でもMR出力VMRに湾曲が発生せず、精度の良
いMR素子4を実現することができることがわかる。That is, when the basic magnetic sensitive pattern width d is not tilted and d / λ = 0.125, the gear step length g25
MR output V MR observed between [μm] and 100 [μm]
The curvature of the output waveform at the center of the is almost absent when the MR element 4 is tilted d / λ = 0.256, and further d / λ
= 0.322, it can be confirmed that no curvature is seen even at the gear length g = 25 [μm]. Further, it can be confirmed that the curvature does not appear even if d / λ is further increased (FIGS. 5 and 6). Therefore, if the basic magnetic sensitive pattern width d is set to 0.3 λ or more, the MR output V MR will not be bent even when the gear length g is narrowed, and the MR element 4 with high accuracy can be realized. .
【0018】次に、MR素子4をさらに傾斜させ、基礎
感磁パターン幅dを広げd/λの値を大きくしていく
と、図7に示すように、d/λが大きくなるに従つてM
R出力VMRが小さくなるのが観測される。ここでd/λ
=1でMR出力VMRは略ゼロとなることから中心付近の
出力波形に湾曲が存在せず、かつMR出力VMRが検出可
能なd/λの範囲が0.3 ≦d/λ<1 の範囲に存在する
ことがわかる。ここでMR出力VMRは大きいほどS/N
比の点で有利になることから、d/λの最適値は約0.3
とすることができる。Next, when the MR element 4 is further tilted to increase the basic magnetic sensitive pattern width d and increase the value of d / λ, as shown in FIG. 7, as d / λ increases. M
It is observed that the R output V MR becomes smaller. Where d / λ
= 1, the MR output V MR becomes substantially zero, so there is no curvature in the output waveform near the center, and the MR output V MR detectable range of d / λ is 0.3 ≦ d / λ <1. It turns out that it exists in. Here, the larger the MR output V MR, the more S / N
The optimum value of d / λ is about 0.3 because it is advantageous in terms of ratio.
It can be.
【0019】ここで、d/λ=0.3 としたMRセンサ1
のMRマグネツト3とMRセンサ1とのギヤツプ長gと
MR出力、AM変動の関係を表す特性曲線を図8に示
す。この図からギヤツプ長gが広くなつた場合、傾斜し
たシングルパターンのMR素子のAM変動は約90〔%〕
から約50〔%〕にまで変化するのに比して、傾斜したダ
ブルパターンのMR素子4のAM変動はギヤツプ長gの
大きさにかかわらず、ほぼ一定に保たれているのが確認
できる。Here, the MR sensor 1 with d / λ = 0.3
FIG. 8 shows a characteristic curve representing the relationship between the MR magnet 3 and the MR sensor 1 in terms of the gap length g, MR output and AM fluctuation. From this figure, when the gear length g becomes wider, the AM fluctuation of the tilted single pattern MR element is about 90%.
It can be confirmed that the AM fluctuation of the inclined double pattern MR element 4 is kept almost constant regardless of the size of the gear length g, in contrast to the change from about 50% to about 50%.
【0020】以上の構成によれば、MRマグネツト3に
面対向するダブルパターンのMR素子4を傾かせること
によつて基礎感磁パターン幅dを広げ、基礎感磁パター
ン幅dと磁極幅λとの比d/λを約 0.3とすることによ
り、ギヤツプ長gが狭い場合でもMR出力VMRの中心付
近の出力波形の湾曲を減少し精度良くでき、またギヤツ
プ長gが広い場合でも、AM変動の小さいMRセンサを
実現することができる。According to the above construction, the basic magneto-sensitive pattern width d is widened by tilting the double-pattern MR element 4 facing the MR magnet 3, and the basic magneto-sensitive pattern width d and the magnetic pole width λ. By setting the ratio d / λ of about 0.3 to about 0.3, even if the gear length g is narrow, the curvature of the output waveform near the center of the MR output V MR can be reduced and the accuracy can be improved. It is possible to realize an MR sensor having a small size.
【0021】(2)第2実施例 図2及び図3との対応部分に同一符号を付した図9は第
2実施例のMR素子10の構成を示す。MR素子10
は、それぞれ6つの基礎感磁パターンでなる第1の感磁
パターン群11Aと第2の感磁パターン群11Bとをシ
リーズ接続して形成されている。このMR素子10の基
礎感磁パターンは、図10に示すように矩形部分を所定
方向に所定角度傾斜されている。ちなみに、このときの
基礎感磁パターンの広がり(d)はMRマグネツト(図
示せず)の磁極幅λの 0.3倍の幅に設定される。(2) Second Embodiment FIG. 9 in which parts corresponding to those in FIGS. 2 and 3 are designated by the same reference numerals shows the structure of the MR element 10 of the second embodiment. MR element 10
Is formed by series-connecting a first magnetic sensitive pattern group 11A and a second magnetic sensitive pattern group 11B each of which has six basic magnetic sensitive patterns. As shown in FIG. 10, the basic magnetic sensitive pattern of the MR element 10 has a rectangular portion inclined in a predetermined direction by a predetermined angle. Incidentally, the spread (d) of the basic magnetic sensitive pattern at this time is set to a width 0.3 times the magnetic pole width λ of the MR magnet (not shown).
【0022】MR素子10の両端にはそれぞれ電源電圧
Vcc端子7、接地端子6が形成され、この電源電圧Vcc
端子7と接地端子6との中点に出力端子8が形成されて
いる。第1の感磁パターン群11Aの各基礎感磁パター
ンは、接地端子6側の任意の基準点Pから磁極幅λの2
倍、4倍、6倍(偶数倍)の位置と、磁極幅λの1倍、
3倍、7倍(奇数倍)の位置に配設されている。同様に
第2の感磁パターン群11Bの各基礎感磁パターンは、
出力端子8側の任意の基準点Qから磁極幅λの2倍、4
倍、6倍(偶数倍)の位置と、磁極幅λの1倍、3倍、
5倍(奇数倍)の位置に配設されている。また、第1の
感磁パターン群11Aと第2の感磁パターン群11Bと
の間は、磁極幅λの(m+1/2)倍の幅に設定され
る。[0022] Each of the two ends the power supply voltage V cc terminal 7 of the MR element 10, the ground terminal 6 are formed, the power supply voltage V cc
An output terminal 8 is formed at the midpoint between the terminal 7 and the ground terminal 6. Each basic magnetic sensitive pattern of the first magnetic sensitive pattern group 11A has a magnetic pole width of 2 from an arbitrary reference point P on the ground terminal 6 side.
Position, 4 times, 6 times (even times) position and 1 time of magnetic pole width λ,
They are arranged at positions of 3 times and 7 times (odd times). Similarly, each basic magnetic sensitive pattern of the second magnetic sensitive pattern group 11B is
2 times the magnetic pole width λ from an arbitrary reference point Q on the output terminal 8 side, 4
Position, 6 times (even number) position, 1 time, 3 times the magnetic pole width λ,
It is arranged at a position of 5 times (odd times). The width between the first magnetic sensitive pattern group 11A and the second magnetic sensitive pattern group 11B is set to (m + 1/2) times the magnetic pole width λ.
【0023】以上の構成において、MRセンサのパター
ンにおいて、パターンの長さ方向が容易磁化方向である
から、初期において図10に示す矢印c方向又は 180
〔°〕反対方向を向いている。例えば矢印cを磁化方向
とする。MRマグネツトの発生する磁界は、XZ平面の
方向(Z軸は紙面に対して垂直方向)であるから、図1
0に示すように磁界−X及び磁界Xが加わつた場合に、
X軸とのなす角θ-X、θX は、MRパターンを傾斜させ
た分だけ異なる。MRセンサは、1磁極の移動で1サイ
クルの信号が得られるため、1サイクルおきに出力レベ
ルが異なることになる。In the above structure, in the pattern of the MR sensor, the length direction of the pattern is the easy magnetization direction. Therefore, in the initial stage, the direction of arrow c or 180 shown in FIG.
[°] Facing in the opposite direction. For example, the arrow c is the magnetization direction. Since the magnetic field generated by the MR magnet is in the direction of the XZ plane (the Z axis is the direction perpendicular to the paper surface),
When the magnetic field −X and the magnetic field X are applied as shown in 0,
The angles θ −X and θ X with the X axis differ by the amount by which the MR pattern is tilted. Since the MR sensor can obtain a signal for one cycle by moving one magnetic pole, the output level changes every other cycle.
【0024】MRセンサでは、MRマグネツトのN極と
S極の磁極の並び方向に対して、MR素子10を所定角
度傾けられると共に、所定のギヤツプ長gを保持して配
される。MRセンサは、このMR素子10に電源電圧V
ccを印加し、MRマグネツトをMR素子10に対して相
対的に移動させ、このMRマグネツトの相対的な移動に
よつて生じる磁界の変化をMR素子10によつて検出
し、出力端子8よりMR出力VMRとして出力する。In the MR sensor, the MR element 10 is tilted by a predetermined angle with respect to the direction in which the magnetic poles of the N and S poles of the MR magnet are arranged, and the MR element 10 is arranged so as to hold a predetermined gear length g. The MR sensor has a power source voltage V applied to the MR element 10.
cc is applied to move the MR magnet relative to the MR element 10, and the change in the magnetic field caused by the relative movement of the MR magnet is detected by the MR element 10. Output as output V MR .
【0025】このとき基礎感磁パターンの広がり(d)
が磁極幅λの 0.3倍であるため、MR出力VMRの中心部
における出力波形に湾曲は見られない(図4、図5)。
このためギヤツプ長gが狭くなつた場合でもMR出力V
MRに湾曲が発生せず、精度の良いMR素子10を実現す
ることができることがわかる。At this time, the spread of the basic magnetic sensitive pattern (d)
Is 0.3 times the magnetic pole width λ, no bending is seen in the output waveform at the center of the MR output V MR (FIGS. 4 and 5).
Therefore, even if the gear length g becomes narrow, the MR output V
It is understood that the MR element 10 can be realized with high accuracy without the MR bending.
【0026】またd/λ=0.3 としたMRセンサのMR
マグネツトとMRセンサとのギヤツプ長gとMR出力、
AM変動の関係を表す図8から、ギヤツプ長gが広くな
つた場合、傾斜させたダブルパターンのMR素子のAM
変動はギヤツプ長gの大きさにかかわらず、ほぼ一定に
保たれているのが確認できる。第2実施例のMR素子1
0は第1の感磁パターン群11Aと第2の感磁パターン
11Bとでなつているため図8に示すダブルパターンの
MR素子のデータとほぼ同様にAM変動は一定に保持さ
れる。The MR of the MR sensor with d / λ = 0.3
Gear length g between MR and MR sensor and MR output,
From FIG. 8 showing the relationship of AM fluctuation, when the gear length g is widened, the AM of the tilted double pattern MR element is shown.
It can be confirmed that the fluctuation is kept almost constant regardless of the size of the gear length g. MR element 1 of the second embodiment
Since 0 is composed of the first magnetic sensitive pattern group 11A and the second magnetic sensitive pattern 11B, the AM fluctuation is held constant in substantially the same manner as the data of the double pattern MR element shown in FIG.
【0027】以上の構成によれば、パターン幅dをMR
マグネツトの磁極幅λの 0.3倍になるよう一定方向に傾
斜した複数の基礎感磁パターンで構成される第1の感磁
パターン群11Aと第2の感磁パターン群11Bとをパ
ターン接続することにより、ギヤツプ長gが狭い場合で
もMR出力VMRの中心付近の出力波形の湾曲を減少し精
度良くでき、またギヤツプ長gが広い場合でも、AM変
動の小さいMRセンサを実現することができる。According to the above construction, the pattern width d is set to MR.
By pattern-connecting the first magnetic sensitive pattern group 11A and the second magnetic sensitive pattern group 11B, which are composed of a plurality of basic magnetic sensitive patterns inclined in a certain direction so as to be 0.3 times the magnetic pole width λ of the magnet. Even when the gear length g is narrow, it is possible to reduce the curvature of the output waveform near the center of the MR output V MR with high accuracy, and even when the gear length g is wide, it is possible to realize an MR sensor with small AM fluctuations.
【0028】(3)他の実施例 なお上述の第1実施例においては、感磁パターン幅dを
広げるのにMRマグネツト3の磁極並び方向aに対して
MR素子4の向きを傾けた場合について述べたが、本発
明はこれに限らず、例えば図11(A)及び(B)に示
すように、MRマグネツトに面対向するMR素子15及
び16の感磁パターン15A及び15B又は16A及び
16Bの折り曲げる矩形の回数をMRマグネツトの磁極
の並び方向aに沿つて増やし、面対向するMR素子の感
磁パターンの面積を増加させるようにしても良い。(3) Other Embodiments In the above first embodiment, the MR element 4 is tilted with respect to the magnetic pole alignment direction a of the MR magnet 3 in order to widen the magnetic sensitive pattern width d. However, the present invention is not limited to this, and for example, as shown in FIGS. 11A and 11B, the magneto-sensitive patterns 15A and 15B or 16A and 16B of the MR elements 15 and 16 facing the MR magnet are provided. The number of bent rectangles may be increased along the direction a in which the magnetic poles of the MR magnet are arranged to increase the area of the magneto-sensitive pattern of the MR elements facing each other.
【0029】また上述の第1実施例においては、一対の
基礎感磁パターンをシリーズ接続し、その中点に1つの
出力端子8を形成した場合について述べたが、本発明は
これに限らず、シリーズ接続した一対の基礎感磁パター
ンを、λの所定整数倍の間隔を離した位置に複数個接続
し、出力端子数を複数にしても良い。この場合、一対の
基礎感磁パターン単体のときに比して一層感度を上げる
ことができる。Further, in the above-mentioned first embodiment, the case where a pair of basic magnetically sensitive patterns are connected in series and one output terminal 8 is formed at the midpoint thereof has been described, but the present invention is not limited to this. It is also possible to connect a plurality of pairs of basic magnetically-sensitive patterns connected in series at positions separated by a predetermined integer multiple of λ to provide a plurality of output terminals. In this case, the sensitivity can be further increased as compared with the case of the pair of basic magnetic sensitive patterns alone.
【0030】また上述の第1実施例においては、中心線
間の間隔がMRマグネツト3の磁極幅λの1/2の幅に
設定されるものについて述べたが、本発明はこれに限ら
ず、中心線間の間隔をMRマグネツトの磁極幅λの(m
+1/2)倍の幅(m:整数)に設定するようにしても
良い。In the first embodiment described above, the interval between the center lines is set to be half the magnetic pole width λ of the MR magnet 3, but the present invention is not limited to this. The distance between the center lines is defined as (m of the magnetic pole width λ of the MR magnet).
The width may be set to +1/2) times (m: integer).
【0031】さらに上述の第1実施例においては、2つ
の基礎感磁パターン4A及び4Bでなる第1の感磁パタ
ーン群5Aと、2つの基礎感磁パターン4C及び4Dで
なる第2の感磁パターン群5Bとをシリーズ接続してな
るMR素子4について述べ、さらに上述の第2実施例に
おいては、それぞれ6つの基礎感磁パターンでなる第1
の感磁パターン群11Aと第2の感磁パターン群11B
とをシリーズ接続してなるMR素子10について述べた
が、本発明はこれらに限らず、偶数の基礎感磁パターン
でなる第1及び第2の感磁パターン群をシリーズ接続し
たものであれば良い。このとき、第1及び第2の感磁パ
ターン群を構成する基礎感磁パターンは、任意の基準点
から磁極幅λの偶数倍の位置に配設される基礎感磁パタ
ーン数と、磁極幅λの奇数倍の位置に配設される基礎感
磁パターン数とを等しくする。ここで第1の感磁パター
ン群と第2の感磁パターン群を構成する基礎感磁パター
ン数は、共に偶数であれば等しくなくても良い。Further, in the above-described first embodiment, the first magnetic sensitive pattern group 5A composed of the two basic magnetic sensitive patterns 4A and 4B and the second magnetic sensitive pattern composed of the two basic magnetic sensitive patterns 4C and 4D. The MR element 4 formed by connecting the pattern groups 5B in series will be described. Further, in the above-described second embodiment, the first basic magnetic patterns each having six basic magnetic sensitive patterns are described.
Magnetic sensitive pattern group 11A and second magnetic sensitive pattern group 11B
Although the MR element 10 formed by serially connecting and is described above, the present invention is not limited thereto, and any series of first and second magnetic sensitive pattern groups having even basic magnetic sensitive patterns may be used. . At this time, the basic magnetic sensitive patterns forming the first and second magnetic sensitive pattern groups are the number of basic magnetic sensitive patterns arranged at positions of even multiples of the magnetic pole width λ from an arbitrary reference point, and the magnetic pole width λ. And the number of basic magnetically sensitive patterns arranged at odd multiples of. Here, the numbers of basic magnetic sensitive patterns forming the first magnetic sensitive pattern group and the second magnetic sensitive pattern group do not have to be equal as long as they are even numbers.
【0032】さらに上述の第1及び第2実施例において
は、本発明を一相のMRセンサに対して適用する場合に
ついて述べたが、本発明はこれに限らず、二相、三相
等、多相のMRセンサに対して用いれば、出力の中心付
近の直線性が改善され、検出精度を一層向上させ得る。Further, in the above-mentioned first and second embodiments, the case where the present invention is applied to the one-phase MR sensor has been described, but the present invention is not limited to this, and two-phase, three-phase, multi-phase, etc. When used for a phase MR sensor, the linearity near the center of the output is improved, and the detection accuracy can be further improved.
【0033】また上述の第1及び第2実施例において
は、MRマグネツトとMR素子との相対的な位置移動を
発生させるのに、回転ドラムでなるMRマグネツトを回
転させる場合について述べたが、本発明はこれに限ら
ず、例えばリニアモータにおける場合のように、直線運
動による相対的な位置移動から、磁界の変化を検出する
ようにしても良い。またMRマグネツトとMR素子との
位置移動は相対的なものなので、MRマグネツト又はM
R素子の何方が位置移動しても良い。In the above-mentioned first and second embodiments, the case where the MR magnet, which is a rotary drum, is rotated in order to generate the relative position movement between the MR magnet and the MR element has been described. The invention is not limited to this, and the change in the magnetic field may be detected from the relative position movement due to the linear movement, as in the case of a linear motor, for example. Further, since the position movement between the MR magnet and the MR element is relative, the MR magnet or M
Any of the R elements may move its position.
【0034】[0034]
【発明の効果】上述のように本発明によれば、磁石手段
のN極及びS極の並び方向に対して略直交する方向に伸
張し、かつN極及びS極の並び方向に磁極幅の0.3 〜1
倍の感磁パターン幅を有する磁気抵抗素子の折り返し帯
状パターンが形成された複数の基礎感磁パターンでなる
第1及び第2の感磁パターンを、磁石手段の並び方向に
上記磁極幅の(m+1/2)倍の間隔で並べてシリーズ
接続し、当該第1及び第2の感磁パターンの両端に直流
電圧を印加すると共に、接続点を出力端子として出力を
得る磁気抵抗素子を備えることにより、磁気抵抗素子と
磁石手段間のギヤツプ長にかかわらずMR出力の出力波
形による検出精度及びAM変動を向上し得る磁気抵抗セ
ンサを実現できる。As described above, according to the present invention, the magnet means extends in a direction substantially orthogonal to the arrangement direction of the N and S poles, and has a magnetic pole width in the arrangement direction of the N and S poles. 0.3 ~ 1
The first and second magnetic sensitive patterns, which are a plurality of basic magnetic sensitive patterns in which the folded strip-shaped patterns of the magnetoresistive elements having the double magnetic sensitive pattern width, are formed in the magnetic pole width of (m + 1) in the arrangement direction of the magnet means. / 2) are arranged in series at double intervals, and a DC voltage is applied to both ends of the first and second magnetic sensitive patterns, and a magnetic resistance element that obtains an output using the connection point as an output terminal is provided. It is possible to realize a magnetoresistive sensor capable of improving the detection accuracy and the AM fluctuation due to the output waveform of the MR output regardless of the length of the gap between the resistance element and the magnet means.
【図1】本発明の一実施例による磁気抵抗センサを示す
略線図である。FIG. 1 is a schematic diagram showing a magnetoresistive sensor according to an embodiment of the present invention.
【図2】MR素子を示す略線図である。FIG. 2 is a schematic diagram showing an MR element.
【図3】MR素子を示す略線図である。FIG. 3 is a schematic diagram showing an MR element.
【図4】MR素子の感磁パターン幅とMR出力に発生す
る中心付近の湾曲の実験結果を示す信号波形図である。FIG. 4 is a signal waveform diagram showing the experimental results of the magneto-sensitive pattern width of the MR element and the curvature near the center generated in the MR output.
【図5】MR素子の感磁パターン幅とMR出力に発生す
る中心付近の湾曲の実験結果を示す信号波形図である。FIG. 5 is a signal waveform diagram showing experimental results of the magneto-sensitive pattern width of the MR element and the curvature near the center generated in the MR output.
【図6】MR素子の感磁パターン幅とMR出力に発生す
る中心付近の湾曲の実験結果を示す信号波形図である。FIG. 6 is a signal waveform diagram showing the experimental results of the magneto-sensitive pattern width of the MR element and the curvature near the center generated in the MR output.
【図7】MR素子の感磁パターン幅とMR出力との実験
結果を示す出力図である。FIG. 7 is an output diagram showing experimental results of the magneto-sensitive pattern width of the MR element and the MR output.
【図8】MR素子の感磁パターン幅とMR出力、AM変
動との実験結果を示す出力図である。FIG. 8 is an output diagram showing experimental results of the magneto-sensitive pattern width of the MR element, MR output, and AM fluctuation.
【図9】第2実施例のMR素子を示す略線図である。FIG. 9 is a schematic diagram showing an MR element of a second embodiment.
【図10】基礎感磁パターンの形状及び磁界方向を示す
略線図である。FIG. 10 is a schematic diagram showing the shape and magnetic field direction of a basic magnetically sensitive pattern.
【図11】MR素子の感磁パターンの変形例を示す略線
図である。FIG. 11 is a schematic diagram showing a modified example of the magneto-sensitive pattern of the MR element.
【図12】MRセンサにより検出されたMR出力に発生
する中心付近の湾曲の実験結果を示す信号波形図であ
る。FIG. 12 is a signal waveform diagram showing an experimental result of bending near the center generated in the MR output detected by the MR sensor.
【図13】三相のMRセンサにおけるMR出力を示す略
線図である。FIG. 13 is a schematic diagram showing MR output in a three-phase MR sensor.
1……MRセンサ、2……磁気ドラム、3……MRマグ
ネツト、4、10……MR素子、5A、11A……第1
の感磁パターン群、5B、11B……第2の感磁パター
ン群、6……接地端子、7……電源電圧端子、8……出
力端子。1 ... MR sensor, 2 ... magnetic drum, 3 ... MR magnet, 4, 10 ... MR element, 5A, 11A ... 1st
Magnetic sensitive pattern group 5B, 11B: second magnetic sensitive pattern group 6, ground terminal, 7 power supply voltage terminal, 8 output terminal.
Claims (3)
数連続して着磁した磁石手段と、磁気抵抗素子とを面対
向して配置し、上記磁石手段と上記磁気抵抗素子との相
対的な位置の移動変化による磁界の変化を上記磁気抵抗
素子で検出し、電圧の変化として出力する磁気抵抗セン
サにおいて、 上記磁気抵抗素子は、 上記磁石手段の上記N極及びS極の並び方向に対して略
直交する方向に伸張し、かつ上記N極及びS極の並び方
向に上記磁極幅の0.3 〜1倍の感磁パターン幅を有する
磁気抵抗素子の折り返し帯状パターンが形成された複数
の基礎感磁パターンでなる第1及び第2の感磁パターン
を、上記磁石手段の上記並び方向に上記磁極幅の(m+
1/2)倍の間隔で並べてシリーズ接続し、当該第1及
び第2の感磁パターンの両端に直流電圧を印加すると共
に、接続点を出力端子として出力を得ることを特徴とす
る磁気抵抗センサ。1. A magnet means having a predetermined magnetic pole width and a plurality of N poles and S poles continuously magnetized at equal intervals, and a magnetoresistive element are arranged face-to-face, and the magnet means and the magnetoresistive element are arranged. In the magnetoresistive sensor which detects the change in the magnetic field due to the change in the movement of the relative position with respect to the magnetoresistive element and outputs it as the change in the voltage, the magnetoresistive element includes the N pole and the S pole A folded strip-shaped pattern of a magnetoresistive element is formed which extends in a direction substantially orthogonal to the arrangement direction and has a magneto-sensitive pattern width of 0.3 to 1 times the magnetic pole width in the arrangement direction of the N pole and the S pole. A first and a second magnetic sensitive pattern composed of a plurality of basic magnetic sensitive patterns are formed in the magnetic pole width (m +) in the arrangement direction of the magnet means.
A magnetoresistive sensor characterized by being arranged in series at intervals of 1/2) times and connected in series to apply a DC voltage to both ends of the first and second magnetic sensing patterns, and obtaining an output using the connection point as an output terminal. .
位置に設けられる複数の基礎感磁パターンと、 当該複数の基礎感磁パターンと同数で、上記基準点から
上記磁極幅の奇数倍で表される任意の位置に設けられる
複数の基礎感磁パターンとを具えることを特徴とする請
求項1に記載の磁気抵抗センサ。2. The first and second magnetic sensing patterns, a plurality of basic magnetic sensing patterns provided at arbitrary positions represented by an even multiple of the magnetic pole width from a predetermined reference point, and the plurality of basic magnetic sensing patterns. The magnetic resistance according to claim 1, further comprising a plurality of basic magnetic sensing patterns which are provided in the same number as the magnetic sensing patterns and which are provided at arbitrary positions represented by an odd multiple of the magnetic pole width from the reference point. Sensor.
であることを特徴とする請求項1に記載の磁気抵抗セン
サ。3. The magnetoresistive sensor according to claim 1, wherein the magnetic sensing pattern width is 0.3 times the magnetic pole width.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7188334A JPH0914990A (en) | 1995-06-30 | 1995-06-30 | Magneto-resistance sensor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7188334A JPH0914990A (en) | 1995-06-30 | 1995-06-30 | Magneto-resistance sensor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0914990A true JPH0914990A (en) | 1997-01-17 |
Family
ID=16221803
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7188334A Pending JPH0914990A (en) | 1995-06-30 | 1995-06-30 | Magneto-resistance sensor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0914990A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100852183B1 (en) * | 2008-05-30 | 2008-08-13 | 한국과학기술연구원 | Hybrid semiconductor-ferromagnet device with a junction of positive and negative magnetic-field regions |
KR100852184B1 (en) * | 2008-05-30 | 2008-08-13 | 한국과학기술연구원 | Hybrid semiconductor-ferromagnet device with a junction of positive and negative magnetic-field regions |
WO2021218668A1 (en) * | 2020-04-30 | 2021-11-04 | 江苏多维科技有限公司 | Electromechanical modulation magnetoresistive rotary magnetic field probe |
-
1995
- 1995-06-30 JP JP7188334A patent/JPH0914990A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100852183B1 (en) * | 2008-05-30 | 2008-08-13 | 한국과학기술연구원 | Hybrid semiconductor-ferromagnet device with a junction of positive and negative magnetic-field regions |
KR100852184B1 (en) * | 2008-05-30 | 2008-08-13 | 한국과학기술연구원 | Hybrid semiconductor-ferromagnet device with a junction of positive and negative magnetic-field regions |
WO2021218668A1 (en) * | 2020-04-30 | 2021-11-04 | 江苏多维科技有限公司 | Electromechanical modulation magnetoresistive rotary magnetic field probe |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6300758B1 (en) | Magnetoresistive sensor with reduced output signal jitter | |
GB2034053A (en) | Magneto resistive displacement sensors | |
US5656936A (en) | Displacement detecting device | |
EP0921407B1 (en) | Magneto-resistive effect sensor and position detection device | |
JPH116744A (en) | Encoder device | |
JPH11233338A (en) | Multipolar magnetic ping | |
JPH0914990A (en) | Magneto-resistance sensor | |
JP2003106866A (en) | Magnetic sensor | |
JPH04282417A (en) | Magnetic sensor | |
JP2001141514A (en) | Magnetoresistive element | |
JP3344605B2 (en) | Magnetoresistive sensor | |
JP2001174286A (en) | Magnetic encoder | |
JPH11223506A (en) | Magnetoresistive effect sensor and position detector | |
KR940008887B1 (en) | Magnetic resistance element | |
JPH0430756B2 (en) | ||
JPS63305211A (en) | Magnetic encoder for clearing absolute position | |
JPS6111982Y2 (en) | ||
JPH01136018A (en) | Apparatus for magnetically detecting position and speed | |
JPH11148841A (en) | Magnetoresistive sensor | |
JPS62137514A (en) | Magnetic sensor | |
JPH01185414A (en) | Magnetic type rotary encoder | |
JPH11271094A (en) | Mr sensor | |
JPH03191822A (en) | Magnetic encoder | |
JP2000105134A (en) | Magnetic encoder | |
JP2003028668A (en) | Magnetic encoder and method for controlling mobile body using the same |