JPH116744A - Encoder device - Google Patents

Encoder device

Info

Publication number
JPH116744A
JPH116744A JP15884497A JP15884497A JPH116744A JP H116744 A JPH116744 A JP H116744A JP 15884497 A JP15884497 A JP 15884497A JP 15884497 A JP15884497 A JP 15884497A JP H116744 A JPH116744 A JP H116744A
Authority
JP
Japan
Prior art keywords
pole
magnetic
magnetized
magnetic recording
magnetic sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP15884497A
Other languages
Japanese (ja)
Inventor
Teruhiko Outaki
輝彦 王滝
Tei Taguchi
禎 田口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nidec Instruments Corp
Original Assignee
Sankyo Seiki Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sankyo Seiki Manufacturing Co Ltd filed Critical Sankyo Seiki Manufacturing Co Ltd
Priority to JP15884497A priority Critical patent/JPH116744A/en
Publication of JPH116744A publication Critical patent/JPH116744A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a λ/4-system encoder device that can obtain an accurate detection signal without affecting the duty of the detection signal by a magnetic sensor even when a magnetization signal of a magnetic storage part fluctuates. SOLUTION: A magnetic sensor 15 is provided so that it opposes a magnetic storage part 10, the magnetic storage part 10 and the magnetic sensor 15 are relatively moved, and the magnetic sensor 15 outputs an electrical signal. In the magnetic storage part 10, N and S electrodes are alternately magnetized and stored at a given spacing, and a nonmagnetization part 12 that is magnetized at neither the N nor S electrode is formed at a position where the N electrode is switched to the S one. When a wavelength that is equal to one cycle of the N and S electrodes of the magnetic storage part 10 is set to λand the length of the non-magnetization part 12 in the magnetic pole arrangement direction of the magnetic storage part is set to A,A<λ/4 should be established.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、磁気記録部に対向
して磁気センサが配置され、これら磁気記録部と磁気セ
ンサとの相対移動により磁気センサが磁気の変化を検知
して電気信号を出力するエンコーダ装置に関するもの
で、例えばモータの速度検出器などとして利用可能なも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic sensor disposed opposite a magnetic recording unit, and the magnetic sensor detects a change in magnetism and outputs an electric signal by a relative movement between the magnetic recording unit and the magnetic sensor. The present invention relates to an encoder device that can be used as, for example, a motor speed detector.

【0002】[0002]

【従来の技術】例えば小型モータの速度検出器として、
ロータケースの外周部に一定周期でN極とS極を交互に
着磁してなる磁気記録部としての周波数発電用マグネッ
トを設けてこれをロータと一体に回転させ、上記周波数
発電用マグネットに対向させて周波数発電コイルを配置
し、この周波数発電コイルから出力されるモータの回転
数に応じた交番信号からモータの回転数を検出するよう
にしたものがある。また、上記周波数発電コイルに代え
て磁気抵抗素子等からなる磁気センサを配置し、この磁
気センサから出力されるモータの回転数に応じた交番信
号からモータの回転数を検出するようにしたものもあ
る。本発明は、後者の磁気センサを用いた形式のエンコ
ーダ装置に関するものである。磁気抵抗素子等からなる
上記磁気センサは、磁気抵抗素子からなる感磁部パター
ンが上記磁気記録部の着磁周期に対応した所定の間隔を
おいて配置される。
2. Description of the Related Art For example, as a speed detector for a small motor,
A frequency power generation magnet as a magnetic recording portion is provided on the outer periphery of the rotor case by alternately magnetizing N poles and S poles at a constant period, and is rotated integrally with the rotor to face the frequency power generation magnet. In some cases, a frequency generating coil is arranged so as to detect the motor speed from an alternation signal corresponding to the motor speed output from the frequency generating coil. Further, a magnetic sensor including a magnetoresistive element or the like is arranged in place of the frequency power generating coil, and the motor speed is detected from an alternating signal corresponding to the motor speed output from the magnetic sensor. is there. The present invention relates to the latter type of encoder device using a magnetic sensor. In the magnetic sensor composed of a magnetoresistive element or the like, a magnetic sensing portion pattern composed of a magnetoresistive element is arranged at a predetermined interval corresponding to a magnetization cycle of the magnetic recording section.

【0003】上記の磁気センサを用いた形式のエンコー
ダ装置において、一定周期でN極とS極を交互に着磁し
てなる磁気記録部は、その着磁が乱れることによって磁
力が変化することがある。着磁が乱れる要因としては、
次のような各種の要因がある。すなわち、上記磁気記録
部がプラスチックマグネットの成形品である場合、ウェ
ルド部、ゲート口などで成形ムラが生じ、着磁が乱れる
要因となる。また、着磁自体がムラになる場合もある。
さらに、傷や打痕などによっても着磁が乱れる要因とな
る。磁気記録部は、成形後機械的精度を出すために仕上
げのレース加工を行い、最後に所定の着磁を行うが、上
記レース加工時に傷や打痕などがつきやすい。
In an encoder device of the type using the above magnetic sensor, a magnetic recording portion having an N-pole and an S-pole alternately magnetized at a constant period may change its magnetic force due to disturbance of the magnetization. is there. The reasons for the disturbance of magnetization are:
There are various factors as follows. That is, when the magnetic recording portion is a molded product of a plastic magnet, molding unevenness occurs at a weld portion, a gate opening, and the like, which is a factor of disturbing magnetization. Further, the magnetization itself may be uneven.
Further, the magnetization may be disturbed by a scratch or a dent. The magnetic recording section is subjected to a finishing lace processing after molding to obtain a high mechanical precision, and is finally subjected to a predetermined magnetization. However, scratches and dents are likely to be formed during the lace processing.

【0004】一方、磁気記録部に対向配置される磁気セ
ンサは、磁気抵抗素子からなる二つの感磁部パターン
を、磁気記録部のN極とS極の1周期分の波長λに対し
λ/4の位相差をもって配置された、いわゆるλ/4方
式が用いられることが多い。この方式によれば、バイア
スマグネットが不要で、磁気センサの構成がシンプルで
あるという利点があることによる。しかし、上記λ/4
方式によれば、前述のような着磁の乱れによる磁場の強
さの変動が磁気センサの出力波形の変動となり、波形整
形後のデューティーが変化してしまうという問題点があ
る。以下、この問題点について詳細に説明する。
On the other hand, a magnetic sensor disposed opposite to a magnetic recording section is configured to apply two magnetic sensing element patterns each composed of a magnetoresistive element to a wavelength λ of one cycle of an N pole and an S pole of the magnetic recording section. A so-called λ / 4 system arranged with a phase difference of 4 is often used. This method is advantageous in that no bias magnet is required and the configuration of the magnetic sensor is simple. However, the above λ / 4
According to the method, there is a problem that the fluctuation of the magnetic field strength due to the disturbance of the magnetization as described above causes the fluctuation of the output waveform of the magnetic sensor, and the duty after the waveform shaping changes. Hereinafter, this problem will be described in detail.

【0005】磁気記録部を一定周期でN極とS極に交互
に着磁記録すると、その磁界波形は正弦波状になる。い
ま、図14(b)に示すように、正弦波磁界の一部を8
0%に低減したとする。このときの上記λ/4方式によ
る磁気センサの抵抗変化率を図14(a)に、磁気セン
サを構成する各感磁部の各抵抗の位相を図14(c)
に、上記各抵抗の中点電位を図14(d)にそれぞれ示
す。上記中点電位とは、図1から明らかなように、電気
的に直列接続された感磁部の各抵抗R1、R2の一端に
電源電圧Vccを印加し、他端をグランドGとしたと
き、各抵抗R1、R2の接続点の出力すなわち中点出力
Voutのことである。図14(d)において数字
「1」「2」……「7」は磁界波形の波長λの1/4ご
との位相を示しており、また、別の数字「180」「1
92」「168」などは上記の位相「1」「2」……
「7」における出力信号のゼロクロス点間の角度を示し
ている。また、図15は、上記各位相「1」「2」……
「7」における出力信号のゼロクロス点間の角度ずれ、
すなわち位相ずれによるデューティーの変動量を示して
いる。図15から明らかなように、磁気記録部の磁界の
一部が変動することにより出力信号のデューティーが変
動している。
When the magnetic recording portion is alternately magnetized and recorded on the N pole and the S pole at a constant period, the magnetic field waveform becomes a sine wave. Now, as shown in FIG.
It is assumed that it has been reduced to 0%. FIG. 14A shows the resistance change rate of the magnetic sensor according to the λ / 4 method at this time, and FIG. 14C shows the phase of each resistance of each magnetically sensitive part constituting the magnetic sensor.
FIG. 14D shows the midpoint potential of each of the above resistors. As is clear from FIG. 1, the above-mentioned midpoint potential means that when the power supply voltage Vcc is applied to one end of each of the resistors R1 and R2 of the magnetically sensitive portion electrically connected in series and the other end is set to the ground G, The output at the connection point between the resistors R1 and R2, that is, the midpoint output Vout. In FIG. 14D, the numbers “1”, “2”,..., “7” indicate the phases of the magnetic field waveform for each quarter of the wavelength λ, and the other numbers “180”, “1”
92, "168", etc. are the above phases "1", "2" ...
The angle between the zero cross points of the output signal at “7” is shown. FIG. 15 shows the respective phases “1”, “2”.
Angle deviation between zero-cross points of the output signal at “7”,
That is, the amount of change in duty due to the phase shift is shown. As is apparent from FIG. 15, the duty of the output signal fluctuates due to fluctuation of a part of the magnetic field of the magnetic recording unit.

【0006】[0006]

【発明が解決しようとする課題】図14(b)に示すよ
うに磁界波形の一部のピーク値が変動したとしても、出
力信号の位相がずれないことが望ましい。しかし、磁界
波形の一部のピーク値が変動すると、図14(d)、図
15から明らかなように、出力信号のゼロクロス点間の
角度が変動してその整形波形のデューティーが変動し、
位相ずれが生じる。出力信号に位相ずれが生じると、実
際には速度が変動していないにもかかわらず速度が変動
したものと判断され、あるいは、速度変動が精度よく検
出されず、結果として速度制御の精度が劣化することに
なる。
As shown in FIG. 14B, it is desirable that the phase of the output signal does not shift even if the peak value of a part of the magnetic field waveform fluctuates. However, when a part of the peak value of the magnetic field waveform fluctuates, as is apparent from FIGS. 14D and 15, the angle between the zero cross points of the output signal fluctuates, and the duty of the shaped waveform fluctuates.
A phase shift occurs. If a phase shift occurs in the output signal, it is determined that the speed has fluctuated even though the speed has not actually fluctuated, or the speed fluctuation is not accurately detected, resulting in a deterioration in the speed control accuracy. Will do.

【0007】本発明は、かかる従来技術の問題点に鑑み
てなされたもので、いわゆるλ/4方式のエンコーダ装
置であって、磁気記録部の着磁信号に変動が生じても、
磁気センサによる検出信号のデューティーに影響が及ば
ず、精度の良い検出信号を得ることができるエンコーダ
装置を得ることを目的とする。
The present invention has been made in view of the above-mentioned problems of the prior art, and is a so-called λ / 4 encoder device.
An object of the present invention is to provide an encoder device that does not affect the duty of a detection signal from a magnetic sensor and can obtain a highly accurate detection signal.

【0008】[0008]

【課題を解決するための手段】請求項1記載の発明は、
磁気記録部に対向して磁気センサが配置され、磁気記録
部と磁気センサとの相対移動により磁気センサが電気信
号を出力するエンコーダ装置において、上記磁気記録部
は、N極とS極が交互に所定の間隔で着磁記録されると
ともに、N極とS極との切り替わり位置に、N極とS極
のどちらにも着磁されていない無着磁部が形成されてい
ることを特徴とする。請求項2記載の発明は、請求項1
記載の発明において、磁気記録部のN極とS極の1周期
分の波長をλとし、磁気記録部の磁極配列方向における
無着磁部の長さをAとしたとき、A<λ/4としたこと
を特徴とする。
According to the first aspect of the present invention,
In an encoder device in which a magnetic sensor is disposed to face the magnetic recording unit and the magnetic sensor outputs an electric signal by a relative movement between the magnetic recording unit and the magnetic sensor, the magnetic recording unit includes an N pole and an S pole alternately. Magnetized recording is performed at a predetermined interval, and a non-magnetized portion that is not magnetized at either the N pole or the S pole is formed at a switching position between the N pole and the S pole. . The invention described in claim 2 is claim 1
In the invention described above, when the wavelength for one cycle of the N pole and the S pole of the magnetic recording portion is λ, and the length of the non-magnetized portion in the magnetic pole array direction of the magnetic recording portion is A, A <λ / 4 It is characterized by having.

【0009】請求項3記載の発明は、磁気記録部に対向
して磁気センサが配置され、磁気記録部と磁気センサと
の相対移動により磁気センサが電気信号を出力するエン
コーダ装置において、上記磁気記録部は、N極とS極が
交互に所定の間隔で着磁記録された主着磁部を有すると
ともに、N極とS極との切り替わり位置に、磁界のピー
ク値がN極とS極の磁界のピーク値よりも低い副着磁部
が形成されていることを特徴とする。
According to a third aspect of the present invention, in the encoder device, a magnetic sensor is disposed so as to face the magnetic recording unit, and the magnetic sensor outputs an electric signal by a relative movement between the magnetic recording unit and the magnetic sensor. The portion has a main magnetized portion in which N poles and S poles are magnetized and recorded at predetermined intervals alternately, and the peak value of the magnetic field at the switching position between the N pole and the S pole is between the N pole and the S pole. A sub-magnetized portion lower than the peak value of the magnetic field is formed.

【0010】請求項4記載の発明は、請求項3記載の発
明において、副着磁部は主着磁部に第三高調波着磁する
ことによって形成され、この第三高調波着磁による磁界
の割合が25〜50パーセントであることを特徴とす
る。請求項5記載の発明は、請求項3記載の発明におい
て、磁気記録部のN極とS極の1周期分の波長をλと
し、磁気記録部の磁極配列方向における副着磁部の長さ
をBとしたとき、B<λ/4としたことを特徴とする。
According to a fourth aspect of the present invention, in the third aspect of the invention, the sub-magnetized portion is formed by magnetizing the main magnetized portion with the third harmonic, and the magnetic field generated by the third harmonic magnetized. Is 25 to 50%. According to a fifth aspect of the present invention, in the third aspect, the wavelength of one cycle of the N pole and the S pole of the magnetic recording unit is λ, and the length of the sub-magnetized portion in the magnetic pole arrangement direction of the magnetic recording portion is Is B, B <λ / 4.

【0011】請求項6記載の発明は、請求項1〜5記載
の発明の何れか一つにおいて、磁気センサの感磁部パタ
ーンがλ/4間隔で配設されていることを特徴とする。
According to a sixth aspect of the present invention, in any one of the first to fifth aspects of the present invention, the magnetic sensor patterns of the magnetic sensor are arranged at an interval of λ / 4.

【0012】[0012]

【発明の実施の形態】以下、図面を参照しながら本発明
にかかるエンコーダ装置の実施の形態について説明す
る。図1において、符号10は、モータのロータの外周
部などに一体に設けられてロータと一体に回転する磁気
記録部を示す。この磁気記録部10にはN極とS極が交
互に所定の間隔で着磁記録されてなる着磁部11を有す
るとともに、この着磁部11の上記N極とS極との切り
替わり位置に、N極とS極のどちらにも着磁されていな
い無着磁部12が形成されている。上記着磁部11に対
向させ、かつ、近接させて磁気センサ15が配置されて
いる。磁気センサ15は折り返し形成された2個のスト
ライプ状の感磁部パターンR1、R2からなる。この感
磁部パターンR1、R2は磁気抵抗効果素子(MR素
子)からなる。上記磁気記録部のN極とS極の1周期分
の波長をλとしたとき、上記2個の感磁部パターンR
1、R2はλ/4間隔で配設されている。2個の感磁部
パターンR1、R2は電気的に直列接続された形に形成
されていて、その一端は電源電圧の印加端子Vcc、他
端はグランド端子G、感磁部パターンR1、R2の中点
は出力端子Voutにつながっている。上記磁気記録部
10の磁極配列方向における無着磁部12の長さをAと
したとき、A<λ/4の関係になっている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of an encoder device according to the present invention will be described below with reference to the drawings. In FIG. 1, reference numeral 10 denotes a magnetic recording unit which is provided integrally with an outer peripheral portion of a rotor of a motor and rotates integrally with the rotor. The magnetic recording unit 10 has a magnetized part 11 in which N poles and S poles are alternately magnetized and recorded at a predetermined interval, and the magnetized part 11 is located at the switching position between the N pole and the S pole. , A non-magnetized portion 12 that is not magnetized at either the N pole or the S pole. A magnetic sensor 15 is arranged so as to be opposed to and close to the magnetized portion 11. The magnetic sensor 15 includes two stripe-shaped magneto-sensitive portion patterns R1 and R2 formed by folding. The magnetic sensing portion patterns R1 and R2 are composed of a magnetoresistive effect element (MR element). When the wavelength for one cycle of the N pole and the S pole of the magnetic recording portion is λ, the two magnetic sensing portion patterns R
1, R2 are arranged at an interval of λ / 4. The two magnetic sensing part patterns R1 and R2 are formed so as to be electrically connected in series, one end of which is a power supply voltage application terminal Vcc, the other end of which is a ground terminal G, and one of the magnetic sensing part patterns R1 and R2. The middle point is connected to the output terminal Vout. When the length of the non-magnetized portion 12 in the magnetic pole array direction of the magnetic recording portion 10 is A, the relationship is A <λ / 4.

【0013】磁気記録部10に着磁部11と無着磁部1
2を形成するための着磁装置の例を図5に示す。図5に
おいて、着磁器のヘッド21は磁石材料からなる磁気記
録部10を挟み込んだ形で配置され、磁気記録部10を
一定速度で移動させながら着磁ヘッド21のコイルに電
源23から着磁電流を供給し、磁気記録部10に厚さ方
向から打ち抜き状にN極、無着磁部、S極,無着磁部、
N極、……というパターンで着磁し、N極とS極との反
転の際に無着磁部を形成する。図6(a)および図7に
破線25で示す波形は、無着磁部を設けることなくN極
とS極を交互に着磁した場合の基本的な着磁波形で、正
弦波状になっている。図6(a)において、符号R1,
R2は前記感磁部パターンを示しており、感磁部パター
ンR1、R2が互いにλ/4の相互間隔をおいて配置さ
れている。図6(b)および図7に実線26で示す波形
は、N極とS極との切り替わり位置に、N極とS極のど
ちらにも着磁されていない無着磁部が形成される場合の
着磁波形である。図7に示すように、着磁部11に対応
する磁界波形の幅が、基本的な磁界波形25ではaであ
ったものが、無着磁部を設けたことにより、aよりも狭
い幅bとなる。
A magnetized portion 11 and a non-magnetized portion 1 in a magnetic recording portion 10
FIG. 5 shows an example of a magnetizing device for forming the magnetic head 2. In FIG. 5, a head 21 of a magnetizer is arranged so as to sandwich a magnetic recording unit 10 made of a magnet material, and a magnetizing current is supplied from a power source 23 to a coil of the magnetizing head 21 while moving the magnetic recording unit 10 at a constant speed. Is supplied to the magnetic recording unit 10 in a punched shape from the thickness direction in the N pole, the non-magnetized portion, the S pole, the non-magnetized portion,
Magnetize in a pattern of N poles,..., And form a non-magnetized portion when the N pole and the S pole are reversed. The waveform indicated by a broken line 25 in FIGS. 6A and 7 is a basic magnetization waveform when the N pole and the S pole are alternately magnetized without providing a non-magnetized portion, and has a sinusoidal waveform. I have. In FIG. 6A, reference characters R1,
R2 indicates the magnetic sensing portion pattern, and the magnetic sensing portion patterns R1 and R2 are arranged at an interval of λ / 4 from each other. The waveform shown by the solid line 26 in FIG. 6B and FIG. 7 indicates a case where a non-magnetized portion that is not magnetized on either the N pole or the S pole is formed at the switching position between the N pole and the S pole. Is a magnetized waveform of FIG. As shown in FIG. 7, the width of the magnetic field waveform corresponding to the magnetized portion 11 is a in the basic magnetic field waveform 25, but the width b is smaller than a due to the provision of the non-magnetized portion. Becomes

【0014】いま、無着磁部を設けることなくN極とS
極を交互に着磁した基本的な正弦波磁界の場合について
説明すると、図15について説明したように、磁気記録
部10の磁界の一部が変動することにより出力信号の位
相がずれデューティーが変動する。このデューティーの
変動量は、磁界の強さによっても異なる。図9(a)
は、磁界の強さを3mT(ミリ・テスラー)、8mT、
14mTに段階的に変化させ、それぞれの磁界の強さに
おける正弦波磁界での検出出力の位相ずれを示してい
る。右上がりの平行斜線を付したグラフは3mT、右下
がりの平行斜線を付したグラフは8mT、交叉する斜線
を付したグラフは14mTの場合の位相ずれをそれぞれ
示している。図9(a)からも明らかなように、正弦波
磁界では磁界の一部が変動することにより出力信号の位
相がずれ、しかも、この位相ずれは、磁界の強さに関係
なく生じている。
Now, the N pole and S
The case of a basic sine wave magnetic field in which the poles are alternately magnetized will be described. As described with reference to FIG. 15, the phase of the output signal is shifted due to a part of the magnetic field of the magnetic recording unit 10 fluctuating, and the duty fluctuates. I do. The amount of change in the duty varies depending on the strength of the magnetic field. FIG. 9 (a)
Sets the magnetic field strength to 3 mT (milli-Tesler), 8 mT,
The phase shift of the detection output in a sine wave magnetic field at each magnetic field strength is shown by changing the phase gradually to 14 mT. The graph with the parallel diagonal line rising to the right shows the phase shift when 3 mT, the graph with the parallel diagonal line going down the right shows 8 mT, and the graph with the cross diagonal line shows the phase shift when it is 14 mT. As is clear from FIG. 9A, in a sine wave magnetic field, a part of the magnetic field fluctuates, so that the phase of the output signal is shifted, and the phase shift occurs regardless of the strength of the magnetic field.

【0015】そこで、図1に示す実施の形態では、磁気
センサ15の検出出力のゼロクロス点を、磁場変動の影
響を受けにくい高抵抗側すなわち磁場ゼロ側にシフトす
るために、磁気記録部10の着磁部11のN極とS極と
の切り替わり位置に無着磁部12を形成した。そのた
め、図1に示す実施の形態によれば、磁気記録部10の
着磁の乱れによって磁場の強さが変動し、磁気センサ1
5の出力波形のピーク値が変動しても、図3(a)に示
すように上記無着磁部12の存在によって上記出力波形
のゼロクロス点間の角度変動が少なく、その整形波形は
図3(b)に示すようにデューティーの変動が少なくな
る。もっとも、磁気記録部の磁極配列方向における無着
磁部12の長さを無制限に長くしたのでは逆効果であ
る。そこで、磁気記録部の磁極配列方向における無着磁
部12の長さをλ/4以下とした。
Therefore, in the embodiment shown in FIG. 1, the zero-cross point of the detection output of the magnetic sensor 15 is shifted to the high resistance side, that is, the zero magnetic field side, which is hardly affected by the magnetic field fluctuation. The non-magnetized portion 12 was formed at the switching position between the N pole and the S pole of the magnetized portion 11. Therefore, according to the embodiment shown in FIG. 1, the intensity of the magnetic field fluctuates due to the disturbance of the magnetization of the magnetic recording unit 10, and the magnetic sensor 1
Even if the peak value of the output waveform of FIG. 5 fluctuates, as shown in FIG. 3A, the angle fluctuation between the zero-cross points of the output waveform is small due to the presence of the non-magnetized portion 12, and the shaping waveform of FIG. As shown in (b), the fluctuation of the duty is reduced. However, if the length of the non-magnetized portion 12 in the magnetic pole arrangement direction of the magnetic recording portion is unlimitedly increased, the opposite effect is obtained. Therefore, the length of the non-magnetized portion 12 in the magnetic pole arrangement direction of the magnetic recording portion is set to λ / 4 or less.

【0016】次に、図2に示す実施の形態について説明
する。図2において、モータのロータの外周部などに一
体の設けられてロータと一体に回転する磁気記録部10
にはN極とS極が交互に所定の間隔で着磁記録されてな
る主着磁部11を有するとともに、この主着磁部11の
上記N極とS極との切り替わり位置に、磁界のピーク値
が上記N極とS極の磁界のピーク値よりも低く一対のN
極とS極からなる副着磁部13が形成されている。副着
磁部13の磁極は、隣接する主着磁部11の磁極とは逆
極になっている。上記着磁部11に対向させ、かつ、近
接させて磁気センサ15が配置されている。磁気センサ
15は図1で説明した磁気センサと全く同じ構成で、M
R素子からなる2個の感磁部パターンR1、R2からな
る。上記磁気記録部のN極とS極の1周期分の波長をλ
としたとき、上記2個の感磁部パターンR1、R2はλ
/4間隔で配設されている。2個の感磁部パターンR
1、R2は電気的に直列接続され、その一端は電源電圧
の印加端子Vcc、他端はグランド端子G、感磁部パタ
ーンR1、R2の中点は出力端子Voutにつながって
いる。上記磁気記録部10の磁極配列方向における副着
磁部13の長さをBとしたとき、B<λ/4の関係にな
っている。
Next, the embodiment shown in FIG. 2 will be described. In FIG. 2, the magnetic recording unit 10 is provided integrally with the outer periphery of the rotor of the motor and rotates integrally with the rotor.
Has a main magnetized portion 11 in which N poles and S poles are alternately magnetized and recorded at predetermined intervals, and the main magnetized portion 11 is provided with a magnetic field at a position where the N pole and S pole are switched. The peak value is lower than the peak value of the magnetic field of the N pole and the S pole,
A sub-magnetized portion 13 including a pole and an S pole is formed. The magnetic pole of the sub-magnetized portion 13 is opposite to the magnetic pole of the adjacent main magnetized portion 11. A magnetic sensor 15 is arranged so as to be opposed to and close to the magnetized portion 11. The magnetic sensor 15 has exactly the same configuration as the magnetic sensor described with reference to FIG.
It consists of two magnetic sensing part patterns R1 and R2 composed of R elements. The wavelength for one cycle of the N pole and S pole of the magnetic recording portion is λ
, The two magnetic sensing part patterns R1 and R2 are λ
/ 4 intervals. Two magnetic sensing part patterns R
1 and R2 are electrically connected in series, one end of which is connected to the power supply voltage application terminal Vcc, the other end is connected to the ground terminal G, and the middle point of the magnetic sensing part patterns R1 and R2 is connected to the output terminal Vout. When the length of the sub-magnetized portion 13 in the magnetic pole array direction of the magnetic recording portion 10 is B, the relationship is B <λ / 4.

【0017】磁気記録部10に主着磁部11と副着磁部
13を形成するための着磁装置の例を図4に示す。図4
において、着磁器のヘッド20はそのヘッドギャップを
磁石材料からなる磁気記録部10の周面に近接対向させ
または摺接させた形で配置され、磁気記録部10を一定
速度で移動させながら着磁ヘッド20のコイルに電源2
3から着磁電流を供給し、漏れ着磁法で磁気記録部10
に主着磁部11と副着磁部13を形成する。すなわち、
主着磁部11を形成するためのN極とS極相互の反転時
に、主着磁部11を形成するときよりも弱い磁場で反転
をかけ、結果的に、図1に示す実施例のように無着磁部
12を形成したのと同様の効果をもつ着磁帯を設ける。
図6(c)に示す波形は、主着磁部11のN極とS極と
の切り替わり位置に、副着磁部13が形成される場合の
着磁波形である。
FIG. 4 shows an example of a magnetizing device for forming the main magnetized portion 11 and the sub magnetized portion 13 in the magnetic recording portion 10. FIG.
In the above, the magnetized head 20 is arranged such that its head gap is brought into close proximity to or slidable contact with the peripheral surface of the magnetic recording portion 10 made of a magnet material, and the magnetic recording portion 10 is magnetized while moving at a constant speed. Power supply 2 for coil of head 20
3, a magnetizing current is supplied to the magnetic recording unit 10 by the leak magnetizing method.
Then, a main magnetized portion 11 and a sub magnetized portion 13 are formed. That is,
At the time of reversal of the N-pole and S-pole for forming the main magnetized portion 11, the reversal is performed with a weaker magnetic field than when the main magnetized portion 11 is formed. As a result, as shown in FIG. A magnetized band having the same effect as that of forming the non-magnetized portion 12 is provided.
The waveform shown in FIG. 6C is a magnetization waveform when the sub-magnetization portion 13 is formed at the switching position between the N-pole and the S-pole of the main magnetization portion 11.

【0018】図2に示す実施の形態によれば、磁気記録
部10の主着磁部11のN極とS極との切り替わり位置
に副着磁部13を形成し、結果的に、図1に示す実施の
形態のように無着磁部12を形成したのと同様の効果を
もたせたため、磁気記録部10の着磁の乱れによって磁
場の強さが変動し、磁気センサ15の出力波形のピーク
値が変動しても、上記副着磁部13の存在によって上記
出力波形のゼロクロス点間の角度変動が少なく、その整
形波形はデューティーの変動が少なくなる。もっとも、
磁気記録部の磁極配列方向における副着磁部13の長さ
を無制限に長くしたのでは逆効果である。そこで、磁気
記録部の磁極配列方向における副着磁部13の長さをλ
/4以下とした。
According to the embodiment shown in FIG. 2, the sub-magnetized portion 13 is formed at the switching position between the N-pole and the S-pole of the main magnetized portion 11 of the magnetic recording portion 10. As a result, FIG. Since the same effect as when the non-magnetized portion 12 is formed as in the embodiment shown in FIG. 1 is provided, the strength of the magnetic field fluctuates due to the disturbance of the magnetization of the magnetic recording portion 10, and the output waveform of the magnetic sensor 15 is changed. Even if the peak value fluctuates, the presence of the sub-magnetized portion 13 reduces the angle fluctuation between the zero-cross points of the output waveform, and reduces the duty fluctuation of the shaped waveform. However,
If the length of the sub-magnetized portion 13 in the magnetic pole arrangement direction of the magnetic recording portion is unlimitedly increased, the opposite effect is obtained. Therefore, the length of the sub-magnetized portion 13 in the magnetic pole arrangement direction of the magnetic recording portion is set to λ.
/ 4 or less.

【0019】図6(c)に示す着磁波形は、主たる着磁
波形に第三高調波を重畳した形になっている。従って、
磁気記録部10は正弦波状の主たる着磁波形に第三高調
波を重畳することによって形成することもできる。正弦
波状の主たる着磁波形に第三高調波を重畳すると、主た
る着磁波形のN極とS極との切り替わり部で第三高調波
の影響を受けて反転し、主たる着磁波形のN極とS極の
中心部で幅が狭くなり、図6(c)のような波形とな
る。
The magnetized waveform shown in FIG. 6C has a form in which the third harmonic is superimposed on the main magnetized waveform. Therefore,
The magnetic recording unit 10 can also be formed by superimposing a third harmonic on a main magnetized sine wave. When the third harmonic is superimposed on the main sinusoidal magnetized waveform, it is inverted under the influence of the third harmonic at the switching portion between the N-pole and S-pole of the main magnetized waveform, and the N-pole of the main magnetized waveform is inverted. Then, the width becomes narrow at the center of the S pole and the waveform becomes as shown in FIG.

【0020】そこで、正弦波状の主たる着磁波形の一部
を80%に落とすと共に、正弦波状の主たる着磁波形に
対し、重畳する第三高調波の割合を段階的に変え、さら
に、磁界の強さも段階的に変えたとき、λ/4方式によ
る磁気センサの検出出力の位相ずれがどうなるかを検証
した。図8(b)は、図8(a)に示すような波形の一
部を80%に落とした正弦波磁界に第三高調波を30%
重畳した磁界波形を示す。同様に、図8(c)は第三高
調波を40%重畳した磁界波形、図8(d)は第三高調
波を50%重畳した磁界波形、図8(e)は第三高調波
を60%重畳した磁界波形をそれぞれ示す。第三高調波
の割合が高くなるに従って、主たる着磁波形のN極とS
極との切り替わり部で第三高調波によって受ける影響が
大きくなり、副着磁部の磁界が大きくなることがわか
る。
Therefore, a part of the main sine-wave magnetized waveform is reduced to 80%, the ratio of the third harmonic superimposed on the main sine-wave magnetized waveform is changed stepwise, and the magnetic field of the magnetic field is further reduced. When the strength was also changed step by step, it was verified how the phase shift of the detection output of the magnetic sensor according to the λ / 4 method occurs. FIG. 8B shows a sine wave magnetic field in which a part of the waveform shown in FIG.
4 shows a superimposed magnetic field waveform. Similarly, FIG. 8C shows a magnetic field waveform in which the third harmonic is superimposed by 40%, FIG. 8D shows a magnetic field waveform in which the third harmonic is superimposed by 50%, and FIG. Each shows a magnetic field waveform superimposed by 60%. As the ratio of the third harmonic increases, the N pole and S
It can be seen that the influence of the third harmonic at the switching portion between the poles increases, and the magnetic field at the sub-magnetization portion increases.

【0021】図10は、主着磁部に第三高調波を30%
重畳してなる磁界における前記感磁部R1、R2の各抵
抗の位相と、その中点電位の出力を示すもので、(a)
は磁界の強さが3mTの場合、(b)は磁界の強さが8
mTの場合、(c)は磁界の強さが14mTの場合をそ
れぞれ示す。これらの中点電位出力のゼロクロス点間で
の位相ずれを示したのが図9(b)である。図9(b)
は前述の図9(a)に対比させ、磁界の強さ3mT、8
mT、14mTについて表したもので、図9(a)に対
比させて図9(b)を見れば明らかなように、出力波形
の位相ズレは多少残るものの、位相ずれが大幅に改善さ
れている。従って、この出力波形をゼロクロス点で波形
整形すれば、デューティーの変動量を少なくすることが
でき、これをモータの速度制御に用いた場合、精度の良
い速度制御を行うことができる。
FIG. 10 shows that the third harmonic is 30% in the main magnetized portion.
(A) shows the phase of each resistance of the magnetosensitive portions R1 and R2 in the superposed magnetic field and the output of the midpoint potential thereof.
Is when the magnetic field strength is 3 mT, (b) is when the magnetic field strength is 8
In the case of mT, (c) shows the case where the magnetic field strength is 14 mT, respectively. FIG. 9B shows the phase shift between the zero-cross points of the midpoint potential output. FIG. 9B
Are compared with the above-described FIG.
As shown in FIG. 9B in comparison with FIG. 9A, the phase shift of the output waveform remains slightly, but the phase shift is greatly improved. . Therefore, if the output waveform is shaped at the zero-cross point, the amount of change in duty can be reduced, and when this is used for speed control of the motor, accurate speed control can be performed.

【0022】図11は、主着磁部に第三高調波を40%
重畳してなる磁界における前記感磁部R1、R2の各抵
抗の位相と、その中点電位の出力を示すもので、(a)
(b)(c)はそれぞれ磁界の強さが3mT、8mT、
14mTの場合を示す。これらの中点電位出力のゼロク
ロス点間での位相ずれを示したのが図9(c)である。
図9(a)に対比させて図9(c)を見れば明らかなよ
うに、出力波形の位相ズレは、磁界の強さの大小にかか
わらずなくなっている。従って、この出力波形をゼロク
ロス点で波形整形すれば、デューティーの変動もなく、
これをモータの速度制御に用いた場合、極めて精度の良
い速度制御を行うことができる。
FIG. 11 shows that the third harmonic is 40% in the main magnetized portion.
(A) shows the phase of each resistance of the magnetosensitive portions R1 and R2 in the superposed magnetic field and the output of the midpoint potential thereof.
(B) and (c) show that the magnetic field strength is 3 mT, 8 mT,
The case of 14 mT is shown. FIG. 9C shows a phase shift between the zero-cross points of the midpoint potential output.
As is clear from FIG. 9C in comparison with FIG. 9A, the phase shift of the output waveform disappears regardless of the magnitude of the magnetic field. Therefore, if this output waveform is shaped at the zero-cross point, there is no change in duty,
When this is used for motor speed control, extremely accurate speed control can be performed.

【0023】図12は、主着磁部に第三高調波を50%
重畳してなる磁界における前記感磁部R1、R2の各抵
抗の位相と、その中点電位の出力を示すもので、(a)
(b)(c)はそれぞれ磁界の強さが3mT、8mT、
14mTの場合を示す。第三高調波を50%重畳する
と、図8(d)に示すように第三高調波成分がかなり大
きくなり、感磁部R1、R2の中点電位出力のゼロクロ
ス点間での位相ずれが生じる。しかし、この位相ずれは
正弦波磁界の場合の位相ずれよりも小さく、実用的な効
果は認められる。
FIG. 12 shows that the third harmonic is 50% in the main magnetized portion.
(A) shows the phase of each resistance of the magnetosensitive portions R1 and R2 in the superposed magnetic field and the output of the midpoint potential thereof.
(B) and (c) show that the magnetic field strength is 3 mT, 8 mT,
The case of 14 mT is shown. When the third harmonic is superimposed by 50%, the third harmonic component becomes considerably large as shown in FIG. 8D, and a phase shift occurs between the zero-cross points of the midpoint potential outputs of the magnetic sensing units R1 and R2. . However, this phase shift is smaller than the phase shift in the case of a sine wave magnetic field, and a practical effect is recognized.

【0024】図13は、主着磁部に第三高調波を60%
重畳してなる磁界における前記感磁部R1、R2の各抵
抗の位相と、その中点電位の出力を示すもので、(a)
(b)(c)はそれぞれ磁界の強さが3mT、8mT、
14mTの場合を示す。第三高調波を60%重畳する
と、図8(e)に示すように第三高調波成分が大きくな
りすぎ、感磁部R1、R2の中点電位出力のゼロクロス
点間での位相ずれが大きくなり、実用的な効果は認めら
れなくなる。
FIG. 13 shows that the third harmonic is 60% in the main magnetized portion.
(A) shows the phase of each resistance of the magnetosensitive portions R1 and R2 in the superposed magnetic field and the output of the midpoint potential thereof.
(B) and (c) show that the magnetic field strength is 3 mT, 8 mT,
The case of 14 mT is shown. When the third harmonic is superimposed by 60%, the third harmonic component becomes too large as shown in FIG. 8E, and the phase shift between the zero-cross points of the midpoint potential outputs of the magnetic sensing units R1 and R2 becomes large. No practical effect is recognized.

【0025】以上、図8〜図13についての説明から明
らかなように、正弦波磁界に重畳する第三高調波磁界の
割合は50%以下でなければ所期の効果を得ることがで
きない。また、第三高調波磁界の割合が25%程度まで
は所期の効果を得ることができるが、それ以下になると
所期の効果を得ることはできない。従って、所期の効果
を得ることができる第三高調波磁界の割合は25%以上
50%以下ということになる。しかし、より好ましくは
30%以上45%以下にするとよい。
As apparent from the description of FIGS. 8 to 13, the desired effect cannot be obtained unless the ratio of the third harmonic magnetic field superimposed on the sine wave magnetic field is 50% or less. The desired effect can be obtained up to a ratio of the third harmonic magnetic field of about 25%, but the desired effect cannot be obtained if the ratio is less than about 25%. Therefore, the ratio of the third harmonic magnetic field capable of obtaining the desired effect is 25% or more and 50% or less. However, it is more preferable that the content be 30% or more and 45% or less.

【0026】[0026]

【発明の効果】請求項1記載の発明によれば、磁気記録
部と磁気センサとの相対移動により磁気センサが磁気の
変化を検知して電気信号を出力するエンコーダ装置にお
いて、上記磁気記録部は、N極とS極を交互に所定の間
隔で着磁記録するとともに、上記N極とS極との切り替
わり位置に、N極とS極のどちらにも着磁されていない
無着磁部を形成したため、磁気記録部の着磁の乱れによ
って磁場の強さが変動し、磁気センサの出力波形のピー
ク値が変動しても、上記無着磁部の存在によって上記出
力波形のゼロクロス点間の位相のずれが少なく、その整
形波形はデューティーの変動が少なくなり、この波形を
例えばモータの速度制御に用いる場合、精度の高い速度
制御を行うことができる。
According to the first aspect of the present invention, in the encoder device in which the magnetic sensor detects a change in magnetism and outputs an electric signal by a relative movement between the magnetic recording unit and the magnetic sensor, the magnetic recording unit includes: , The N pole and the S pole are alternately magnetized and recorded at a predetermined interval, and the non-magnetized portion that is not magnetized in either the N pole or the S pole is located at the switching position between the N pole and the S pole. Due to the formation, the strength of the magnetic field fluctuates due to the disturbance of the magnetization of the magnetic recording portion, and even if the peak value of the output waveform of the magnetic sensor fluctuates, the presence of the non-magnetized portion causes the zero point between the zero cross points of the output waveform. The phase shift is small, and the shaped waveform has a small variation in duty. When this waveform is used, for example, for motor speed control, high-accuracy speed control can be performed.

【0027】請求項2記載の発明によれば、上記磁気記
録部のN極とS極の1周期分の波長をλとし、磁気記録
部の磁極配列方向における無着磁部の長さをAとしたと
き、A<λ/4としたため、出力波形のゼロクロス点間
の位相のずれを効果的に低減することができ、無着磁部
が長くなりすぎて逆効果となることを避けることができ
る。
According to the second aspect of the present invention, the wavelength of one cycle of the N pole and the S pole of the magnetic recording portion is defined as λ, and the length of the non-magnetized portion in the magnetic pole array direction of the magnetic recording portion is defined as A. In this case, since A <λ / 4, the phase shift between the zero-cross points of the output waveform can be effectively reduced, and it is possible to prevent the non-magnetized portion from becoming too long and having the adverse effect. it can.

【0028】請求項3記載の発明によれば、磁気記録部
と磁気センサとの相対移動により磁気センサが磁気の変
化を検知して電気信号を出力するエンコーダ装置におい
て、上記磁気記録部は、N極とS極が交互に所定の間隔
で着磁記録された主着磁部を有するとともに、上記N極
とS極との切り替わり位置に、磁界のピーク値が上記N
極とS極の磁界のピーク値よりも低い副着磁部が形成さ
れているため、磁気記録部の着磁の乱れによって磁場の
強さが変動し、磁気センサの出力波形のピーク値が変動
しても、上記副着磁部が前記無着磁部を形成したのと同
様の働きをし、上記出力波形のゼロクロス点間の位相の
ずれが少なく、その整形波形はデューティーの変動が少
なくなり、この波形を例えばモータの速度制御に用いる
場合、精度の高い速度制御を行うことができる。
According to the third aspect of the present invention, in the encoder device wherein the magnetic sensor detects a change in magnetism and outputs an electric signal by a relative movement between the magnetic recording unit and the magnetic sensor, A pole and a south pole have a main magnetized portion magnetized and recorded at a predetermined interval alternately, and the peak value of the magnetic field is at the switching position between the north pole and the south pole.
Since the sub-magnetized portion lower than the peak value of the magnetic field of the pole and the S pole is formed, the intensity of the magnetic field fluctuates due to the disturbance of the magnetization of the magnetic recording portion, and the peak value of the output waveform of the magnetic sensor fluctuates. Even when the sub-magnetized portion has the same function as forming the non-magnetized portion, the phase shift between the zero cross points of the output waveform is small, and the shaped waveform has less duty fluctuation. When this waveform is used, for example, for controlling the speed of a motor, highly accurate speed control can be performed.

【0029】請求項4記載の発明によれば、上記副着磁
部は主着磁部に第三高調波着磁することによって形成
し、この第三高調波着磁による磁界の割合を25〜50
%としたため、出力波形のゼロクロス点間の位相のずれ
をより効果的に低減することができる。
According to the fourth aspect of the present invention, the sub-magnetized portion is formed by subjecting the main magnetized portion to third harmonic magnetization, and the ratio of the magnetic field due to the third harmonic magnetization is 25 to 50
%, The phase shift between the zero-cross points of the output waveform can be more effectively reduced.

【0030】請求項5記載の発明によれば、請求項4記
載の発明において、磁気記録部のN極とS極の1周期分
の波長をλとし、磁気記録部の磁極配列方向における副
着磁部の長さをBとしたとき、B<λ/4としたため、
出力波形のゼロクロス点間の位相のずれを効果的に低減
することができ、無着磁部が長くなりすぎて逆効果とな
ることを避けることができる。
According to a fifth aspect of the present invention, in the invention according to the fourth aspect, the wavelength of one cycle of the N pole and the S pole of the magnetic recording portion is set to λ, and the secondary deposition in the magnetic pole arrangement direction of the magnetic recording portion is performed. When the length of the magnetic part is B, since B <λ / 4,
The phase shift between the zero-cross points of the output waveform can be effectively reduced, and it is possible to prevent the non-magnetized portion from being too long and having the opposite effect.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明にかかる対物エンコーダ装置の実施の形
態を示す展開図である。
FIG. 1 is a development view showing an embodiment of an objective encoder device according to the present invention.

【図2】本発明にかかる対物エンコーダ装置の別の実施
の形態を示す展開図である。
FIG. 2 is a development view showing another embodiment of the objective encoder device according to the present invention.

【図3】本発明装置による磁気センサの出力波形および
その整形波形の例を示す波形図である。
FIG. 3 is a waveform chart showing an example of an output waveform of a magnetic sensor and a shaped waveform thereof according to the device of the present invention.

【図4】本発明装置の磁気記録部への着磁の一例を示す
正面図である。
FIG. 4 is a front view showing an example of magnetization of a magnetic recording unit of the device of the present invention.

【図5】本発明装置の磁気記録部への着磁の別の例を示
す正面図である。
FIG. 5 is a front view showing another example of the magnetization of the magnetic recording unit of the device of the present invention.

【図6】磁気記録部への着磁波形の各種の例を示すもの
で、(a)は基本波形、(b)は無着磁部を設けた場
合、(c)は副着磁部を設けた場合の波形図である。
FIGS. 6A and 6B show various examples of magnetization waveforms on a magnetic recording unit. FIG. 6A shows a basic waveform, FIG. 6B shows a case where a non-magnetization part is provided, and FIG. FIG. 9 is a waveform diagram in the case where the filter is provided.

【図7】磁気記録部が基本着磁された場合と無着磁部が
形成された場合の磁界波形を比較して示す波形図であ
る。
FIG. 7 is a waveform diagram showing a comparison between magnetic field waveforms when a magnetic recording unit is fundamentally magnetized and when a non-magnetized unit is formed.

【図8】磁気記録部が基本着磁された場合の正弦波磁界
と第三高調波を段階的に重畳した場合の磁界波形の変化
を順に示す波形図である。
FIG. 8 is a waveform chart sequentially showing a change in a magnetic field waveform when a sine wave magnetic field and a third harmonic are superposed stepwise when the magnetic recording unit is fundamentally magnetized.

【図9】磁気記録部が基本着磁された場合と第三高調波
を段階的に重畳した場合の磁気センサ出力の位相ずれを
順に示すグラフである。
FIG. 9 is a graph showing the phase shift of the magnetic sensor output in the case where the magnetic recording unit is fundamentally magnetized and the case where the third harmonic is superposed stepwise.

【図10】磁気記録部の主着磁部に第三高調波を30%
重畳し磁界の強さを段階的に変化させた場合の磁気セン
サ出力の位相と中点電位出力を示す波形図である。
FIG. 10 shows that the third harmonic is 30% in the main magnetized portion of the magnetic recording portion.
FIG. 9 is a waveform diagram showing the phase of the magnetic sensor output and the midpoint potential output when the intensity of the magnetic field is superimposed and the intensity of the magnetic field is changed stepwise.

【図11】磁気記録部の主着磁部に第三高調波を40%
重畳し磁界の強さを段階的に変化させた場合の磁気セン
サ出力の位相と中点電位出力を示す波形図である。
FIG. 11 shows that the third harmonic is 40% in the main magnetized portion of the magnetic recording portion.
FIG. 9 is a waveform diagram showing the phase of the magnetic sensor output and the midpoint potential output when the intensity of the magnetic field is superimposed and the intensity of the magnetic field is changed stepwise.

【図12】磁気記録部の主着磁部に第三高調波を50%
重畳し磁界の強さを段階的に変化させた場合の磁気セン
サ出力の位相と中点電位出力を示す波形図である。
FIG. 12 shows a 50% third harmonic in a main magnetized portion of a magnetic recording portion.
FIG. 9 is a waveform diagram showing the phase of the magnetic sensor output and the midpoint potential output when the intensity of the magnetic field is superimposed and the intensity of the magnetic field is changed stepwise.

【図13】磁気記録部の主着磁部に第三高調波を60%
重畳し磁界の強さを段階的に変化させた場合の磁気セン
サ出力の位相と中点電位出力を示す波形図である。
FIG. 13 shows a third harmonic of 60% in the main magnetized portion of the magnetic recording portion.
FIG. 9 is a waveform diagram showing the phase of the magnetic sensor output and the midpoint potential output when the intensity of the magnetic field is superimposed and the intensity of the magnetic field is changed stepwise.

【図14】従来のエンコーダ装置における磁気センサの
磁気抵抗効果、磁界波形、磁気センサ出力の位相、中点
電位出力の例を示す波形図である。
FIG. 14 is a waveform diagram showing an example of a magnetoresistance effect, a magnetic field waveform, a phase of a magnetic sensor output, and a midpoint potential output of a magnetic sensor in a conventional encoder device.

【図15】従来のエンコーダ装置における磁気センサ出
力の位相ずれを示すグラフである。
FIG. 15 is a graph showing a phase shift of a magnetic sensor output in a conventional encoder device.

【符号の説明】[Explanation of symbols]

10 磁気記録部 11 主着磁部 12 無着磁部 13 副着磁部 15 磁気センサ R1 感磁部 R2 感磁部 Reference Signs List 10 magnetic recording section 11 main magnetized section 12 non-magnetized section 13 sub-magnetized section 15 magnetic sensor R1 magnetic sensitive section R2 magnetic sensitive section

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 磁気記録部に対向して磁気センサが配置
され、これら磁気記録部と磁気センサとの相対移動によ
り磁気センサが磁気の変化を検知して電気信号を出力す
るエンコーダ装置において、 上記磁気記録部は、N極とS極が交互に所定の間隔で着
磁記録されるとともに、上記N極とS極との切り替わり
位置に、N極とS極のどちらにも着磁されていない無着
磁部が形成されていることを特徴とするエンコーダ装
置。
1. An encoder device, wherein a magnetic sensor is disposed opposite to a magnetic recording unit, and the magnetic sensor detects a change in magnetism and outputs an electric signal by a relative movement between the magnetic recording unit and the magnetic sensor. In the magnetic recording unit, the N pole and the S pole are alternately magnetized and recorded at a predetermined interval, and neither the N pole nor the S pole is magnetized at the switching position between the N pole and the S pole. An encoder device wherein a non-magnetized portion is formed.
【請求項2】 磁気記録部のN極とS極の1周期分の波
長をλとし、磁気記録部の磁極配列方向における無着磁
部の長さをAとしたとき、A<λ/4である請求項1記
載のエンコーダ装置。
2. When the wavelength of one cycle of the N pole and the S pole of the magnetic recording portion is λ, and the length of the non-magnetized portion in the magnetic pole array direction of the magnetic recording portion is A, A <λ / 4. The encoder device according to claim 1, wherein
【請求項3】 磁気記録部に対向して磁気センサが配置
され、これら磁気記録部と磁気センサとの相対移動によ
り磁気センサが磁気の変化を検知して電気信号を出力す
るエンコーダ装置において、 上記磁気記録部は、N極とS極が交互に所定の間隔で着
磁記録された主着磁部を有するとともに、上記N極とS
極との切り替わり位置に、磁界のピーク値が上記N極と
S極の磁界のピーク値よりも低い副着磁部が形成されて
いることを特徴とするエンコーダ装置。
3. An encoder device in which a magnetic sensor is disposed opposite to a magnetic recording unit, and the magnetic sensor detects a change in magnetism by a relative movement between the magnetic recording unit and the magnetic sensor and outputs an electric signal. The magnetic recording portion has a main magnetized portion in which N poles and S poles are magnetized and recorded at predetermined intervals alternately, and the N pole and the S pole are
An encoder device, wherein a sub-magnetized portion having a peak value of a magnetic field lower than the peak values of the magnetic fields of the N pole and the S pole is formed at a switching position between the poles.
【請求項4】 副着磁部は主着磁部に第三高調波着磁す
ることによって形成され、この第三高調波着磁による磁
界の割合が25〜50%である請求項3記載のエンコー
ダ装置。
4. The method according to claim 3, wherein the sub-magnetized portion is formed by performing third harmonic magnetization on the main magnetized portion, and the ratio of the magnetic field due to the third harmonic magnetization is 25 to 50%. Encoder device.
【請求項5】 磁気記録部のN極とS極の1周期分の波
長をλとし、磁気記録部の磁極配列方向における副着磁
部の長さをBとしたとき、B<λ/4である請求項4記
載のエンコーダ装置。
5. When the wavelength of one cycle of the N pole and S pole of the magnetic recording portion is λ, and the length of the sub-magnetized portion in the magnetic pole arrangement direction of the magnetic recording portion is B, B <λ / 4. The encoder device according to claim 4, wherein
【請求項6】 磁気記録部のN極とS極の1周期分の波
長をλとしたとき、磁気センサの感磁部パターンがλ/
4間隔で配設されている請求項1、2、3、4又は5記
載のエンコーダ装置。
6. When the wavelength of one cycle of the N pole and the S pole of the magnetic recording unit is λ, the magnetic sensor pattern of the magnetic sensor is λ /
The encoder device according to claim 1, 2, 3, 4, or 5, which is arranged at four intervals.
JP15884497A 1997-06-16 1997-06-16 Encoder device Withdrawn JPH116744A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15884497A JPH116744A (en) 1997-06-16 1997-06-16 Encoder device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15884497A JPH116744A (en) 1997-06-16 1997-06-16 Encoder device

Publications (1)

Publication Number Publication Date
JPH116744A true JPH116744A (en) 1999-01-12

Family

ID=15680650

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15884497A Withdrawn JPH116744A (en) 1997-06-16 1997-06-16 Encoder device

Country Status (1)

Country Link
JP (1) JPH116744A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001242187A (en) * 2000-03-01 2001-09-07 Ntn Corp Magnetic encoder, bearing for wheel, and method for manufacturing magnetic encoder
JP2003037009A (en) * 2001-07-24 2003-02-07 Koyo Seiko Co Ltd Method for magnetizing magnetized pulser
JP2003077725A (en) * 2001-09-04 2003-03-14 Koyo Seiko Co Ltd Method for manufacturing pulser ring
JP2003077724A (en) * 2001-09-04 2003-03-14 Koyo Seiko Co Ltd Method for manufacturing pulser ring
JP2007198928A (en) * 2006-01-27 2007-08-09 Hitachi Metals Ltd Magnetic type absolute encoder
WO2009060716A1 (en) * 2007-11-06 2009-05-14 Konica Minolta Opto, Inc. Position detector and positioning device
JP2009192261A (en) * 2008-02-12 2009-08-27 Aisin Seiki Co Ltd Rectilinear displacement detector
US8013596B2 (en) 2005-04-06 2011-09-06 Konica Minolta Opto, Inc. Position detector and positioning device
JP2014089182A (en) * 2012-10-04 2014-05-15 Dmg Mori Seiki Co Ltd Position detection device
US10066966B2 (en) 2014-03-14 2018-09-04 Mitsubishi Electric Corporation Magnetic position detection device and magnetic position detection method
WO2019188570A1 (en) * 2018-03-29 2019-10-03 株式会社デンソー Rotation angle detection device

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001242187A (en) * 2000-03-01 2001-09-07 Ntn Corp Magnetic encoder, bearing for wheel, and method for manufacturing magnetic encoder
JP2003037009A (en) * 2001-07-24 2003-02-07 Koyo Seiko Co Ltd Method for magnetizing magnetized pulser
JP2003077725A (en) * 2001-09-04 2003-03-14 Koyo Seiko Co Ltd Method for manufacturing pulser ring
JP2003077724A (en) * 2001-09-04 2003-03-14 Koyo Seiko Co Ltd Method for manufacturing pulser ring
US8013596B2 (en) 2005-04-06 2011-09-06 Konica Minolta Opto, Inc. Position detector and positioning device
JP2007198928A (en) * 2006-01-27 2007-08-09 Hitachi Metals Ltd Magnetic type absolute encoder
WO2009060716A1 (en) * 2007-11-06 2009-05-14 Konica Minolta Opto, Inc. Position detector and positioning device
JP2009192261A (en) * 2008-02-12 2009-08-27 Aisin Seiki Co Ltd Rectilinear displacement detector
JP2014089182A (en) * 2012-10-04 2014-05-15 Dmg Mori Seiki Co Ltd Position detection device
US10066966B2 (en) 2014-03-14 2018-09-04 Mitsubishi Electric Corporation Magnetic position detection device and magnetic position detection method
WO2019188570A1 (en) * 2018-03-29 2019-10-03 株式会社デンソー Rotation angle detection device
JP2019174316A (en) * 2018-03-29 2019-10-10 株式会社デンソー Rotation angle detector

Similar Documents

Publication Publication Date Title
US5019776A (en) Magnetic position detection apparatus having two magnetic recording medium tracks with magnetoresistors arranged in a bridge circuit so as to eliminate even order harmonic distortion
JP4411319B2 (en) Magnetoresistive sensor for angle or position determination
JPH0611358A (en) Position measuring device
JPH10232242A (en) Detector
JP2529960B2 (en) Magnetic position detector
JPH116744A (en) Encoder device
JP2002228733A (en) Magnetism detecting device
US6459261B1 (en) Magnetic incremental motion detection system and method
JP2000055997A (en) Magnetic sensor device and current sensor device
JP3047099B2 (en) Position detection device
JPH04282417A (en) Magnetic sensor
JP2001174286A (en) Magnetic encoder
JP2000338257A (en) Magnetic metal sensor
JPH11183632A (en) Magnetic metallic sensor
JPH074986A (en) Reference position detector
JPS6047521B2 (en) Origin detection device
JP4211278B2 (en) Encoder
JP2613059B2 (en) Magnetic sensor
JP3344605B2 (en) Magnetoresistive sensor
JP2003194901A (en) Magnetic field sensor
JPS62289725A (en) Magnetoelectric converting device
JP2000171539A (en) Magnetism detecting apparatus
JPH09218053A (en) Magnetic type encoder
JP2582778Y2 (en) Two-phase output magnetic thin film magnetoresistive element
JPH01185414A (en) Magnetic type rotary encoder

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040527

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20060622