JP2003194901A - Magnetic field sensor - Google Patents

Magnetic field sensor

Info

Publication number
JP2003194901A
JP2003194901A JP2001391476A JP2001391476A JP2003194901A JP 2003194901 A JP2003194901 A JP 2003194901A JP 2001391476 A JP2001391476 A JP 2001391476A JP 2001391476 A JP2001391476 A JP 2001391476A JP 2003194901 A JP2003194901 A JP 2003194901A
Authority
JP
Japan
Prior art keywords
magnetic field
magnetized body
bias magnet
bias
effect element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001391476A
Other languages
Japanese (ja)
Inventor
Haruo Ito
治雄 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teikoku Tsushin Kogyo Co Ltd
Original Assignee
Teikoku Tsushin Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teikoku Tsushin Kogyo Co Ltd filed Critical Teikoku Tsushin Kogyo Co Ltd
Priority to JP2001391476A priority Critical patent/JP2003194901A/en
Publication of JP2003194901A publication Critical patent/JP2003194901A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Magnetic Variables (AREA)
  • Hall/Mr Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a magnetic field sensor capable of achieving compactness and detecting the absolute location of a movable body with high resolution. <P>SOLUTION: The magnetic field sensor is provided with a polarized body 80 in which north and south magnetic poles are alternately polarized in the direction A of movement, a magneto-resistance effect element 90 which is provided with a magneto-resistance pattern 93 for its surface and of which the resistance value changes according to changes in a magnetic field inn the direction which intersects with the longitudinal direction of the magneto-resistance pattern 93 at right angles due to relative movement to the polarized body 80, and a bias magnetic 10 which impresses a bias magnetic field in parallel with the longitudinal direction of the magneto-resistance pattern 93. The bias magnet 10 moves with the movement of the polarized body 80, and the distance of separation of the bias magnet 10 from the magneto-resistance pattern 93 is changed in such a way that the intensity of the bias magnetic field to the magneto-resistance pattern 93 is changed according to its moving location. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、磁気抵抗効果素子
の抵抗変化を利用して移動体の移動位置や回転角度を検
出する磁界センサに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic field sensor for detecting a moving position and a rotation angle of a moving body by utilizing a resistance change of a magnetoresistive effect element.

【0002】[0002]

【従来の技術】従来、高い分解能で位置検出が必要な装
置として、例えばステッピングモータがある。ステッピ
ングモータにおける回転位置検出方法には、電気的にス
テップパルス数を計数して間接的にその回転位置を検出
する方法や、ステッピングモータの回転位置をポテンシ
ョメータによってその抵抗値変化として求める方法など
がある。
2. Description of the Related Art Conventionally, there is a stepping motor, for example, as a device which requires position detection with high resolution. Rotational position detection methods for stepping motors include a method of electrically counting the number of step pulses and indirectly detecting the rotational position, and a method of obtaining the rotational position of the stepping motor as a change in its resistance value with a potentiometer. .

【0003】一方ポテンショメータのような接触型の位
置検出手段ではなく非接触型の位置検出手段として、フ
ォトカプラを用いてその光源と受光素子をステッピング
モータに取り付けた遮蔽板(回転板)の両側に設置し、
遮蔽板に設けたスリットをフォトカプラが検出する回数
によってその回転位置を検出する方法等もある。さらに
フォトカプラの代わりに、ステッピングモータに取り付
けた回転体の外周にN,S磁極を交互に着磁しておき、
この外周に対向する位置に磁気抵抗効果素子を設置して
回転体の回転によって磁気抵抗効果素子に発生する交番
信号を計数してその回転位置を検出する方法もある。
On the other hand, as a non-contact type position detecting means instead of a contact type position detecting means such as a potentiometer, a light source and a light receiving element using a photo coupler are provided on both sides of a shield plate (rotating plate) attached to a stepping motor. Set up,
There is also a method of detecting the rotation position of the slit provided on the shield plate by the number of times the photocoupler detects the slit. Further, instead of the photocoupler, N and S magnetic poles are alternately magnetized around the outer circumference of the rotating body attached to the stepping motor,
There is also a method in which a magnetoresistive effect element is installed at a position facing the outer circumference, and an alternating signal generated in the magnetoresistive effect element by rotation of a rotating body is counted to detect the rotational position.

【0004】しかしながら前記ステッピングモータのス
テップパルス数を計数する位置検出方法は、移動させる
物体の慣性の影響を受けるため、実際のモータの回転数
とステップパルス数が必ずしも一致せず、一度ステップ
数が狂い出すと、再度基準位置まで戻さないと検出誤差
が残るという問題がある。
However, the position detecting method for counting the step pulse number of the stepping motor is affected by the inertia of the object to be moved, and therefore the actual motor rotation number and the step pulse number do not always match, and the step number once If it goes out of order, there is a problem that a detection error remains unless it is returned to the reference position again.

【0005】ポテンショメータを用いた位置検出方法
は、ポテンショメータの抵抗値がばらつくため、その補
正をして用いなければならず、同時に出力部に接点を用
いなければならないことから寿命の問題と摺動ノイズに
よる分解能の悪さが問題となる。
The position detection method using a potentiometer must be used after correcting because the resistance value of the potentiometer varies, and at the same time, a contact must be used in the output section, resulting in a problem of life and sliding noise. Poor resolution is a problem.

【0006】フォトカプラを用いた位置検出方法は、非
接触のため寿命特性は良好であるが、遮蔽板を高速に回
転するとスリットを通過する光の極端な光量低下をもた
らし、分解能を上げられないという問題がある。
The position detection method using a photocoupler has good life characteristics because it is non-contact, but when the shielding plate is rotated at a high speed, the amount of light passing through the slit is extremely reduced and the resolution cannot be improved. There is a problem.

【0007】上記各位置検出方法に対して磁気抵抗効果
素子を用いた位置検出方法は、非接触のため寿命特性が
良好であり、ノイズが少なく、またN,S磁極を着磁し
た回転体を高速回転しても交番信号を容易に計数できる
ので分解能が高く、これらの点からは位置検出手段とし
て好適である。しかしながら従来の磁気抵抗効果素子を
用いた位置検出方法は交番信号を計数する機能のみを有
するため、回転体の絶対位置を求めるには、別途回転体
の基準点を検出して回転体をその位置に戻す手段を付加
しなければならない。
In contrast to each of the above position detecting methods, the position detecting method using a magnetoresistive effect element has good life characteristics because of non-contact, has less noise, and has a rotating body magnetized with N and S magnetic poles. Since the alternating signal can be easily counted even when rotating at high speed, the resolution is high, and from these points, it is suitable as the position detecting means. However, the conventional position detection method using the magnetoresistive effect element has only the function of counting alternating signals. Therefore, in order to obtain the absolute position of the rotating body, the reference point of the rotating body is detected separately and the position of the rotating body is determined. We must add a means to return to.

【0008】この基準点を検出して回転体をその位置に
戻す手段は前記フォトカプラによる位置検出方法にも同
様に必要であるが、フォトカプラによる位置検出方法の
場合はスリットのパターン配置に工夫を加えて検出する
方法、磁気抵抗効果素子による位置検出方法の場合は磁
気抵抗効果素子のパターン配置に工夫を加えて検出する
方法によってその基準点(絶対位置)を検出することが
可能になる。しかしながら何れの場合も遮蔽板の大型化
や、磁気抵抗効果素子の大型化という問題が生じる。
The means for detecting the reference point and returning the rotating body to that position is also necessary for the position detecting method by the photocoupler, but in the case of the position detecting method by the photocoupler, the slit pattern arrangement is devised. In addition, in the case of the method of detecting by adding, and the method of detecting the position by the magnetoresistive effect element, the reference point (absolute position) can be detected by a method of detecting by devising the pattern arrangement of the magnetoresistive effect element. However, in either case, there arises a problem that the shield plate becomes larger and the magnetoresistive effect element becomes larger.

【0009】[0009]

【発明が解決しようとする課題】本発明は上述の点に鑑
みてなされたものでありその目的は、小型化が図れ、且
つ高い分解能で移動体の絶対位置の検出が可能な磁界セ
ンサを提供することにある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above points, and an object thereof is to provide a magnetic field sensor which can be downsized and which can detect the absolute position of a moving body with high resolution. To do.

【0010】[0010]

【課題を解決するための手段】磁気抵抗効果素子を用い
た一般の磁界センサは、例えば図1に示すように、移動
方向(直線方向)Aに向かって交互にN,S磁極が着磁
された棒状の着磁体80と、基板91の前記着磁体80
に対向する側の面に磁気抵抗パターン93を設けてなる
磁気抵抗効果素子90とを具備して構成されている。着
磁体80と磁気抵抗効果素子90間の間隔は、着磁体8
0へのN,S磁極の着磁ピッチλのほぼ半分である。
In a general magnetic field sensor using a magnetoresistive effect element, for example, as shown in FIG. 1, N and S magnetic poles are alternately magnetized in a moving direction (linear direction) A. Bar-shaped magnetized body 80 and the magnetized body 80 of the substrate 91
And a magnetoresistive effect element 90 having a magnetoresistive pattern 93 provided on the surface opposite to. The gap between the magnetized body 80 and the magnetoresistive effect element 90 is equal to the magnetized body 8
It is almost half of the magnetization pitch λ of the N and S magnetic poles to 0.

【0011】磁気抵抗効果素子90は図2に示している
が、基板91上に形成される磁気抵抗パターン93は、
第1のパターン部R1と、第2のパターン部R2とを設
けて構成されている。両パターン部R1,R2は、何れ
もニッケル鉄(パーマロイ)強磁性合金薄膜を細長い直
線状であって略コ字状に屈曲するように形成し、両パタ
ーン部R1,R2を直列に接続し、両パターン部R1,
R2の接続点を出力信号端子Voutとし、一端を電源
電圧端子Vccとし、他端をアース端子GNDとし、電
源電圧端子Vccとアース端子間に直流電圧を印加し、
出力信号端子Voutから出力を得るように構成してい
る。
The magnetoresistive effect element 90 is shown in FIG. 2, but the magnetoresistive pattern 93 formed on the substrate 91 is
It is configured by providing a first pattern portion R1 and a second pattern portion R2. Both of the pattern portions R1 and R2 are formed by forming a nickel iron (permalloy) ferromagnetic alloy thin film so as to be elongated and linear and bent into a substantially U-shape, and the both pattern portions R1 and R2 are connected in series. Both pattern parts R1,
The connection point of R2 is the output signal terminal Vout, one end is the power supply voltage terminal Vcc, the other end is the ground terminal GND, and a DC voltage is applied between the power supply voltage terminal Vcc and the ground terminal.
The configuration is such that an output is obtained from the output signal terminal Vout.

【0012】一方図3は一本のパターン部R1(又はR
2)の長手方向に直交する方向の磁界Hxを印加した場
合のΔR/R−H特性を示す図である。同図に示すよう
にパターン部R1への入力磁場波形が変化すると、パタ
ーン部R1の出力抵抗値変化率波形は所定の変化率で変
化する。そして図2に示す両パターン部R1,R2間の
間隔Lは、図1に示す着磁体80の隣接するN,S磁極
間の磁極間隔をλとすると、L=λ・(n+1/2)倍
〔但しnは0又は正の整数〕となるように構成されてい
る。従って例えば一方のパターン部R1が最も磁界Hx
の強い位置にあるときに、他方のパターン部R2は最も
磁界Hxの弱い位置に位置し、逆に一方のパターン部R
1が最も磁界Hxの弱い位置にあるときに、他方のパタ
ーン部R2は最も磁界Hxの強い位置に位置し、両パタ
ーン部R1,R2の抵抗値の差が変化していくことによ
って出力信号端子Voutの出力電圧を図4に示すよう
な略サイン波形とすることができる。
On the other hand, FIG. 3 shows one pattern portion R1 (or R
It is a figure which shows (DELTA) R / R-H characteristic at the time of applying the magnetic field Hx of the direction orthogonal to the longitudinal direction of 2). As shown in the figure, when the input magnetic field waveform to the pattern portion R1 changes, the output resistance value change rate waveform of the pattern portion R1 changes at a predetermined change rate. The distance L between the pattern portions R1 and R2 shown in FIG. 2 is L = λ · (n + 1/2) times when the magnetic pole distance between the adjacent N and S magnetic poles of the magnetized body 80 shown in FIG. 1 is λ. [However, n is 0 or a positive integer]. Therefore, for example, one pattern portion R1 has the highest magnetic field Hx.
, The other pattern portion R2 is located at the position where the magnetic field Hx is weakest, and conversely one pattern portion R2 is located.
When 1 is at the position where the magnetic field Hx is the weakest, the other pattern portion R2 is located at the position where the magnetic field Hx is the strongest, and the difference between the resistance values of the pattern portions R1 and R2 changes and the output signal terminal The output voltage of Vout can have a substantially sine waveform as shown in FIG.

【0013】しかしながら上記信号波形のみでは前述の
ように磁気抵抗効果素子90に対する着磁体80の絶対
的位置の検出ができない。そこで本願発明者は、磁気抵
抗効果素子80に印加するバイアス磁界の強さを変化す
ることで、図3に示すΔR/R−H特性曲線が変化する
ことに着目し、この現象を利用して着磁体80の磁気抵
抗効果素子90に対する絶対位置を高い分解能で検出す
るようにした。
However, as described above, the absolute position of the magnetized body 80 with respect to the magnetoresistive effect element 90 cannot be detected only with the signal waveform. Therefore, the inventor of the present application pays attention to the fact that the ΔR / RH characteristic curve shown in FIG. 3 changes by changing the strength of the bias magnetic field applied to the magnetoresistive effect element 80, and utilizes this phenomenon. The absolute position of the magnetized body 80 with respect to the magnetoresistive effect element 90 is detected with high resolution.

【0014】ここで図5は一本のパターン部R1(又は
R2)の長手方向への磁界Hyとこれに直交する方向の
磁界Hxを印加した場合のΔR/R−H特性を示す図で
ある。同図に示すように磁界Hyの強さを変化すると、
ΔR/R−H特性曲線が変化し、磁界Hyの強さを強く
すればするほど抵抗値変化率ΔR/R(%)は小さくな
っていく。つまり、パターン部R1への入力磁界の変化
に対してパターン部R1の抵抗値は変化するが、バイア
ス磁界Hyを強く印加した場合の抵抗値の変化率の方
が、弱く印加した場合の抵抗値の変化率に比べて小さ
い。例えば同図に示すようにパターン部R1への入力磁
界(入力磁場波形)を同一の振幅のものにしても、バイ
アス磁界Hy=0(Oe)の場合と、バイアス磁界Hy
=30(Oe)の場合とで、出力抵抗値変化率波形の振
幅が大きく変化する。そして例えば図1に示す磁気抵抗
効果素子90に対して着磁体80の位置を移動して行く
際に、着磁体80の位置に応じて磁気抵抗効果素子90
に印加されるバイアス磁界Hyの強さを例えば0〜30
(Oe)の範囲で変化してゆけば、図4の場合と相違
し、図6に示すように磁気抵抗効果素子90の出力信号
端子Voutの出力電圧の振幅は変化する。
FIG. 5 is a diagram showing ΔR / RH characteristics when a magnetic field Hy in the longitudinal direction of one pattern portion R1 (or R2) and a magnetic field Hx in a direction orthogonal to the magnetic field Hy are applied. . When the strength of the magnetic field Hy is changed as shown in FIG.
The ΔR / RH characteristic curve changes, and the resistance value change rate ΔR / R (%) decreases as the strength of the magnetic field Hy increases. That is, although the resistance value of the pattern portion R1 changes with respect to the change of the input magnetic field to the pattern portion R1, the change rate of the resistance value when the bias magnetic field Hy is strongly applied is smaller than the resistance value when the bias magnetic field Hy is weakly applied. Small compared to the rate of change. For example, as shown in the figure, even if the input magnetic field (input magnetic field waveform) to the pattern portion R1 has the same amplitude, the bias magnetic field Hy = 0 (Oe) and the bias magnetic field Hy.
= 30 (Oe), the amplitude of the output resistance value change rate waveform greatly changes. Then, for example, when moving the position of the magnetized body 80 with respect to the magnetoresistive effect element 90 shown in FIG. 1, the magnetoresistive effect element 90 is moved according to the position of the magnetized body 80.
The strength of the bias magnetic field Hy applied to the
If it changes in the range of (Oe), unlike the case of FIG. 4, the amplitude of the output voltage of the output signal terminal Vout of the magnetoresistive effect element 90 changes as shown in FIG.

【0015】従って磁気抵抗効果素子90に対する着磁
体80の位置に応じて磁気抵抗効果素子90に印加され
るバイアス磁界Hyの強さを変更するように構成してお
けば、出力信号端子Voutからの出力電圧の大きさに
よって、磁気抵抗効果素子90に対する着磁体80の絶
対位置を容易に測定できるのである。
Therefore, if the strength of the bias magnetic field Hy applied to the magnetoresistive effect element 90 is changed according to the position of the magnetized body 80 with respect to the magnetoresistive effect element 90, the output signal terminal Vout outputs the signal. The absolute position of the magnetized body 80 with respect to the magnetoresistive effect element 90 can be easily measured depending on the magnitude of the output voltage.

【0016】そこで本発明にかかる磁界センサは、移動
方向に向かって交互にN,S磁極が着磁された着磁体
と、前記着磁体のN,S磁極着磁面に対向する位置に設
置されてその表面に磁気抵抗パターンを設け、着磁体と
の相対的移動による磁気抵抗パターンの長手方向に直交
する方向への磁界の変化に対応してその抵抗値が変化す
る磁気抵抗効果素子とを具備する磁界センサにおいて、
前記磁気抵抗パターンの長手方向に平行なバイアス磁界
を印加するとともに、着磁体の移動と共に移動してその
移動位置に応じて磁気抵抗パターンへのバイアス磁界の
強さを変化するバイアス磁石を設置したことを特徴とす
る。
Therefore, the magnetic field sensor according to the present invention is installed at a position facing a magnetized body in which N and S magnetic poles are alternately magnetized in the moving direction and a magnetized surface of the N and S magnetic poles of the magnetized body. And a magnetoresistive element whose resistance value changes in response to a change in the magnetic field in a direction orthogonal to the longitudinal direction of the magnetoresistive pattern due to relative movement with the magnetized body. In the magnetic field sensor
A bias magnet that applies a bias magnetic field parallel to the longitudinal direction of the magnetoresistive pattern and moves with the movement of the magnetized body to change the strength of the bias magnetic field to the magnetoresistive pattern according to the movement position is installed. Is characterized by.

【0017】着磁体へのN,S磁極の着磁方向は直線状
であっても円弧状であっても良い。着磁方向が直線状の
場合は着磁体と磁気抵抗効果素子間の相対的移動方向は
直線方向となり、着磁方向が円弧状の場合は着磁体と磁
気抵抗効果素子間の相対的移動方向は回転方向となる。
The magnetizing directions of the N and S magnetic poles on the magnetized body may be linear or arcuate. When the magnetizing direction is linear, the relative movement direction between the magnetizing body and the magnetoresistive effect element is the linear direction, and when the magnetizing direction is arcuate, the relative moving direction between the magnetizing body and the magnetoresistive effect element is. It becomes the direction of rotation.

【0018】ここで磁気抵抗パターンへのバイアス磁界
の強さを変化させるには、着磁体の移動位置に応じてバ
イアス磁石と磁気抵抗パターンとの離間距離を変化する
ように構成すれば良い。即ち例えば着磁体と磁気抵抗効
果素子間の相対的移動方向が直線方向の場合は、着磁体
の直進方向に向けて長尺で直線状に形成・設置されたバ
イアス磁石を、磁気抵抗効果素子との離間距離が徐々に
変化するように斜めに設置すれば良い。また例えば着磁
体と磁気抵抗効果素子間の相対的移動方向が円弧方向の
場合は、着磁体の回転方向に向けて長尺で円弧状に形成
・設置されたバイアス磁石を着磁体の回転中心軸を中心
に回転した際に偏心して回転するよう設置することで磁
気抵抗効果素子との離間距離を変化するようにすれば良
い。
In order to change the strength of the bias magnetic field applied to the magnetic resistance pattern, the distance between the bias magnet and the magnetic resistance pattern may be changed according to the moving position of the magnetized body. That is, for example, when the relative movement direction between the magnetized body and the magnetoresistive effect element is a linear direction, a bias magnet formed and installed linearly in a long direction toward the straight direction of the magnetized body is used as the magnetoresistive effect element. It may be installed at an angle so that the separation distance of is gradually changed. For example, when the relative movement direction between the magnetized body and the magnetoresistive effect element is an arc direction, a bias magnet that is formed and installed in a long arc shape in the direction of rotation of the magnetized body is used as the center axis of rotation of the magnetized body. The distance between the magnetoresistive effect element and the magnetoresistive effect element may be changed by installing so as to be eccentrically rotated when the element rotates.

【0019】また磁気抵抗パターンへのバイアス磁界の
強さを変化させるには、バイアス磁石自体の磁界の強さ
をバイアス磁石の場所に応じて変化させるように構成し
ても良い。即ち例えば着磁体と磁気抵抗効果素子間の相
対的移動方向が直線方向の場合は、着磁体の直進方向に
向けて長尺で直線状に形成・設置されたバイアス磁石の
幅や厚みを、その長手方向に向かって徐々に変化するこ
とでバイアス磁石自体の磁界の強さをバイアス磁石の場
所に応じて変化させれば良い。また例えば着磁体と磁気
抵抗効果素子間の相対的移動方向が円弧方向の場合も、
着磁体の回転方向に向けて円弧状に形成・設置されたバ
イアス磁石自体の幅や厚みを、その回転方向に向かって
徐々に変化することでバイアス磁石自体の磁界の強さを
バイアス磁石の場所に応じて変化させれば良い。
In order to change the strength of the bias magnetic field applied to the magnetoresistive pattern, the strength of the magnetic field of the bias magnet itself may be changed according to the location of the bias magnet. That is, for example, when the relative movement direction between the magnetized body and the magnetoresistive effect element is a linear direction, the width and thickness of the bias magnet formed and installed linearly in a long direction toward the straight direction of the magnetized body are By gradually changing in the longitudinal direction, the strength of the magnetic field of the bias magnet itself may be changed according to the location of the bias magnet. Also, for example, when the relative movement direction between the magnetized body and the magnetoresistive effect element is an arc direction,
By gradually changing the width and thickness of the bias magnet itself, which is formed and installed in an arc shape in the direction of rotation of the magnetized body, in the direction of rotation, the strength of the magnetic field of the bias magnet itself can be changed. It may be changed according to.

【0020】[0020]

【発明の実施の形態】以下、本発明の実施の形態を図面
を参照して詳細に説明する。 〔実施形態1〕図7は本発明の実施形態1にかかる磁界
センサ(直線位置検出装置)を示す図である。この磁界
センサは、着磁体80と磁気抵抗効果素子90間の相対
的移動方向が直線方向であり、バイアス磁石10が着磁
体80の移動位置に応じて磁気抵抗パターン93との離
間距離を変化する構造のものである。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. [First Embodiment] FIG. 7 is a diagram showing a magnetic field sensor (straight line position detecting device) according to a first embodiment of the present invention. In this magnetic field sensor, the relative movement direction between the magnetized body 80 and the magnetoresistive effect element 90 is a linear direction, and the bias magnet 10 changes the distance from the magnetic resistance pattern 93 according to the moved position of the magnetized body 80. It is of structure.

【0021】即ち実施形態1にかかる磁界センサは、前
記図1に示す磁界センサと同一の着磁体80の裏面側
(着磁体80の磁気抵抗効果素子90を設置した側の反
対側)にバイアス磁石10を設置して構成されている。
バイアス磁石10は、棒状の着磁体80と略同一長さの
長尺な棒状体で構成され、その上面にN磁極、下面にS
磁極をその辺全長にわたって均等に着磁している。これ
によってN磁極から外部に放射された磁力線は、磁気抵
抗効果素子90の両パターン部R1,R2(図2参照)
に対してその長手方向に平行なバイアス磁界として印加
される。
That is, in the magnetic field sensor according to the first embodiment, a bias magnet is provided on the same back surface side of the magnetized body 80 as the magnetic field sensor shown in FIG. 1 (the opposite side of the magnetized body 80 on which the magnetoresistive effect element 90 is installed). 10 are installed and configured.
The bias magnet 10 is composed of a long rod-shaped body having substantially the same length as the rod-shaped magnetized body 80, and has an N pole on the upper surface and an S pole on the lower surface.
The magnetic poles are evenly magnetized over the entire length of their sides. As a result, the lines of magnetic force radiated from the N magnetic pole to the outside are generated by both pattern portions R1 and R2 of the magnetoresistive effect element 90 (see FIG. 2).
Is applied as a bias magnetic field parallel to its longitudinal direction.

【0022】同時にバイアス磁石10は着磁体80の直
進方向(矢印A方向)に向けて磁気抵抗効果素子90と
の離間距離が徐々に変化していくように、着磁体80に
対して斜めに設置されている。即ち図7において着磁体
80とバイアス磁石10間の離間距離は左右で異なって
いる(K1≠K2)。なお図では着磁体80とバイアス
磁石10とを離して記載しているが、実際は両者は何れ
かの場所で一体に固定されており、着磁体80の直線運
動と共にバイアス磁石10も直線運動する。
At the same time, the bias magnet 10 is installed obliquely with respect to the magnetized body 80 so that the distance from the magnetoresistive effect element 90 gradually changes in the straight traveling direction of the magnetized body 80 (direction of arrow A). Has been done. That is, in FIG. 7, the distance between the magnetized body 80 and the bias magnet 10 is different on the left and right (K1 ≠ K2). Although the magnetized body 80 and the bias magnet 10 are shown separated from each other in the figure, in reality, both are fixed integrally at any place, and the bias magnet 10 also moves linearly with the linear movement of the magnetized body 80.

【0023】このバイアス磁石10を設置した磁界セン
サによれば、前述のように磁気抵抗効果素子90に対し
て着磁体80による交番磁界が印加されると同時に、バ
イアス磁石10によるバイアス磁界が印加され、図8に
示すように、着磁体80の位置に応じて出力信号端子V
outの出力電圧の振幅が変化していく。このため着磁
体80の絶対位置を即座に容易に求めることができる。
もちろん出力信号端子Voutの出力電圧の振動数や振
幅の増大、減少の状態から着磁体80の移動速度や移動
方向も同時に求めることができる。
According to the magnetic field sensor provided with the bias magnet 10, as described above, the alternating magnetic field by the magnetized body 80 is applied to the magnetoresistive effect element 90, and at the same time, the bias magnetic field by the bias magnet 10 is applied. , As shown in FIG. 8, depending on the position of the magnetized body 80, the output signal terminal V
The amplitude of the output voltage of out changes. Therefore, the absolute position of the magnetized body 80 can be immediately and easily obtained.
Of course, the moving speed and the moving direction of the magnetized body 80 can also be obtained at the same time from the state where the frequency and amplitude of the output voltage of the output signal terminal Vout increase or decrease.

【0024】〔実施形態2〕図9は本発明の実施形態2
にかかる磁界センサ(直線位置検出装置)を示す図であ
る。この磁界センサは、着磁体80と磁気抵抗効果素子
90間の相対的移動方向が直線方向であり、バイアス磁
石10自体の磁界の強さをバイアス磁石10の場所に応
じて変化させた構造のものである。
[Second Embodiment] FIG. 9 shows a second embodiment of the present invention.
It is a figure which shows the magnetic field sensor (linear position detection apparatus) concerning. In this magnetic field sensor, the relative movement direction between the magnetized body 80 and the magnetoresistive effect element 90 is a linear direction, and the strength of the magnetic field of the bias magnet 10 itself is changed according to the location of the bias magnet 10. Is.

【0025】実施形態2にかかる磁界センサにおいて前
記図7に示す磁界センサと相違する点は、バイアス磁石
10の形状と、その設置位置のみである。即ちバイアス
磁石10は、着磁体80の裏面側(着磁体80の磁気抵
抗効果素子90を設置した側の反対側)に着磁体80に
平行に面接触するように取り付けられるが、その形状は
棒状の着磁体80と略同一長さの長尺な棒状体であって
且つその高さ方向の厚みが一方から他方に向かって徐々
に変化するように構成され、その上面にN磁極、下面に
S磁極をその辺全長にわたって着磁している。これによ
ってN磁極から外部に放射された磁力線は、磁気抵抗効
果素子90の両パターン部R1,R2(図2参照)に対
してその長手方向に平行なバイアス磁界として印加され
るが、バイアス磁石10から放射される磁界の強さはそ
の高さ方向の厚みが厚いほど強く、薄いほど弱く、従っ
て印加されるバイアス磁界の強さは着磁体80及びバイ
アス磁石10の位置に応じて変化する。
The magnetic field sensor according to the second embodiment differs from the magnetic field sensor shown in FIG. 7 only in the shape of the bias magnet 10 and its installation position. That is, the bias magnet 10 is attached to the back surface side of the magnetized body 80 (opposite side of the magnetized body 80 on which the magnetoresistive effect element 90 is installed) so as to make surface contact in parallel with the magnetized body 80, but the shape thereof is rod-like. The magnetized body 80 is a long rod-shaped body having substantially the same length, and its thickness in the height direction gradually changes from one side to the other side. The magnetic pole is magnetized over its entire length. As a result, the magnetic field lines emitted from the N magnetic pole to the outside are applied as a bias magnetic field parallel to the longitudinal direction of the pattern portions R1 and R2 (see FIG. 2) of the magnetoresistive effect element 90. The strength of the magnetic field radiated from is stronger as the thickness in the height direction is thicker, and weaker as the thickness is thinner. Therefore, the strength of the bias magnetic field applied varies depending on the positions of the magnetized body 80 and the bias magnet 10.

【0026】なお図9では着磁体80とバイアス磁石1
0とが直接密着して固定されているが、両者を密着する
必要はなく、離して設置しても良い。要は着磁体80の
直線運動と共にバイアス磁石10も直線運動するもので
あれば良い。
In FIG. 9, the magnetized body 80 and the bias magnet 1
Although 0 and 0 are directly adhered and fixed, it is not necessary to adhere them to each other, and they may be installed separately. The point is that the bias magnet 10 may move linearly as the magnetized body 80 moves linearly.

【0027】このバイアス磁石10を設置した磁界セン
サの場合も、磁気抵抗効果素子90に対して着磁体80
による交番磁界が印加されると同時に、バイアス磁石1
0によるバイアス磁界が印加され、図8に示すと同様
に、着磁体80の位置に応じて出力信号端子Voutの
出力電圧の振幅が変化する。このため着磁体80の絶対
位置を即座に容易に求めることができる。もちろん出力
信号端子Voutの出力電圧の振動数や振幅の増大、減
少の状態から着磁体80の移動速度や移動方向も同時に
求めることができる。
Also in the case of the magnetic field sensor in which the bias magnet 10 is installed, the magnetized body 80 is attached to the magnetoresistive effect element 90.
At the same time as the application of the alternating magnetic field by the bias magnet 1
A bias magnetic field of 0 is applied, and the amplitude of the output voltage of the output signal terminal Vout changes depending on the position of the magnetized body 80, as shown in FIG. Therefore, the absolute position of the magnetized body 80 can be immediately and easily obtained. Of course, the moving speed and the moving direction of the magnetized body 80 can also be obtained at the same time from the state where the frequency and amplitude of the output voltage of the output signal terminal Vout increase or decrease.

【0028】ところで着磁体80とバイアス磁石10の
移動方向の識別方法としては、図10(b)に示すよう
に、第1,第2のパターン部R1(R1−1,2),R
2(R2−1,2)を二対設けて出力信号端子Vout
の出力をA相とB相として取り出し、両相A,Bの位相
差が90°になるように第1,第2のパターン部R1−
1,R1−2,R2−1,R2−2を配置し、これによ
って図10(a)に示すように着磁体80の右方向への
移動時と左方向への移動時とでA相出力信号とB相出力
信号のピーク値の出現タイミングが異なることを測定す
ることでその移動方向を測定する方法を用いることもで
きる。この方法は、前記実施形態1でも、また以下の実
施形態3,4でも使用できることは言うまでもない。
By the way, as a method of identifying the moving directions of the magnetized body 80 and the bias magnet 10, as shown in FIG. 10B, first and second pattern portions R1 (R1-1, R2), R1 are formed.
Two pairs of 2 (R2-1, 2) are provided to output signal terminal Vout
Of the first and second pattern portions R1- so that the phase difference between the two phases A and B is 90 °.
1, R1-2, R2-1, R2-2 are arranged so that the A-phase output is generated when the magnetized body 80 is moved to the right and to the left as shown in FIG. It is also possible to use a method of measuring the moving direction by measuring the difference in the appearance timing of the peak value of the signal and the peak value of the B-phase output signal. It goes without saying that this method can be used in the first embodiment and also in the following third and fourth embodiments.

【0029】〔実施形態3〕図11は本発明の実施形態
3にかかる磁界センサ(回転位置検出装置)を示す図で
ある。この磁界センサは、着磁体80と磁気抵抗効果素
子90間の相対的移動方向が回転方向であり、バイアス
磁石10と磁気抵抗パターン93との離間距離が着磁体
80の移動位置に応じて変化する構造のものである。
[Third Embodiment] FIG. 11 is a diagram showing a magnetic field sensor (rotational position detecting device) according to a third embodiment of the present invention. In this magnetic field sensor, the relative movement direction between the magnetized body 80 and the magnetoresistive effect element 90 is the rotation direction, and the separation distance between the bias magnet 10 and the magnetoresistive pattern 93 changes according to the moved position of the magnetized body 80. It is of structure.

【0030】即ち実施形態3にかかる磁界センサは、移
動方向(回転方向)Cに向かって円周の外周面に交互に
N,S磁極が着磁された着磁体80と、着磁体80の外
周面側(着磁面側)に接近して配置された磁気抵抗効果
素子90と、着磁体80の内面側(着磁体80の磁気抵
抗効果素子90を設置した側の反対側)に設置されるバ
イアス磁石10とを具備して構成されている。バイアス
磁石10は、リング状であってその上面にN磁極、下面
にS磁極をその上下辺全長にわたって均等に着磁してい
る。これによってN磁極から外部に放射される磁力線
は、磁気抵抗効果素子90の両パターン部R1,R2に
対してその長手方向に平行なバイアス磁界として印加さ
れる。
That is, the magnetic field sensor according to the third embodiment has a magnetized body 80 in which N and S magnetic poles are alternately magnetized on the outer circumferential surface of the circumference in the moving direction (rotational direction) C, and the outer circumference of the magnetized body 80. The magnetoresistive effect element 90 arranged close to the surface side (magnetized surface side) and the inner surface side of the magnetized body 80 (opposite side of the magnetized body 80 where the magnetoresistive effect element 90 is installed). And a bias magnet 10. The bias magnet 10 is ring-shaped and has an N magnetic pole on its upper surface and an S magnetic pole on its lower surface, which are evenly magnetized over the entire length of its upper and lower sides. As a result, the magnetic field lines emitted from the N magnetic pole to the outside are applied to both pattern portions R1 and R2 of the magnetoresistive effect element 90 as a bias magnetic field parallel to the longitudinal direction thereof.

【0031】バイアス磁石10は着磁体80に図示しな
い固定手段で固定され、着磁体80の回転中心軸L1を
中心に着磁体80と共に回転するが、バイアス磁石10
は着磁体80の回転方向(矢印C方向)に向けて磁気抵
抗効果素子90との離間距離が徐々に変化するように着
磁体80の回転中心軸L1に対してバイアス磁石10の
中心L2を所定寸法偏心している。
The bias magnet 10 is fixed to the magnetized body 80 by a fixing means (not shown) and rotates together with the magnetized body 80 about the rotation center axis L1 of the magnetized body 80.
Is a predetermined center L2 of the bias magnet 10 with respect to the rotation center axis L1 of the magnetized body 80 so that the separation distance from the magnetoresistive effect element 90 gradually changes in the rotation direction of the magnetized body 80 (direction of arrow C). The dimensions are eccentric.

【0032】このバイアス磁石10を設置した磁界セン
サによれば、磁気抵抗効果素子90に対して着磁体80
の回転による交番磁界が印加されると同時に、バイアス
磁石10によるバイアス磁界が印加され、図12に示す
ように、着磁体80の位置に応じて出力信号端子Vou
tの出力電圧の振幅が一回転一周期で変化する。このた
め着磁体80の絶対位置を即座に容易に求めることがで
きる。もちろん出力信号端子Voutの出力電圧の振動
数から着磁体80の回転速度も同時に求めることができ
る。
According to the magnetic field sensor provided with the bias magnet 10, the magnetized body 80 is attached to the magnetoresistive effect element 90.
At the same time as the application of the alternating magnetic field by the rotation of the bias magnet 10, the bias magnetic field by the bias magnet 10 is applied, and as shown in FIG. 12, the output signal terminal Vou depends on the position of the magnetized body 80.
The amplitude of the output voltage of t changes in one rotation and one cycle. Therefore, the absolute position of the magnetized body 80 can be immediately and easily obtained. Of course, the rotation speed of the magnetized body 80 can also be obtained at the same time from the frequency of the output voltage of the output signal terminal Vout.

【0033】〔実施形態4〕図13は本発明の実施形態
4にかかる磁界センサ(回転位置検出装置)を示す図で
ある。この磁界センサは、着磁体80と磁気抵抗効果素
子90間の相対的移動方向が回転方向であり、バイアス
磁石10自体の磁界の強さをバイアス磁石10の場所に
応じて変化させた構造のものである。
[Fourth Embodiment] FIG. 13 is a view showing a magnetic field sensor (rotational position detecting device) according to a fourth embodiment of the present invention. In this magnetic field sensor, the relative movement direction between the magnetized body 80 and the magnetoresistive effect element 90 is the rotation direction, and the strength of the magnetic field of the bias magnet 10 itself is changed according to the location of the bias magnet 10. Is.

【0034】即ち実施形態4にかかる磁界センサは、移
動方向(回転方向)Cに向かって円板の上面外周部分に
交互にN,S磁極が着磁された着磁体80と、着磁体8
0の外周上面側(着磁面側)に接近して配置された磁気
抵抗効果素子90と、着磁体80の下面側(着磁体80
の磁気抵抗効果素子90を設置した側の反対側)に設置
されるバイアス磁石10とを具備して構成されている。
バイアス磁石10は、リング状であってその内周側から
外周側に向かって外周側がN磁極、内周側がS磁極とな
るようにその全周にわたって着磁されている。これによ
ってN磁極から外部に放射された磁力線は、磁気抵抗効
果素子90の両パターン部R1,R2に対してその長手
方向に平行なバイアス磁界として印加される。
That is, the magnetic field sensor according to the fourth embodiment has a magnetized body 80 in which N and S magnetic poles are alternately magnetized on the outer peripheral portion of the upper surface of the disk in the moving direction (rotational direction) C and the magnetized body 8.
0 and a magnetoresistive effect element 90 arranged close to the outer peripheral upper surface side (magnetized surface side) and the lower surface side of the magnetized body 80 (magnetized body 80).
And a bias magnet 10 installed on the side opposite to the side on which the magnetoresistive effect element 90 is installed.
The bias magnet 10 is ring-shaped and is magnetized over its entire circumference so that the outer circumferential side has an N magnetic pole and the inner circumferential side has an S magnetic pole from the inner circumferential side to the outer circumferential side. As a result, the magnetic field lines emitted from the N magnetic pole to the outside are applied to both pattern portions R1 and R2 of the magnetoresistive effect element 90 as a bias magnetic field parallel to the longitudinal direction thereof.

【0035】バイアス磁石10は着磁体80に固定手段
70を介して固定されており、着磁体80の回転中心軸
L1を中心に着磁体80と共に回転するが、バイアス磁
石10は着磁体80の回転方向(矢印C方向)に向けて
バイアス磁石10自体の磁界の強さをバイアス磁石10
の場所に応じて徐々に変化するように、内周側から外周
側に向かうバイアス磁石10の幅を徐々に変化している
(t1≠t2)。つまりバイアス磁石10から放射され
る磁界の強さはその幅が大きいほど強く、小さいほど弱
く、従って磁気抵抗効果素子90に印加されるバイアス
磁界の強さは着磁体80及びバイアス磁石10の回転位
置に応じて変化する。
The bias magnet 10 is fixed to the magnetized body 80 via the fixing means 70 and rotates together with the magnetized body 80 about the rotation center axis L1 of the magnetized body 80, but the bias magnet 10 rotates the magnetized body 80. In the direction (arrow C direction), the strength of the magnetic field of the bias magnet 10 itself is changed.
The width of the bias magnet 10 from the inner circumference side to the outer circumference side is gradually changed so that the bias magnet 10 gradually changes depending on the location (t1 ≠ t2). That is, the strength of the magnetic field radiated from the bias magnet 10 is stronger as the width thereof is larger and weaker as the width thereof is smaller. Therefore, the strength of the bias magnetic field applied to the magnetoresistive effect element 90 depends on the rotational positions of the magnetized body 80 and the bias magnet 10. Change according to.

【0036】このバイアス磁石10を設置した磁界セン
サの場合も、磁気抵抗効果素子90に対して着磁体80
による交番磁界が印加されると同時に、バイアス磁石1
0によるバイアス磁界が印加され、図12に示すと同様
に、着磁体80の位置に応じて出力信号端子Voutの
出力電圧の振幅が一回転一周期で変化する。このため着
磁体80の絶対位置を即座に容易に求めることができ
る。もちろん出力信号端子Voutの出力電圧の振動数
から着磁体80の回転速度も同時に求めることができ
る。
Also in the case of the magnetic field sensor in which the bias magnet 10 is installed, the magnetizing body 80 is attached to the magnetoresistive effect element 90.
At the same time as the application of the alternating magnetic field by the bias magnet 1
A bias magnetic field of 0 is applied, and as shown in FIG. 12, the amplitude of the output voltage of the output signal terminal Vout changes in one rotation and one cycle according to the position of the magnetized body 80. Therefore, the absolute position of the magnetized body 80 can be immediately and easily obtained. Of course, the rotation speed of the magnetized body 80 can also be obtained at the same time from the frequency of the output voltage of the output signal terminal Vout.

【0037】なお本発明は、例えば高い分解能で位置検
出や回転角度検出が必要な工作機械の位置決め制御やロ
ボットの腕角度制御等に用いて好適である。
The present invention is suitable for use in, for example, positioning control of machine tools and arm angle control of robots that require high-resolution position detection and rotation angle detection.

【0038】以上本発明の実施形態を説明したが、本発
明は上記実施形態に限定されるものではなく、特許請求
の範囲、及び明細書と図面に記載された技術的思想の範
囲内において種々の変形が可能である。なお直接明細書
及び図面に記載がない何れの形状や構造や材質であって
も、本願発明の作用・効果を奏する以上、本願発明の技
術的思想の範囲内である。例えば着磁体80や磁気抵抗
効果素子90やバイアス磁石10の形状・構造・配置構
造に種々の変形が可能であることは言うまでもない。ま
た磁気抵抗パターン93の材質は、磁気抵抗パターンの
長手方向に平行に印加するバイアス磁界を変化すること
によってΔR/R−H特性曲線が変化する材質のもので
あれば、上記実施形態のものに限定されず、種々の変更
が可能である。
Although the embodiments of the present invention have been described above, the present invention is not limited to the above embodiments, and various modifications can be made within the scope of the claims and the technical idea described in the specification and drawings. Can be modified. Note that any shape, structure, or material not directly described in the specification and drawings is within the scope of the technical idea of the present invention as long as the functions and effects of the present invention are exhibited. It goes without saying that various modifications can be made to the shape, structure, and arrangement structure of the magnetized body 80, the magnetoresistive effect element 90, and the bias magnet 10, for example. Further, the material of the magnetoresistive pattern 93 is the same as that of the above-mentioned embodiment as long as the ΔR / RH characteristic curve is changed by changing the bias magnetic field applied parallel to the longitudinal direction of the magnetoresistive pattern. It is not limited and various modifications are possible.

【0039】[0039]

【発明の効果】以上詳細に説明したように本発明によれ
ば、着磁体と磁気抵抗効果素子とを具備してなる磁界セ
ンサに対してバイアス磁石を設置するだけで、高い分解
能で移動体の絶対位置の検出が可能で、小型化が図れる
磁界センサを提供できる。
As described in detail above, according to the present invention, a bias magnet is simply installed on a magnetic field sensor having a magnetized body and a magnetoresistive effect element, and a moving body with high resolution can be obtained. It is possible to provide a magnetic field sensor that can detect an absolute position and can be downsized.

【図面の簡単な説明】[Brief description of drawings]

【図1】着磁体80と磁気抵抗効果素子90とを用いて
構成した一般の磁界センサの一構成例を示す斜視図であ
る。
FIG. 1 is a perspective view showing a configuration example of a general magnetic field sensor configured by using a magnetized body 80 and a magnetoresistive effect element 90.

【図2】磁気抵抗効果素子90を示す斜視図である。FIG. 2 is a perspective view showing a magnetoresistive effect element 90.

【図3】パターン部R1(又はR2)に磁界Hxを印加
した場合のΔR/R−H特性を示す図である。
FIG. 3 is a diagram showing ΔR / RH characteristics when a magnetic field Hx is applied to a pattern portion R1 (or R2).

【図4】図1に示す磁界センサの磁気抵抗効果素子90
の出力信号端子Voutの出力電圧を示す図である。
4 is a magnetoresistive effect element 90 of the magnetic field sensor shown in FIG.
5 is a diagram showing the output voltage of the output signal terminal Vout of FIG.

【図5】パターン部R1(又はR2)に磁界Hyと磁界
Hxを印加した場合のΔR/R−H特性を示す図であ
る。
FIG. 5 is a diagram showing ΔR / RH characteristics when a magnetic field Hy and a magnetic field Hx are applied to a pattern portion R1 (or R2).

【図6】磁気抵抗効果素子90に印加される磁界Hyと
磁界Hxの強さを同時に変化したときの磁気抵抗効果素
子90の出力信号端子Voutの出力電圧を示す図であ
る。
FIG. 6 is a diagram showing an output voltage of an output signal terminal Vout of the magnetoresistive effect element 90 when the strengths of a magnetic field Hy and a magnetic field Hx applied to the magnetoresistive effect element 90 are simultaneously changed.

【図7】本発明の実施形態1にかかる磁界センサ(直線
位置検出装置)を示す斜視図である。
FIG. 7 is a perspective view showing a magnetic field sensor (straight line position detection device) according to the first embodiment of the present invention.

【図8】図7に示す磁界センサの磁気抵抗効果素子90
の出力信号端子Voutの出力電圧を示す図である。
8 is a magnetoresistive effect element 90 of the magnetic field sensor shown in FIG.
5 is a diagram showing the output voltage of the output signal terminal Vout of FIG.

【図9】本発明の実施形態2にかかる磁界センサ(直線
位置検出装置)を示す斜視図である。
FIG. 9 is a perspective view showing a magnetic field sensor (straight line position detecting device) according to a second embodiment of the present invention.

【図10】着磁体80とバイアス磁石10の移動方向を
識別する方法を示す図である。
10 is a diagram showing a method of identifying the moving directions of the magnetized body 80 and the bias magnet 10. FIG.

【図11】本発明の実施形態3にかかる磁界センサ(回
転位置検出装置)を示す斜視図である。
FIG. 11 is a perspective view showing a magnetic field sensor (rotational position detection device) according to a third embodiment of the present invention.

【図12】図11に示す磁界センサの磁気抵抗効果素子
90の出力信号端子Voutの出力電圧を示す図であ
る。
12 is a diagram showing an output voltage of an output signal terminal Vout of the magnetoresistive effect element 90 of the magnetic field sensor shown in FIG.

【図13】本発明の実施形態4にかかる磁界センサ(回
転位置検出装置)を示す斜視図である。
FIG. 13 is a perspective view showing a magnetic field sensor (rotational position detection device) according to a fourth embodiment of the present invention.

【符号の説明】[Explanation of symbols]

10 バイアス磁石 80 着磁体 90 磁気抵抗効果素子 91 基板 93 磁気抵抗パターン R1 第1のパターン部 R2 第2のパターン部 10 Bias magnet 80 Magnetized body 90 Magnetoresistive effect element 91 substrate 93 Magnetic resistance pattern R1 First pattern part R2 second pattern part

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 移動方向に向かって交互にN,S磁極が
着磁された着磁体と、 前記着磁体のN,S磁極着磁面に対向する位置に設置さ
れてその表面に磁気抵抗パターンを設け、着磁体との相
対的移動による磁気抵抗パターンの長手方向に直交する
方向への磁界の変化に対応してその抵抗値が変化する磁
気抵抗効果素子とを具備する磁界センサにおいて、 前記磁気抵抗パターンの長手方向に平行なバイアス磁界
を印加するとともに、着磁体の移動と共に移動してその
移動位置に応じて磁気抵抗パターンへのバイアス磁界の
強さを変化するバイアス磁石を設置したことを特徴とす
る磁界センサ。
1. A magnetized body in which N and S magnetic poles are alternately magnetized in a moving direction, and a magnetoresistive pattern disposed on a surface of the magnetized body facing the magnetized surface of the N and S magnetic poles. And a magnetoresistive effect element whose resistance value changes in response to a change in the magnetic field in a direction orthogonal to the longitudinal direction of the magnetoresistive pattern due to relative movement with the magnetized body. A bias magnet parallel to the longitudinal direction of the resistance pattern is applied, and a bias magnet that moves with the movement of the magnetized body and changes the strength of the bias magnetic field to the magnetoresistive pattern according to the movement position is installed. And magnetic field sensor.
【請求項2】 前記バイアス磁石は、着磁体の移動位置
に応じて磁気抵抗パターンとの離間距離を変化すること
で、磁気抵抗パターンへのバイアス磁界の強さを変化さ
せることを特徴とする請求項1記載の磁界センサ。
2. The bias magnet changes the strength of a bias magnetic field applied to the magnetoresistive pattern by changing the distance between the bias magnet and the magnetoresistive pattern according to the moving position of the magnetized body. Item 1. The magnetic field sensor according to item 1.
【請求項3】 前記バイアス磁石は、バイアス磁石自体
の磁界の強さをバイアス磁石の場所に応じて変化させる
ことで、磁気抵抗パターンへのバイアス磁界の強さを変
化させることを特徴とする請求項1記載の磁界センサ。
3. The bias magnet changes the strength of the magnetic field of the bias magnet itself according to the location of the bias magnet, thereby changing the strength of the bias magnetic field to the magnetoresistive pattern. Item 1. The magnetic field sensor according to item 1.
JP2001391476A 2001-12-25 2001-12-25 Magnetic field sensor Pending JP2003194901A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001391476A JP2003194901A (en) 2001-12-25 2001-12-25 Magnetic field sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001391476A JP2003194901A (en) 2001-12-25 2001-12-25 Magnetic field sensor

Publications (1)

Publication Number Publication Date
JP2003194901A true JP2003194901A (en) 2003-07-09

Family

ID=27599057

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001391476A Pending JP2003194901A (en) 2001-12-25 2001-12-25 Magnetic field sensor

Country Status (1)

Country Link
JP (1) JP2003194901A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007256250A (en) * 2006-02-23 2007-10-04 Denso Corp Rotation angle detecting device
JP2010271229A (en) * 2009-05-22 2010-12-02 Nikon Corp Encoder
DE102013000431A1 (en) * 2013-01-14 2014-07-17 Micronas Gmbh Circuit and measuring system
EP2754996A3 (en) * 2013-01-14 2014-10-29 Micronas GmbH Measuring system
EP2754997A3 (en) * 2013-01-14 2014-10-29 Micronas GmbH Measuring system

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007256250A (en) * 2006-02-23 2007-10-04 Denso Corp Rotation angle detecting device
JP4607049B2 (en) * 2006-02-23 2011-01-05 株式会社デンソー Rotation angle detector
JP2010271229A (en) * 2009-05-22 2010-12-02 Nikon Corp Encoder
DE102013000431A1 (en) * 2013-01-14 2014-07-17 Micronas Gmbh Circuit and measuring system
EP2754996A3 (en) * 2013-01-14 2014-10-29 Micronas GmbH Measuring system
EP2754997A3 (en) * 2013-01-14 2014-10-29 Micronas GmbH Measuring system
US9279702B2 (en) 2013-01-14 2016-03-08 Micronas Gmbh Circuit and measuring system
US9341463B2 (en) 2013-01-14 2016-05-17 Micronas Gmbh Measuring system
US9348003B2 (en) 2013-01-14 2016-05-24 Micronas Gmbh Measuring system

Similar Documents

Publication Publication Date Title
CN101416020B (en) Position sensor with variable direction of magnetization and method of production
US7112957B2 (en) GMR sensor with flux concentrators
US6160395A (en) Non-contact position sensor
JP4819943B2 (en) Magnetic rotation angle generator
US5801529A (en) Magnetoresistance sensing device without hystersis influence
US5982171A (en) Sensing device for detecting the angular displacement and relative position of a member of magnetic material
US20010009367A1 (en) Sensor device to record speed and motion direction of an object, especially rotational speed and direction of a rotating object
US9091565B2 (en) Magnetic position detection apparatus
JP4947250B2 (en) Angle detector
EP3674669B1 (en) Magnetic field sensor having unequally spaced magnetic field sensing elements
US7358723B2 (en) Magnetoresistive sensor
JP2008544245A (en) Sensor system for measuring the position or rotational speed of an object
JP2003194901A (en) Magnetic field sensor
EP2865997B1 (en) Magnetic medium for magnetic encoder, magnetic encoder and method for manufacturing magnetic medium
JP5348009B2 (en) Angle sensor
JP4506960B2 (en) Moving body position detection device
JP3064293B2 (en) Rotation sensor
JP2001174286A (en) Magnetic encoder
JP3064292B2 (en) Rotation sensor
JP6041959B1 (en) Magnetic detector
JP2003524171A (en) Measuring device to detect rotation angle without contact
JP2003257738A (en) Permanent magnet, its manufacturing method, and position sensor
JPH10227805A (en) Rotation sensor
JPH0320779Y2 (en)
TW202316085A (en) motion detector

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040513

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070612

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071016