JP2003037009A - Method for magnetizing magnetized pulser - Google Patents

Method for magnetizing magnetized pulser

Info

Publication number
JP2003037009A
JP2003037009A JP2001222981A JP2001222981A JP2003037009A JP 2003037009 A JP2003037009 A JP 2003037009A JP 2001222981 A JP2001222981 A JP 2001222981A JP 2001222981 A JP2001222981 A JP 2001222981A JP 2003037009 A JP2003037009 A JP 2003037009A
Authority
JP
Japan
Prior art keywords
magnetizing
pole
magnetic
magnetic layer
elastic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001222981A
Other languages
Japanese (ja)
Inventor
Naoki Morimura
直樹 森村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koyo Seiko Co Ltd
Original Assignee
Koyo Seiko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koyo Seiko Co Ltd filed Critical Koyo Seiko Co Ltd
Priority to JP2001222981A priority Critical patent/JP2003037009A/en
Publication of JP2003037009A publication Critical patent/JP2003037009A/en
Pending legal-status Critical Current

Links

Landscapes

  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a magnetization method of a magnetized pulser, which can improve the pitch precision of a magnetic pole and which can improve magnetizing force. SOLUTION: Magnetic flux 4 which a magnetizing yoke 7 generates passes through a prescribed part in the circumferential direction of a circular laminate 3 to a circular steel plate 1 side from an elastic magnetic layer 2 side. Thus, magnetizing force can be improved as compared to a conventional case where magnetic flux passes from an elastic magnetic layer side to the elastic magnetic layer side. Since magnetic pole parts 5 and 6 forming the N-pole and the S-pole of the magnetizing yoke 7 face each other by sandwiching the prescribed part in the circumferential direction of the circular laminate 3 from both sides of the elastic magnetic layer 2 side and the circular steel plate 1 side, the density of the magnetic flux 4 which passes from the elastic magnetic layer 2 side to the circular steel plate 1 side can be enhanced, and especially, magnetizing force can be improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、たとえば、自動
車のABS(アンチロックブレーキシステム)で用いられ
る回転速度センサを構成する着磁パルサーの着磁方法に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of magnetizing a magnetizing pulsar which constitutes a rotation speed sensor used in, for example, an ABS (antilock brake system) of an automobile.

【0002】[0002]

【従来の技術】従来、着磁パルサーの着磁方法として
は、大別して、全極着磁方法と単極着磁方法とがある。
2. Description of the Related Art Conventionally, the magnetizing method of a magnetizing pulser is roughly classified into an all-pole magnetizing method and a single-pole magnetizing method.

【0003】この全極着磁方法とは、鋼板リングに積層
された弾性磁性層の周方向の全周にわたって、上記弾性
磁性層を交互に逆方向に貫く磁束を同時に上記弾性磁性
層に加えることによって、弾性磁性層の周方向の全周に
わたって並ぶN極領域とS極領域のすべてを同時に形成
する方法である。この全極着磁方法は、全周にわたる着
磁が速やかに完了するメリットがあり、また、磁束を発
生させる着磁ヨークを弾性磁性層に直接接触させて着磁
することができるから、弾性磁性層を強く磁化できるメ
リットがある。
The all-pole magnetizing method is to simultaneously apply a magnetic flux to the elastic magnetic layer alternately passing through the elastic magnetic layer in the opposite direction over the entire circumference of the elastic magnetic layer laminated on the steel plate ring. Is a method of simultaneously forming all of the N-pole region and the S-pole region lined up over the entire circumference in the circumferential direction of the elastic magnetic layer. This all-pole magnetizing method has an advantage that the magnetizing over the entire circumference is promptly completed, and since the magnetizing yoke for generating the magnetic flux can be directly brought into contact with the elastic magnetic layer for magnetizing. There is a merit that the layer can be strongly magnetized.

【0004】ところが、この全極着磁方法では、鋼板リ
ングに積層された弾性磁性層と、上記着磁ヨークとの偏
芯や、着磁ヨーク自身の寸法誤差に起因して、N極領域
とS極領域との累積ピッチ精度が低下する欠点がある。
このピッチ精度低下は、回転速度検出精度の低下の原因
となる。
However, in this all-pole magnetizing method, the N-pole region is formed due to the eccentricity between the elastic magnetic layer laminated on the steel plate ring and the magnetizing yoke and the dimensional error of the magnetizing yoke itself. There is a drawback that the accuracy of cumulative pitch with the south pole region is reduced.
This decrease in pitch accuracy causes a decrease in rotation speed detection accuracy.

【0005】一方、上記単極着磁方法では、図3に示す
ように、環状鋼板31に積層された弾性磁性層32に対
して、所定のギャップを隔てて着磁ヨーク33を所定の
ニュートラルゾーン34に対向させ、この着磁ヨーク3
3のN極35からS極36に至る磁束37で、上記弾性
磁性層32を貫く。これにより、弾性磁性層32にS極
領域38とN極領域40を形成する。次に、上記環状鋼
板31と弾性磁性層32からなるリング44を所定の角
度だけ回転させて、上記着磁ヨーク33を、上記ニュー
トラルゾーン34に隣接するニュートラルゾーン45に
対向させ、かつ、コイル41に接続されている電源42
の向きを、図3の破線で描かれた方向に変更する。これ
により、上記着磁ヨーク33のN極35はS極35とな
り、S極36はN極36となり、磁束37の方向が逆に
なり、先のS極領域38に隣接する新たなN極領域43
が形成される。
On the other hand, in the above-mentioned single pole magnetizing method, as shown in FIG. 3, the magnetizing yoke 33 is arranged in a predetermined neutral zone at a predetermined gap with respect to the elastic magnetic layer 32 laminated on the annular steel plate 31. The magnetizing yoke 3
The magnetic flux 37 from the N pole 35 to the S pole 36 of 3 penetrates the elastic magnetic layer 32. As a result, the S pole region 38 and the N pole region 40 are formed in the elastic magnetic layer 32. Next, the ring 44 composed of the annular steel plate 31 and the elastic magnetic layer 32 is rotated by a predetermined angle so that the magnetizing yoke 33 faces the neutral zone 45 adjacent to the neutral zone 34 and the coil 41. Power supply 42 connected to
The direction of is changed to the direction drawn by the broken line in FIG. As a result, the N pole 35 of the magnetizing yoke 33 becomes the S pole 35, the S pole 36 becomes the N pole 36, the direction of the magnetic flux 37 is reversed, and a new N pole region adjacent to the previous S pole region 38 is formed. 43
Is formed.

【0006】このように、この単極着磁方法では、順
次、リング44を所定の角度だけ回転させ、かつ、着磁
ヨーク33が発生する磁束の方向を順次、逆にすること
で、S極領域とN極領域とを1極ずつ順に着磁してい
る。この単極着磁方法では、上述の全極着磁方法での着
磁ヨークの偏芯等に起因する累積ピッチ精度低下を回避
でき、例えば、上記リング44の回転角を精度の高いサ
ーボモータで制御することで、S極領域とN極領域の累
積ピッチ精度の向上を図れる。
As described above, in the single pole magnetizing method, the ring 44 is sequentially rotated by a predetermined angle, and the direction of the magnetic flux generated by the magnetizing yoke 33 is sequentially reversed to thereby make the S pole. The region and the N-pole region are magnetized one by one in order. With this single-pole magnetizing method, it is possible to avoid a decrease in cumulative pitch accuracy due to eccentricity of the magnetizing yoke in the all-pole magnetizing method described above. By controlling, it is possible to improve the cumulative pitch accuracy of the S pole region and the N pole region.

【0007】ところが、この単極着磁方法では、着磁ヨ
ーク33とリング44とを相対回転させる必要性から、
着磁ヨーク33とリング44との間に所定のギャップを
設けることに起因し、前述の全極着磁方法に比べて、磁
化力が低下する。
However, in this single pole magnetizing method, it is necessary to relatively rotate the magnetizing yoke 33 and the ring 44.
Due to the provision of a predetermined gap between the magnetizing yoke 33 and the ring 44, the magnetizing force is reduced as compared with the all-pole magnetizing method described above.

【0008】[0008]

【発明が解決しようとする課題】そこで、この発明の目
的は、磁極のピッチ精度が高く、かつ、磁化力を向上で
きる着磁パルサーの着磁方法を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a magnetizing method for a magnetizing pulsar which has a high magnetic pole pitch accuracy and can improve the magnetizing force.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するた
め、請求項1の発明の着磁パルサーの着磁方法は、鋼板
に弾性磁性層が積層されてなる積層体の上記弾性磁性層
に、交互に逆極性の磁極エリアを形成する着磁パルサー
の着磁方法であって、上記積層体の所定の箇所に、上記
積層体を、上記弾性磁性層側から上記鋼板側へ貫く磁束
を加えて、上記弾性磁性層に1つの磁極エリアを形成す
る第1の工程と、上記磁束と逆方向の磁束を、上記積層
体の上記磁極エリアに隣接する所定箇所に加えて、上記
磁極エリアに隣接する逆極性の磁極エリアを形成する第
2の工程とを交互に繰り返すことを特徴としている。
In order to achieve the above object, a method of magnetizing a magnetizing pulsar according to a first aspect of the present invention is characterized in that the elastic magnetic layer of a laminate comprising a steel sheet and an elastic magnetic layer is laminated on the elastic magnetic layer. A method of magnetizing a magnetizing pulsar which alternately forms magnetic pole areas having opposite polarities, wherein a magnetic flux penetrating the laminate from the elastic magnetic layer side to the steel plate side is added to a predetermined portion of the laminate. A first step of forming one magnetic pole area in the elastic magnetic layer, and a magnetic flux in a direction opposite to the magnetic flux is added to a predetermined portion of the laminated body adjacent to the magnetic pole area and adjacent to the magnetic pole area. It is characterized in that the second step of forming magnetic pole areas of opposite polarity is alternately repeated.

【0010】この請求項1の発明の着磁パルサーの着磁
方法では、上記積層体を貫通させる磁束の位置を所定寸
法だけ移動させるとともに、上記磁束の向きを逆にし
て、上記積層体の弾性磁性層に、交互に逆極性の磁極エ
リアを1つずつ形成する。このような単極着磁により、
各磁極エリアの累積ピッチ精度の向上を図れる。
In the method of magnetizing the magnetizing pulsar according to the present invention, the position of the magnetic flux penetrating the laminated body is moved by a predetermined dimension, and the direction of the magnetic flux is reversed so that the elasticity of the laminated body is improved. In the magnetic layer, magnetic pole areas having opposite polarities are alternately formed one by one. By such single pole magnetization,
The cumulative pitch accuracy of each magnetic pole area can be improved.

【0011】また、この着磁方法では、上記磁束が、上
記積層体の所定の箇所を、上記弾性磁性層側から上記鋼
板側へ貫くから、磁束が弾性磁性層側から弾性磁性層側
へ貫く従来例と比べ、磁化力を向上できる。
Further, in this magnetizing method, since the magnetic flux penetrates a predetermined portion of the laminated body from the elastic magnetic layer side to the steel plate side, the magnetic flux penetrates from the elastic magnetic layer side to the elastic magnetic layer side. The magnetizing force can be improved as compared with the conventional example.

【0012】また、請求項2の発明の着磁パルサーの着
磁方法は、請求項1に記載の着磁パルサーの着磁方法に
おいて、上記積層体の所定の箇所を、上記弾性磁性層側
と上記鋼板側の両側から挟むように、着磁ヨークのN極
とS極とを対向配置し、上記磁極エリアを形成すること
を特徴としている。
[0012] According to a second aspect of the present invention, there is provided a method of magnetizing the magnetic pulser according to the first aspect of the present invention, wherein in the method of magnetizing the magnetic pulser according to the first aspect, a predetermined portion of the laminate is located on the elastic magnetic layer side. The N-pole and the S-pole of the magnetizing yoke are arranged so as to face each other so as to be sandwiched from both sides on the side of the steel plate, and the magnetic pole area is formed.

【0013】この請求項2の発明では、着磁ヨークのN
極とS極とが、上記環状積層体の所定の箇所を、上記弾
性磁性層側と上記鋼板側の両側から挟んで対向するか
ら、上記弾性磁性層側から上記鋼板側へ貫く磁束の密度
を高めることができる。したがって、特に、磁化力を向
上できる。
According to the invention of claim 2, the magnetizing yoke has N
Since the pole and the S pole are opposed to each other with the predetermined location of the annular laminate sandwiched from both sides of the elastic magnetic layer side and the steel sheet side, the density of the magnetic flux penetrating from the elastic magnetic layer side to the steel sheet side is Can be increased. Therefore, in particular, the magnetizing force can be improved.

【0014】[0014]

【発明の実施の形態】以下、この発明を図示の実施の形
態により詳細に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in detail below with reference to the embodiments shown in the drawings.

【0015】図1を参照して、この発明の着磁パルサー
の着磁方法の実施形態を説明する。この実施形態では、
環状鋼板1に弾性磁性層2が積層された環状積層体3
を、弾性磁性層2側と環状鋼板1側の両側から挟むよう
に配置した磁極部5と6を有する着磁ヨーク7を用い
た。なお、図1では、環状積層体3は、周方向の一部が
部分的に示されており、全体としては、弾性磁性層2が
外周面をなし、環状鋼板1が内周面をなす筒状体であ
る。また、弾性磁性層2は、例えば、合成ゴムや合成樹
脂に磁性粉を混合した材料からなる。
An embodiment of a method of magnetizing a magnetizing pulser according to the present invention will be described with reference to FIG. In this embodiment,
Annular laminate 3 in which the elastic magnetic layer 2 is laminated on the annular steel plate 1
Was used as a magnetizing yoke 7 having magnetic pole portions 5 and 6 arranged so as to be sandwiched from both sides of the elastic magnetic layer 2 side and the annular steel plate 1 side. In FIG. 1, the annular laminated body 3 is partially shown in the circumferential direction, and as a whole, the elastic magnetic layer 2 forms an outer peripheral surface and the annular steel plate 1 forms an inner peripheral surface. It is a state. The elastic magnetic layer 2 is made of, for example, a material in which magnetic powder is mixed with synthetic rubber or synthetic resin.

【0016】また、着磁ヨーク7は、全体としてコの字
状で、磁極部5と6は、先細になっている。この磁極部
5と6は、環状積層体3の周方向の所定箇所において、
弾性磁性層2の表面と環状鋼板1の表面に対して所定の
隙間を隔てて、対向している。
The magnetizing yoke 7 is generally U-shaped, and the magnetic pole portions 5 and 6 are tapered. The magnetic pole portions 5 and 6 are provided at predetermined positions in the circumferential direction of the annular laminated body 3,
The surface of the elastic magnetic layer 2 and the surface of the annular steel sheet 1 are opposed to each other with a predetermined gap.

【0017】この着磁ヨーク7は、その巻線部8に巻か
れているコイル10に電流を流すことで、磁心となり、
磁極部5と6との間の空間を横切って磁束を通す磁路を
なす。図1に実線で示す回路のように、電源11が接続
されているときには、磁極部5がN極となり、磁極部6
がS極となる。したがって、このとき、図1に示すよう
に、N極の磁極部5からの磁束(磁力線)4が、弾性磁性
層2と環状鋼板1を順に貫通して、S極の磁極部6に至
る。一方、図1に破線で示す回路のように、電源11が
接続されているときには、磁極部5がS極となり磁極部
6がN極となる。したがって、このとき、N極となった
磁極部6からS極となった磁極部5へ至る磁束4は、環
状鋼板1と弾性磁性層2を順に貫通することになる。
The magnetizing yoke 7 becomes a magnetic core by passing a current through the coil 10 wound around the winding portion 8,
A magnetic path for passing magnetic flux is formed across the space between the magnetic pole portions 5 and 6. When the power supply 11 is connected as in the circuit shown by the solid line in FIG. 1, the magnetic pole portion 5 becomes the N pole and the magnetic pole portion 6
Becomes the S pole. Therefore, at this time, as shown in FIG. 1, the magnetic flux (lines of magnetic force) 4 from the N pole magnetic pole portion 5 sequentially penetrates the elastic magnetic layer 2 and the annular steel plate 1 to reach the S pole magnetic pole portion 6. On the other hand, when the power supply 11 is connected as in the circuit shown by the broken line in FIG. 1, the magnetic pole portion 5 becomes the S pole and the magnetic pole portion 6 becomes the N pole. Therefore, at this time, the magnetic flux 4 from the magnetic pole portion 6 having the N pole to the magnetic pole portion 5 having the S pole penetrates the annular steel plate 1 and the elastic magnetic layer 2 in order.

【0018】この実施形態では、図1に実線で示す状態
において、着磁ヨーク7は、環状積層体3を、弾性磁性
層2側から環状鋼板1側へ貫通する磁束4を発生させ、
弾性磁性層2の1つの磁極エリア12をS極に磁化し
て、S極の磁極エリア12を形成する。
In this embodiment, in the state shown by the solid line in FIG. 1, the magnetizing yoke 7 generates a magnetic flux 4 which penetrates the annular laminate 3 from the elastic magnetic layer 2 side to the annular steel plate 1 side.
One magnetic pole area 12 of the elastic magnetic layer 2 is magnetized to the S pole to form the S magnetic pole area 12.

【0019】次に、上記電源11の回路を断にしてか
ら、上記環状積層体3を、その中心軸を中心に、所定の
角度(例えば、360°×96分の1)だけ回転させ、図
1に破線で示すように、電源11を逆に接続して、環状
積層体3を、環状鋼板1側から弾性磁性層2側へ貫通す
る磁束(磁力線)を発生させ、上記S極に磁化させた磁極
エリア12に隣接する磁極エリア13をN極に磁化す
る。
Next, after disconnecting the circuit of the power source 11, the annular laminated body 3 is rotated by a predetermined angle (for example, 360 ° × 1/96) about the central axis, As indicated by a broken line in FIG. 1, the power supply 11 is connected in reverse to generate a magnetic flux (line of magnetic force) penetrating the annular laminate 3 from the annular steel plate 1 side to the elastic magnetic layer 2 side and magnetize the S pole. The magnetic pole area 13 adjacent to the magnetic pole area 12 is magnetized to the N pole.

【0020】以下、順次、上記環状積層体3を、所定角
度だけ回転させる毎に、上記電源11の接続を逆にし
て、周方向に隣接する磁極エリアを1つずつ逆の極性に
磁化させる。こうして、環状積層体3が1回転した時点
で、弾性磁性層2の全周面2Aに、周方向に交互に極性
が替わるように配列された複数(例えば96個)の磁極エ
リア12,13…を形成することができる。なお、この
環状積層体3の回転角度は、サーボモータで高精度に制
御でき、各磁性エリアのピッチ誤差を小さくすることが
できる。
Thereafter, each time the annular laminated body 3 is rotated by a predetermined angle, the connection of the power source 11 is reversed to magnetize the magnetic pole areas adjacent in the circumferential direction one by one to the opposite polarities. Thus, when the annular laminated body 3 makes one rotation, a plurality of (for example, 96) magnetic pole areas 12, 13 ... Arranged on the entire circumferential surface 2A of the elastic magnetic layer 2 so that the polarities alternate in the circumferential direction. Can be formed. The rotation angle of the annular laminated body 3 can be controlled with high accuracy by a servo motor, and the pitch error in each magnetic area can be reduced.

【0021】この実施形態によれば、上記着磁ヨーク7
が発生する磁束(磁束)が、環状積層体3の周方向の所定
の箇所を、弾性磁性層2側から環状鋼板1側へ貫くか
ら、磁束が弾性磁性層側から弾性磁性層側へ貫く従来例
と比べ、磁化力を向上できる。
According to this embodiment, the magnetizing yoke 7 is used.
The magnetic flux (magnetic flux) generated by the magnetic flux penetrates a predetermined position in the circumferential direction of the annular laminate 3 from the elastic magnetic layer 2 side to the annular steel plate 1 side, so that the magnetic flux penetrates from the elastic magnetic layer side to the elastic magnetic layer side. The magnetizing force can be improved as compared with the example.

【0022】また、この実施形態では、着磁ヨーク7の
N極とS極をなす磁極部5,6が、環状積層体3の周方
向の所定の箇所を、弾性磁性層2側と環状鋼板1側の両
側から挟んで対向するから、弾性磁性層2側から環状鋼
板1側へ貫く磁束の密度を高めることができ、特に、磁
化力を向上できる。
Further, in this embodiment, the magnetic pole portions 5 and 6 forming the N pole and the S pole of the magnetizing yoke 7 are provided at predetermined positions in the circumferential direction of the annular laminated body 3 on the elastic magnetic layer 2 side and the annular steel plate. Since they are opposed to each other on both sides of the first side, the density of the magnetic flux penetrating from the elastic magnetic layer 2 side to the annular steel sheet 1 side can be increased, and particularly, the magnetizing force can be improved.

【0023】なお、上記実施形態では、図1に示すよう
に、ドラム状の環状積層体3を磁化してラジアル着磁タ
イプの着磁パルサーリングを作製する場合について説明
したが、この発明の着磁方法は、図2(A)に示すような
アキシャル着磁タイプの着磁パルサーリングを作製する
場合にも適用できる。この場合、図1の着磁ヨーク7の
磁極部5と6とで、筒状の環状鋼板21の鍔部22とそ
の端面22Aに積層した平たいリング状の弾性磁性層2
3とからなる環状積層体24を、軸方向の両側から挟む
ように配置する。そして、上記実施形態と同様に、高精
度のサーボモータ等でもって、環状積層体24を所定の
角度だけ回転させながら、図2(B)に部分的に示すよう
に、周方向に隣接する磁極エリア25,26…を順次逆
極性に磁化して、N極の磁極エリア25とS極の磁極エ
リア26とが交互に配列された着磁パルサーリングを作
製する。また、上記実施形態では、環状の鋼板1に積層
された弾性磁性層2に着磁したが、平らな鋼板1に弾性
磁性層2を積層し、この弾性磁性層2に着磁してから、
鋼板1を環状に成形してもよい。
In the above embodiment, as shown in FIG. 1, the case where the drum-shaped annular laminated body 3 is magnetized to manufacture a radial magnetized type magnetized pulsar ring has been described. The magnetizing method can also be applied to the case where an axial magnetizing type magnetizing pulsar ring as shown in FIG. In this case, with the magnetic pole portions 5 and 6 of the magnetizing yoke 7 of FIG. 1, the flat ring-shaped elastic magnetic layer 2 laminated on the flange portion 22 of the tubular annular steel plate 21 and the end surface 22A thereof.
The annular laminated body 24 composed of 3 and 3 is arranged so as to be sandwiched from both sides in the axial direction. Then, as in the above-described embodiment, while rotating the annular laminated body 24 by a predetermined angle by using a high-precision servo motor or the like, as shown partially in FIG. The areas 25, 26 ... Are sequentially magnetized in opposite polarities to produce a magnetized pulser ring in which magnetic pole areas 25 of N poles and magnetic pole areas 26 of S poles are alternately arranged. Further, in the above embodiment, the elastic magnetic layer 2 laminated on the annular steel plate 1 is magnetized, but the elastic magnetic layer 2 is laminated on the flat steel plate 1 and the elastic magnetic layer 2 is magnetized.
The steel plate 1 may be formed into a ring shape.

【0024】[0024]

【発明の効果】以上より明らかなように、請求項1の発
明の着磁パルサーの着磁方法は、積層体を貫通させる磁
束の位置を所定寸法だけ移動させるとともに、上記磁束
の向きを逆にして、上記積層体の弾性磁性層に、交互に
逆極性の磁極エリアを1つずつ形成する。このような単
極着磁により、各磁極エリアの累積ピッチ精度の向上を
図れる。また、この着磁方法では、上記磁束が、上記積
層体の所定の箇所を、上記弾性磁性層側から上記環状鋼
板側へ貫くから、磁束が弾性磁性層側から弾性磁性層側
へ貫く従来例と比べ、磁化力を向上できる。
As is apparent from the above, the method of magnetizing the magnetizing pulsar according to the invention of claim 1 moves the position of the magnetic flux penetrating the laminated body by a predetermined dimension and reverses the direction of the magnetic flux. Then, the magnetic pole areas of opposite polarities are alternately formed one by one in the elastic magnetic layer of the above-mentioned laminated body. By such single pole magnetization, the cumulative pitch accuracy of each magnetic pole area can be improved. Further, in this magnetizing method, the magnetic flux penetrates a predetermined portion of the laminated body from the elastic magnetic layer side to the annular steel plate side, so that the magnetic flux penetrates from the elastic magnetic layer side to the elastic magnetic layer side. The magnetic force can be improved as compared with.

【0025】また、請求項2の発明の着磁パルサーの着
磁方法は、着磁ヨークのN極とS極とが、積層体の所定
の箇所を、弾性磁性層側と鋼板側の両側から挟んで対向
するから、弾性磁性層側から鋼板側へ貫く磁束の密度を
高めることができる。したがって、特に、磁化力を向上
できる。
According to a second aspect of the present invention, there is provided a method for magnetizing a magnetizing pulsar, wherein the N pole and the S pole of the magnetizing yoke are located at predetermined positions of the laminated body from both sides of the elastic magnetic layer side and the steel plate side. Since they oppose each other, the density of the magnetic flux penetrating from the elastic magnetic layer side to the steel sheet side can be increased. Therefore, in particular, the magnetizing force can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】 この発明の着磁パルサーの着磁方法の実施形
態を説明するための部分的な模式図である。
FIG. 1 is a partial schematic view for explaining an embodiment of a magnetizing method for a magnetizing pulser according to the present invention.

【図2】 図2(A)は、上記実施形態の変形例で作製で
きるアキシャルタイプの着磁パルサーの半断面図であ
り、図2(B)は、上記アキシャルタイプの着磁パルサー
の周方向の一部分を示す平面図である。
FIG. 2A is a half cross-sectional view of an axial-type magnetized pulser that can be manufactured in a modification of the above-described embodiment, and FIG. 2B is a circumferential direction of the axial-type magnetized pulser. It is a top view showing a part of.

【図3】 従来の着磁パルサーの着磁方法を説明するた
めの部分的な模式図である。
FIG. 3 is a partial schematic diagram for explaining a magnetizing method of a conventional magnetizing pulser.

【符号の説明】[Explanation of symbols]

1…環状鋼板、2…弾性磁性層、3…環状積層体、4…
磁束、5,6…磁極部、7…着磁ヨーク、8…巻線部、
10…コイル、11…電源、12,13…磁極エリア。
DESCRIPTION OF SYMBOLS 1 ... Annular steel plate, 2 ... Elastic magnetic layer, 3 ... Annular laminated body, 4 ...
Magnetic flux, 5, 6 ... Magnetic pole part, 7 ... Magnetizing yoke, 8 ... Winding part,
10 ... Coil, 11 ... Power supply, 12, 13 ... Magnetic pole area.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 鋼板に弾性磁性層が積層されてなる積層
体の上記弾性磁性層に、交互に逆極性の磁極エリアを形
成する着磁パルサーの着磁方法であって、 上記積層体の所定の箇所に、上記積層体を、上記弾性磁
性層側から上記鋼板側へ貫く磁束を加えて、上記弾性磁
性層に1つの磁極エリアを形成する第1の工程と、 上記磁束と逆方向の磁束を、上記積層体の上記磁極エリ
アに隣接する所定箇所に加えて、上記磁極エリアに隣接
する逆極性の磁極エリアを形成する第2の工程とを交互
に繰り返すことを特徴とする着磁パルサーの着磁方法。
1. A method of magnetizing a magnetizing pulsar, wherein magnetic pole areas having opposite polarities are alternately formed on the elastic magnetic layer of a laminated body formed by laminating elastic magnetic layers on a steel sheet, the method comprising: A magnetic flux penetrating the laminated body from the elastic magnetic layer side to the steel sheet side at a position of 1 to form one magnetic pole area in the elastic magnetic layer; and a magnetic flux in a direction opposite to the magnetic flux. In addition to a predetermined position adjacent to the magnetic pole area of the stacked body, and a second step of forming a magnetic pole area of opposite polarity adjacent to the magnetic pole area are alternately repeated. Magnetization method.
【請求項2】 請求項1に記載の着磁パルサーの着磁方
法において、 上記積層体の所定の箇所を、上記弾性磁性層側と上記鋼
板側の両側から挟むように、着磁ヨークのN極とS極と
を対向配置し、上記磁極エリアを形成することを特徴と
する着磁パルサーの着磁方法。
2. The magnetizing method for a magnetizing pulsar according to claim 1, wherein N of the magnetizing yoke is sandwiched so as to sandwich a predetermined portion of the laminate from both sides of the elastic magnetic layer side and the steel plate side. A magnetizing method for a magnetizing pulsar, characterized in that the pole and the S pole are arranged to face each other to form the magnetic pole area.
JP2001222981A 2001-07-24 2001-07-24 Method for magnetizing magnetized pulser Pending JP2003037009A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001222981A JP2003037009A (en) 2001-07-24 2001-07-24 Method for magnetizing magnetized pulser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001222981A JP2003037009A (en) 2001-07-24 2001-07-24 Method for magnetizing magnetized pulser

Publications (1)

Publication Number Publication Date
JP2003037009A true JP2003037009A (en) 2003-02-07

Family

ID=19056386

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001222981A Pending JP2003037009A (en) 2001-07-24 2001-07-24 Method for magnetizing magnetized pulser

Country Status (1)

Country Link
JP (1) JP2003037009A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105097183A (en) * 2015-09-23 2015-11-25 沈阳工业大学 Annular bonding neodymium iron boron magnet multi-pole segmented magnetizing device
CN108666069A (en) * 2018-07-06 2018-10-16 北矿机电科技有限责任公司 A kind of continuous magnetizer of permanent magnetic separator packaged type entirety magnetic pole and method
DE10210326B4 (en) 2002-03-08 2019-02-21 Asm Automation Sensorik Messtechnik Gmbh Magnetizing of magnetic measuring bodies

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55146007A (en) * 1979-05-02 1980-11-14 Inoue Japax Res Inc Magnetic encoder
JPS61165604A (en) * 1985-01-17 1986-07-26 Nippon Kogaku Kk <Nikon> Magnetic scale
JPH116744A (en) * 1997-06-16 1999-01-12 Sankyo Seiki Mfg Co Ltd Encoder device
JP2001143931A (en) * 1999-11-15 2001-05-25 Uchiyama Mfg Corp Method for magnetizing magnetic rubber ring

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55146007A (en) * 1979-05-02 1980-11-14 Inoue Japax Res Inc Magnetic encoder
JPS61165604A (en) * 1985-01-17 1986-07-26 Nippon Kogaku Kk <Nikon> Magnetic scale
JPH116744A (en) * 1997-06-16 1999-01-12 Sankyo Seiki Mfg Co Ltd Encoder device
JP2001143931A (en) * 1999-11-15 2001-05-25 Uchiyama Mfg Corp Method for magnetizing magnetic rubber ring

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10210326B4 (en) 2002-03-08 2019-02-21 Asm Automation Sensorik Messtechnik Gmbh Magnetizing of magnetic measuring bodies
CN105097183A (en) * 2015-09-23 2015-11-25 沈阳工业大学 Annular bonding neodymium iron boron magnet multi-pole segmented magnetizing device
CN108666069A (en) * 2018-07-06 2018-10-16 北矿机电科技有限责任公司 A kind of continuous magnetizer of permanent magnetic separator packaged type entirety magnetic pole and method
CN108666069B (en) * 2018-07-06 2024-05-28 北矿机电科技有限责任公司 Permanent magnet separator packaging type integral magnetic pole continuous magnetizing device and method

Similar Documents

Publication Publication Date Title
US9601952B2 (en) Magnet embedded rotor and method of manufacturing the magnet embedded rotor
US7719395B2 (en) Magnetizer and magnetizing method
JP2003037009A (en) Method for magnetizing magnetized pulser
JP2012010571A (en) Magnet rotor for rotary electric machine, manufacturing method of the same, and inner rotor type motor
JPS63182808A (en) Manufacture of magnet for magnetic encoder
JP4803786B2 (en) Magnetizing method and apparatus for tone wheel
JP2002228486A (en) Magnetic encoder
JP2008233032A (en) Rotation angle detector
JP5314556B2 (en) Magnetic encoder, method for manufacturing the same, and rotation detection device
JPS6349948Y2 (en)
JP2011007709A (en) Magnetic encoder and method of manufacturing the same
JP2002353029A (en) Jig for magnetization
JP3758174B2 (en) Non-contact position sensor
JPH03195343A (en) Magnetizer for step motor
JPS59231271A (en) Magnetic fluid sealing device
JPS6116772Y2 (en)
JPH10229670A (en) Motor
JPH02228241A (en) Stepping motor
JPS58170347A (en) Rotor magnet
JP5105339B2 (en) Magnetizing method and apparatus for tone wheel
JPH07284263A (en) Motor and its manufacture
JP2006275572A (en) Resolver device
JPH01253216A (en) Magnetizer
JPH0638478A (en) Magnet for motor and manufacture thereof
JPH0410655Y2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080529

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100629

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101109