JP2002228486A - Magnetic encoder - Google Patents

Magnetic encoder

Info

Publication number
JP2002228486A
JP2002228486A JP2001028372A JP2001028372A JP2002228486A JP 2002228486 A JP2002228486 A JP 2002228486A JP 2001028372 A JP2001028372 A JP 2001028372A JP 2001028372 A JP2001028372 A JP 2001028372A JP 2002228486 A JP2002228486 A JP 2002228486A
Authority
JP
Japan
Prior art keywords
magnetic
magnetic field
gap
magnet
detecting element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001028372A
Other languages
Japanese (ja)
Other versions
JP4304869B2 (en
Inventor
Toshiyuki Ishibashi
利之 石橋
Koji Kamimura
浩司 上村
Kazunari Matsuzaki
一成 松崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP2001028372A priority Critical patent/JP4304869B2/en
Priority to TW090130428A priority patent/TW528856B/en
Priority to PCT/JP2001/010816 priority patent/WO2002048652A1/en
Publication of JP2002228486A publication Critical patent/JP2002228486A/en
Application granted granted Critical
Publication of JP4304869B2 publication Critical patent/JP4304869B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a small-sized magnetic encoder not requiring high accuracy in the attachment of a magnetic field detection element onto a magnetism generator. SOLUTION: The magnetic encoder is equipped with the magnetism generator 2, and magnetic detection elements 5a, 5b, 5c and 5d arranged in the gap 4 of the magnetism generator 2, and constituted so as to process the signals outputted from the magnetic detection elements by relative rotation to detect a rotational speed or a rotary position. The magnetism generator 2 is constituted of a permanent magnet formed into a cylindrical shape and magnetized so as to generate a parallel magnetic field B in one direction equal in a vertical direction with respect to the center axis in the central gap 4. A soft magnetic body 10 for forming a magnetic circuit is provided to the outer periphery of the magnetic body 2, and the magnetic field detection elements 5a, 5b, 5c and 5d are arranged in the gap 4 with mechanical phase difference of 90 deg. each other.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、磁気式エンコー
ダ、特に小形化に適した磁気式エンコーダに関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic encoder, and more particularly to a magnetic encoder suitable for miniaturization.

【0002】[0002]

【従来の技術】従来、回転体の回転数や回転位置を検出
するためのエンコーダには、検出原理により分類する
と、光学式(光電式)、磁気式、静電式などがあり、主
として光学式と磁気式が用いられている。
2. Description of the Related Art Conventionally, encoders for detecting the number of rotations and the rotational position of a rotating body can be classified into optical (photoelectric), magnetic, and electrostatic types according to the principle of detection. And the magnetic type is used.

【0003】磁気式エンコーダとしては、周方向に多極
着磁した磁気ドラムと磁気センサからなる磁気ドラム形
(たとえば特開昭54−118259号)や、ギヤもし
くはスリットを有するディスクと磁気センサおよび永久
磁石とからなるリラクタンス形の他に、特開2000−
65596号公報に示されているように、回転軸に対し
て垂直な一方向に磁化された円板状の永久磁石からなる
発磁体をそなえ、この発磁体に対して軸方向に対向する
磁界検出素子をそなえた磁気式エンコーダや、特開平1
1−237257号に記載されているように、前記と同
様に一方向の磁界をそなえた発磁体の外周を囲む固定枠
を設け、この固定枠の内周に、発磁体に対して径方向に
対向させ、機械角で90度位相がずれている1対の磁界
検出素子を、互いに180度ずらせた位置に2対設けた
ものが用いられている。
As a magnetic encoder, a magnetic drum type (for example, Japanese Patent Application Laid-Open No. 54-118259) composed of a magnetic drum and a magnetic sensor magnetized in multiple directions in the circumferential direction, a disk having a gear or a slit, a magnetic sensor, and a permanent magnet In addition to the reluctance type consisting of a magnet,
As disclosed in Japanese Patent Application Laid-Open No. 65596, there is provided a magnet made of a disk-shaped permanent magnet magnetized in one direction perpendicular to the rotation axis, and a magnetic field detection opposing the magnet in the axial direction. Magnetic encoder equipped with an element
As described in Japanese Patent Application Laid-Open No. 1-237257, a fixed frame is provided around the outer periphery of the magnetic body provided with a magnetic field in one direction in the same manner as described above. A pair of two magnetic field detecting elements which are opposed to each other and have a phase difference of 90 degrees in mechanical angle are provided at positions shifted from each other by 180 degrees.

【0004】図13はその1例を示す斜視図で、20は
回転体たとえばモータ、21はその回転軸、22は回転
軸21に取り付けた円板状の永久磁石からなる発磁体
で、回転軸21に対して垂直な一方向に磁化した磁界B
(矢印)を形成している。23は図示していない取付手
段で回転体20のフレームなどに取り付けられた固定枠
で、その内周に互いに90度の位置で磁界検出素子24
a、24b、24c、24dを取り付けている。
FIG. 13 is a perspective view showing an example of such a motor. Reference numeral 20 denotes a rotating body such as a motor, 21 denotes a rotating shaft thereof, and 22 denotes a magnetizing body made of a disk-shaped permanent magnet attached to the rotating shaft 21. Magnetic field B magnetized in one direction perpendicular to 21
(Arrow). Reference numeral 23 denotes a fixed frame attached to a frame or the like of the rotating body 20 by attachment means (not shown).
a, 24b, 24c and 24d are attached.

【0005】[0005]

【発明が解決しようとする課題】しかるに、磁気ドラム
形のエンコーダは、高分解能化すると着磁方法や組立精
度が面倒になり、磁気センサとして微細パターン化した
磁気抵抗素子が必要になるため、高価で、小形化に適し
ていなかった。また、一方向に磁化された永久磁石円板
の軸方向に対向させ、あるいは周囲に空隙を介して径方
向に磁界検出素子を取り付けるものでは、発磁体と磁界
検出素子との位置がずれて磁界検出素子が磁界の湾曲す
る部分に設置されると、出力信号の波形に乱れを生じや
すく、たとえば、図14に示すように、発磁体22と固
定枠23の位置が偏心すると、各磁界検出素子と磁界と
のずれにより検出信号にみだれを生じる。このため磁界
検出素子と発磁体との関係位置を正確に保持させる必要
があり、製作が面倒であった。
However, when the resolution of a magnetic drum type encoder is increased, the magnetizing method and the assembly accuracy become complicated, and a finely patterned magnetic resistance element is required as a magnetic sensor. And was not suitable for miniaturization. In the case where the magnetic field detecting element is attached to the permanent magnet disk magnetized in one direction in the axial direction, or the magnetic field detecting element is attached in the radial direction with a gap around the permanent magnet disk, the position of the magnetic field generating element and the magnetic field detecting element are shifted and the magnetic field is If the detection element is installed in a curved portion of the magnetic field, the waveform of the output signal is likely to be disturbed. For example, as shown in FIG. The detection signal is distorted due to the difference between the magnetic field and the magnetic field. For this reason, it is necessary to accurately maintain the relative position between the magnetic field detecting element and the magnetic field generator, and the production is troublesome.

【0006】本発明は、上述の欠点を無くし、磁界検出
素子を常に磁界の平行な範囲内に設置させることがで
き、発磁体に対する磁界検出素子の取り付けを容易に
し、小形化が可能な磁気エンコーダを提供する。
The present invention eliminates the above-mentioned drawbacks, allows the magnetic field detecting element to be always installed within a range parallel to the magnetic field, facilitates attachment of the magnetic field detecting element to the magnetic field generator, and enables downsizing. I will provide a.

【0007】[0007]

【課題を解決するための手段】このため、発磁体を筒状
に形成し、その空隙内に、中心軸に対して垂直方向に均
等な一方向の磁界を発生させ、この発磁体の前記空隙内
に所定の角位相差で複数個の磁界検出素子を配置し、前
記発磁体と磁界検出素子とを相対的に回転させるように
している。前記発磁体は、筒状の永久磁石で形成させる
ことができ、全体に一方向の磁界を発生させるように着
磁させる。また、発磁体の空隙内に生じる磁界強度を向
上させるため、発磁体の外周に磁路を構成する筒状の軟
磁性体を、発磁体に接着させ、あるいは小間隙を介して
配置することができる。
For this purpose, a magnetic body is formed in a cylindrical shape, and a uniform magnetic field is generated in the gap in one direction perpendicular to the central axis. A plurality of magnetic field detecting elements are arranged in the inside of the magnetic field detecting element at a predetermined angular phase difference, and the magnetic field generator and the magnetic field detecting element are relatively rotated. The magnet can be formed of a cylindrical permanent magnet, and is magnetized so as to generate a magnetic field in one direction as a whole. In addition, in order to improve the magnetic field strength generated in the gap of the magnetic field, a cylindrical soft magnetic material constituting a magnetic path may be adhered to the magnetic field on the outer periphery of the magnetic field, or may be arranged via a small gap. it can.

【0008】なお、発磁体の周方向位置の磁化方向を徐
々に変化させて、中央の空隙内に一方向の磁界を形成さ
せるようにしてもよい。周方向位置の磁化方向を徐々に
変化させるために、磁化方向が異なる複数の台形の永久
磁石ブロックを順次に磁化方向をずらせて周方向に組み
合わせて筒状にし、または、ゴム磁石を用いて一方向に
着磁した筒状体の1カ所を切り離し、内周面が外側にな
るように反転させて筒状に戻すことにより、磁化方向が
徐々に変化する発磁体を形成させることができる。
It is also possible to gradually change the magnetization direction at the circumferential position of the magnet to form a unidirectional magnetic field in the central gap. In order to gradually change the magnetization direction at the circumferential position, a plurality of trapezoidal permanent magnet blocks having different magnetization directions are sequentially shifted in magnetization direction and combined in the circumferential direction to form a cylinder, or a rubber magnet is used. The magnetized body whose magnetization direction is gradually changed can be formed by separating one portion of the cylindrical body magnetized in the direction, and inverting the cylindrical body so that the inner peripheral surface is on the outside, and returning the cylindrical body to the cylindrical shape.

【0009】[0009]

【発明の実施の形態】これを図に示す実施例について詳
述する。図1および図2において、1は回転軸、2は筒
状の発磁体で、中心軸心に対して垂直方向に均等な一方
向の磁界Bを発生するように着磁させた永久磁石(矢印
は磁化方向を示す)、3はこの発磁体2を取り付けた支
持板で、回転軸1に固着させている。4は前記発磁体2
の筒状内側の空隙、5a、5b、5c、5dは磁界検出
素子で、前記空隙4内に相互に90度の位相差で配置さ
れている。6は磁界検出素子の取付座、7は取付座6の
支持板である。なお、磁界検出素子への給電回路や出力
信号の配線および信号処理回路などは省略している。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 and 2, reference numeral 1 denotes a rotating shaft, 2 denotes a cylindrical magnet, and a permanent magnet (arrow indicated by an arrow) is magnetized so as to generate a uniform magnetic field B in a direction perpendicular to the center axis. Indicates the direction of magnetization. Reference numeral 3 denotes a support plate to which the magnetizing member 2 is attached, which is fixed to the rotating shaft 1. 4 is the magnetizing body 2
The gaps 5a, 5b, 5c, and 5d on the inner side of the cylinder are magnetic field detecting elements, and are arranged in the gap 4 with a phase difference of 90 degrees from each other. Reference numeral 6 denotes a mounting seat for the magnetic field detecting element, and reference numeral 7 denotes a support plate for the mounting seat 6. In addition, a power supply circuit to the magnetic field detection element, a wiring of an output signal, a signal processing circuit, and the like are omitted.

【0010】磁界Bは発磁体2を2極着磁して、軸心に
対して垂直方向に均等な一方向に設けられており、空隙
4内では全域で均一な平行磁界を形成している。このた
め、磁界検出素子5a、5b、5c、5dが空隙4内の
中心から外れて偏心しても1回転で各磁界検出素子に1
周期の全く等しい波形の良質な正弦波出力信号を得るこ
とができ、発磁体2との関係位置を正確に保持させる必
要がなく、高い組立精度を必要としないので製作が容易
になる。
A magnetic field B is provided in one uniform direction perpendicular to the axis by magnetizing the magnetizing body 2 in two poles, and forms a uniform parallel magnetic field in the entire space in the air gap 4. . Therefore, even if the magnetic field detecting elements 5a, 5b, 5c, and 5d deviate from the center of the gap 4, one magnetic field is applied to each magnetic field detecting element.
A high-quality sine-wave output signal having a waveform of exactly the same period can be obtained, and it is not necessary to accurately maintain a position related to the magnet 2 and high assembly accuracy is not required, so that the production becomes easy.

【0011】図3および図4は他の実施例で。図1およ
び図2と同じ部分に同一の符号を付しており、図2に示
した実施例における発磁体2の外周に、環状に打ち抜い
たケイ素鋼板を発磁体2の軸方向長さに応じて積層した
筒状の磁性体10を設けて磁気回路を形成している。図
1および図2の実施例では、磁束φが発磁体2の外側空
間を通るため磁気抵抗が大きく、空隙4内の磁界強度が
小さくなっているが、発磁体2の外周に磁性体10を設
けて磁気回路を形成させ、磁束φの磁気抵抗を小さく
し、空隙4内の磁界強度を大きくしている。
3 and 4 show another embodiment. 1 and 2 are denoted by the same reference numerals, and an annularly punched silicon steel plate is formed on the outer periphery of the magnetic body 2 in the embodiment shown in FIG. 2 according to the axial length of the magnetic body 2. A magnetic circuit is formed by providing a stacked cylindrical magnetic body 10. In the embodiment shown in FIGS. 1 and 2, the magnetic flux φ passes through the space outside the magnetic body 2, so that the magnetic resistance is large and the magnetic field strength in the air gap 4 is small. The magnetic circuit is formed to reduce the magnetic resistance of the magnetic flux φ and increase the magnetic field strength in the air gap 4.

【0012】なお、発磁体2を構成する永久磁石は、希
土類系焼結磁石、フェライト系焼結磁石、希土類系ボン
ド磁石、フェライト系ボンド磁石、アルニコ磁石、フェ
ライトゴム磁石などを用いることができる。また、磁性
体10は、ケイ素鋼鉄を発磁体2の周方向に巻回しても
よく、純鉄や軟鋼あるいはアモルファス合金などで筒状
に形成したものでもよい。また、発磁体2に密着させて
一体に取り付け、あるいは僅かな空隙を介して、たとえ
ば図5の実施例に示すようにの支持板7に取り付けて配
置させることもできる。
The permanent magnet forming the magnet 2 may be a rare earth sintered magnet, a ferrite sintered magnet, a rare earth bonded magnet, a ferrite bonded magnet, an alnico magnet, a ferrite rubber magnet, or the like. The magnetic body 10 may be formed by winding silicon steel in the circumferential direction of the magnetic body 2, or may be formed of pure iron, mild steel, an amorphous alloy, or the like in a cylindrical shape. Further, it may be attached to the magnet body 2 in close contact with the magnetic body 2 or may be attached to a support plate 7 as shown in the embodiment of FIG.

【0013】図6は、発磁体2の異なる例を示すもの
で、筒状磁性体の左右両側の磁化方向を、対称的にそれ
ぞれ周方向位置で順次に(図ではそれぞれ8カ所の磁化
方向を示している)徐々に変化させて、中央の空隙4内
に一方向の磁界Bを形成させた永久磁石で構成されてい
る。
FIG. 6 shows a different example of the magnetic field generator 2. The magnetization directions on the left and right sides of the cylindrical magnetic body are sequentially symmetrically arranged at circumferential positions (in the figure, eight magnetization directions are respectively shown). (Shown), and is constituted by a permanent magnet which gradually changes to form a magnetic field B in one direction in the central gap 4.

【0014】また、図7は別の構成の発磁体で、それぞ
れに磁化方向が異なる台形の永久磁石ブロック8を8個
そなえ、平行な辺に対して磁化方向が垂直になるブロッ
クから、両側に順次磁化方向を90度ずらせたブロック
を隣り合わせるように周方向に組み合わせて接合させ、
中央の空隙4内に一方向の磁界Bを形成させるようにし
ている。なお、永久磁石ブロックの数は8個に限られる
ものではなく、このような磁石の構成は特開平9−90
009号に示されているものと同様である。
FIG. 7 shows a magnetic field generator having another configuration, which has eight trapezoidal permanent magnet blocks 8 each having a different magnetization direction, and a block whose magnetization direction is perpendicular to a parallel side. Blocks whose magnetization directions are sequentially shifted by 90 degrees are joined together in the circumferential direction so that they are adjacent to each other,
A unidirectional magnetic field B is formed in the central gap 4. The number of permanent magnet blocks is not limited to eight, and the configuration of such a magnet is disclosed in Japanese Patent Laid-Open No. 9-90.
It is the same as that shown in No. 009.

【0015】図8は、さらに別の発磁体2とその製作工
程を示すもので、まず、図8(a)に示すように、所要
の筒状に形成したゴム磁石の全体を径方向に2極着磁し
て発磁体2を形成する。このゴム磁石からなる発磁体2
は、そのままで図2などと同様に用いることができる
が、任意の1カ所を切断部9で半径方向に切り離し、こ
の切断部9により図8(b)のように離開させると、内
側が引き延ばされ外側が圧縮されるため、切断部9に対
する磁化方向の関係が順次に変化する。さらに両端を矢
印9aの方向に図8(c)で示すように開き、続けて矢
印9bの方向に内周面が外周になるように反転させて湾
曲させ、図8(d)の状態を経てさらに矢印9c方向に
曲げ、両端の切断部9を接合させて図8(e)に示すよ
うに、筒状に戻すと周方向位置の磁化方向が徐々に変化
して中央の空隙4に一方向の磁界Bをそなえた発磁体2
を形成させる。なお、切断部9は半径方向でなく、斜め
方向に切断してもよい。
FIG. 8 shows still another magnetizing body 2 and its manufacturing process. First, as shown in FIG. 8 (a), the entire rubber magnet formed in a required cylindrical shape is radially moved by 2 mm. The magnetized body 2 is formed by polar magnetization. Magnet 2 made of this rubber magnet
Can be used as it is in the same manner as in FIG. 2 and the like, but if one arbitrary portion is cut in the radial direction by the cutting portion 9 and separated by the cutting portion 9 as shown in FIG. Since it is extended and the outside is compressed, the relationship of the magnetization direction to the cut portion 9 changes sequentially. Further, both ends are opened in the direction of arrow 9a as shown in FIG. 8 (c), and then continuously turned and curved in the direction of arrow 9b so that the inner peripheral surface becomes the outer periphery, via the state of FIG. 8 (d). Further, when bending in the direction of the arrow 9c and joining the cut portions 9 at both ends to return to a cylindrical shape as shown in FIG. 8 (e), the magnetization direction at the circumferential position gradually changes, and one direction is formed in the central gap 4. Magnet 2 with magnetic field B
Is formed. The cutting portion 9 may be cut not in the radial direction but in an oblique direction.

【0016】[0016]

【実施例】(実施例1)外径40mm、内径20mm、
軸方向長さ10mmに形成した筒状のNd−Fe−B系
ボンド磁石(Br=7.3kG、(BH)max=11
MGOe) からなる永久磁石に径方向に2極の着磁を
行い、中心軸に対して垂直方向に均等な一方向の磁界を
発生させた発磁体2を作成し、その外周に外径60m
m、内径40mmのケイ素鋼板を積層した磁性体10を
設けて磁気回路を構成させ、空隙4内の磁界を測定した
ところ、0.25T の均一な磁界強度が確認された。こ
の空隙4内に図4のように磁界検出素子5a、5b、5
c、5d(ホール素子)を配置し、発磁体2を磁性体1
0とともに回転させ、回転角による磁界の変化を検出し
た結果、図9に示すように、極めて良質な正弦波信号を
得ることができた。
(Example 1) Outer diameter 40 mm, inner diameter 20 mm,
A cylindrical Nd—Fe—B-based bonded magnet formed with a length of 10 mm in the axial direction (Br = 7.3 kG, (BH) max = 11)
A permanent magnet made of MGOe) is magnetized with two poles in the radial direction to generate a uniform magnetic field in one direction perpendicular to the central axis to produce a magnetized body 2 having an outer diameter of 60 m on its outer periphery.
When a magnetic circuit 10 was formed by laminating a silicon steel plate having a diameter of 40 mm and an inner diameter of 40 mm to form a magnetic circuit, and the magnetic field in the gap 4 was measured, a uniform magnetic field strength of 0.25T was confirmed. As shown in FIG. 4, the magnetic field detecting elements 5a, 5b, 5
c, 5d (Hall element) are arranged,
As a result of detecting the change of the magnetic field due to the rotation angle by rotating together with 0, a very high quality sine wave signal was obtained as shown in FIG.

【0017】(実施例2)外径40mm、内径20m
m、軸方向長さ10mmのNd−Fe−B系焼結磁石
(Br=11.9kG、(BH)max=35MGO
e) を用いて実施例1と同様に実験した結果、空隙内
の磁界強度は0.44T で、磁界の変化も同様に極めて
良質な正弦波信号を得られた。
(Example 2) Outer diameter 40 mm, inner diameter 20 m
m, Nd-Fe-B-based sintered magnet having an axial length of 10 mm (Br = 11.9 kG, (BH) max = 35 MGO
As a result of performing an experiment in the same manner as in Example 1 using e), the magnetic field intensity in the air gap was 0.44 T, and a very good quality sine wave signal was obtained with the same change in the magnetic field.

【0018】(実施例3)外径42mm、内径10m
m、軸方向長さ10mmの筒状にしたフェライトゴム磁
石(Br=1.5kG、(BH)max=0.5MGO
e)に径方向に2極着磁を行って発磁体2を形成し、そ
の外周に外径13mm、内径12mmのリング状純鉄を
配置して空隙内の磁界を測定したところ、0.020T
の磁界強度が得られ、空隙4内に磁気抵抗素子(MR素
子)を配置して磁界の変化を検出した結果、良好な正弦
波信号が得られた。
(Example 3) Outer diameter 42 mm, inner diameter 10 m
m, cylindrical ferrite rubber magnet having a length of 10 mm in the axial direction (Br = 1.5 kG, (BH) max = 0.5MGO
e) Two-pole magnetization was performed in the radial direction to form a magnetized body 2. A ring-shaped pure iron having an outer diameter of 13 mm and an inner diameter of 12 mm was arranged on the outer periphery of the magnetized body 2 and the magnetic field in the gap was measured.
As a result of detecting a change in the magnetic field by arranging a magnetoresistive element (MR element) in the gap 4, a good sine wave signal was obtained.

【0019】(実施例4)台形に形成したNd−Fe−
B系焼結磁石(Br=11.7kG、iHc=22kO
e、(BH)max=32MGOe)からなる永久磁石
ブロック8個を、図7に示すように構成して、外径72
mm、内径24mm、長さ72mmの筒状の発磁体2を
作成した。この筒状発磁体の空隙内には、1.1T の磁
界が発生し、直径15mm内ではばらつきが0.1% 以
下の均一な磁界Bを形成しており、空隙4内にガウスメ
ータの検出プローブ(ホール素子)を配置し、発磁体2
を回転させて回転角による磁界の変化を検出した結果、
極めて良質な正弦波信号を得ることができた。
(Embodiment 4) Nd-Fe-
B-based sintered magnet (Br = 11.7 kG, iHc = 22 kO)
e, (BH) max = 32MGOe), eight permanent magnet blocks are configured as shown in FIG.
A cylindrical magnet 2 having a diameter of 24 mm, an inner diameter of 24 mm and a length of 72 mm was prepared. A magnetic field of 1.1 T is generated in the gap of the cylindrical magnet, and a uniform magnetic field B having a variation of 0.1% or less is formed within a diameter of 15 mm. (Hall element) and magnetizing element 2
As a result of detecting the change in the magnetic field due to the rotation angle by rotating
An extremely high quality sine wave signal was obtained.

【0020】(実施例5)幅10mm、厚さ1mm、長
さ35mmのフェライトゴム磁石(Br=1.5kg、
iHe=2.4kGe、(BH)max=0.5MGO
e)を使用して外径12mm、内径10mmの筒状に形
成し、図8の方法により、着磁後に反転させた発磁体2
を作成した。この発磁体2の空隙4内に発生する磁界B
を測定したところ、0.024T の値が得られ、均一性
は実施例4の場合と同様であった。この発磁体2を用い
て、空隙4内にホール素子を用いたガウスメータを磁界
検出素子として用い、回転角度による検出信号を測定し
た結果の特性図を図10に示している。この特性図から
明らかなように、磁界検出素子が偏心しても極めて良質
な正弦波信号が得られており、さらに大きく偏心しても
正弦波信号の振幅強度や波形などはほとんど変化がな
く、高い組立精度を必要としないことが明らかである。
Example 5 A ferrite rubber magnet having a width of 10 mm, a thickness of 1 mm, and a length of 35 mm (Br = 1.5 kg,
iHe = 2.4 kGe, (BH) max = 0.5 MGO
e) The magnetizing body 2 formed into a cylindrical shape having an outer diameter of 12 mm and an inner diameter of 10 mm using the method shown in FIG.
It was created. The magnetic field B generated in the gap 4 of the magnet 2
Was measured, a value of 0.024T was obtained, and the uniformity was the same as in Example 4. FIG. 10 shows a characteristic diagram of a result obtained by measuring a detection signal depending on a rotation angle by using the magnetic field generating element 2 and a Gauss meter using a Hall element in the gap 4 as a magnetic field detecting element. As is clear from this characteristic diagram, a very good sine wave signal is obtained even if the magnetic field detecting element is eccentric, and the amplitude intensity and waveform of the sine wave signal hardly change even if the magnetic field detecting element is further eccentric, and high assembly is achieved. Obviously, no accuracy is required.

【0021】なお、比較するため、図11に示すよう
に、同じ材質のフェライトゴム磁石をリング状にして外
周面に多極着磁を施した磁気ドラム25と、その外周面
に対向する磁気センサ26を設けたエンコーダを作成し
た。このエンコーダで試験を行った結果、回転角度と検
出信号との特性図は、図12に示すように磁界検出素子
の僅かな偏心で検出信号のゆらぎを生じている。
For comparison, as shown in FIG. 11, a magnetic drum 25 in which a ferrite rubber magnet of the same material is formed into a ring shape and multi-polarized on the outer peripheral surface, and a magnetic sensor opposed to the outer peripheral surface The encoder provided with 26 was created. As a result of a test performed with this encoder, in the characteristic diagram of the rotation angle and the detection signal, the detection signal fluctuates due to slight eccentricity of the magnetic field detection element as shown in FIG.

【0022】(実施例6)実施例5における発磁体と、
磁界検出素子としてMR素子を採用し、てい倍回路を含
む演算処理回路をそなえた2048P/Rのインクリメ
ンタル磁気式エンコーダを構成した結果、外径15m
m、長さ25mmの小形にすることができ、図11のよ
うに外周に多極着磁した磁気ドラムとその外側に磁気抵
抗効果素子を配置した磁気ドラム式エンコーダの約半分
の大きさにすることができ、組立精度の偏心の影響も実
施例5と同様に良好な結果を得ることができた。
(Embodiment 6)
As a result of configuring an incremental magnetic encoder of 2048P / R which employs an MR element as a magnetic field detecting element and has an arithmetic processing circuit including a multiplication circuit, the outer diameter is 15m.
m and a length of 25 mm, which is approximately half the size of a magnetic drum encoder having a multi-polarized magnetic drum on the outer periphery and a magnetoresistive element disposed outside thereof as shown in FIG. As a result, good results were obtained as in Example 5 with respect to the influence of the eccentricity of the assembly accuracy.

【0023】[0023]

【発明の効果】このように本発明は、発磁体を筒状に形
成し、その中心軸に対して垂直方向に均等な一方向の磁
界を発生させ、前記発磁体内側の空隙内に所定の角位相
差で複数個の磁界検出素子を配置しているので、磁界検
出素子を空隙内の中央に正確に配置する必要がなく、高
い組立精度を必要とせず製作が容易になり、磁界検出素
子が発磁体の内側に収納され、小形に構成することがで
き、回転部分の慣性を小さくできるなどの効果が得られ
る。
As described above, according to the present invention, the magnet is formed in a cylindrical shape, and a magnetic field is generated in one direction which is uniform in the direction perpendicular to the center axis of the magnet. Since a plurality of magnetic field detecting elements are arranged with an angular phase difference, there is no need to accurately arrange the magnetic field detecting element in the center of the air gap. Are housed inside the magnetizing body, and can be formed in a small size, and effects such as the inertia of the rotating portion can be reduced.

【0024】なお、発磁体の外周を囲む軟磁性体をそな
えて磁気回路を形成することによって、発磁体の空隙内
における磁界強度を大きくし、検出精度を向上させるこ
とができる。また、発磁体の磁化方向を周方向位置で徐
々に変化させ、中央の空隙に一方向の磁界を形成する筒
状体にして用いることにより、空隙内の磁界を強め方向
性を良好に保持させることができる。また、一方向に着
磁した筒状のゴム磁石を反転させることにより、磁化方
向が徐々に変化する発磁体を簡易に得られる効果があ
る。
By forming a magnetic circuit with a soft magnetic material surrounding the outer periphery of the magnet, the strength of the magnetic field in the air gap of the magnet can be increased and the detection accuracy can be improved. In addition, by gradually changing the magnetization direction of the magnetized body at the circumferential position and using a cylindrical body that forms a magnetic field in one direction in the center gap, the magnetic field in the gap is strengthened and the directionality is maintained well. be able to. Further, by inverting the cylindrical rubber magnet magnetized in one direction, there is an effect that a magnetized body whose magnetization direction gradually changes can be easily obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例の要部を示す側断面図である。FIG. 1 is a side sectional view showing a main part of an embodiment of the present invention.

【図2】図1のA−A線に沿う断面図である。FIG. 2 is a sectional view taken along line AA of FIG.

【図3】別の実施例の要部を示す側断面図である。FIG. 3 is a side sectional view showing a main part of another embodiment.

【図4】図3の中央部断面図である。FIG. 4 is a cross-sectional view at the center of FIG. 3;

【図5】他の実施例の要部を示す側断面図である。FIG. 5 is a side sectional view showing a main part of another embodiment.

【図6】発磁体の異なる例を示す正面図である。FIG. 6 is a front view showing a different example of the magnetic body.

【図7】別の発磁体の例を示す正面図である。FIG. 7 is a front view showing an example of another magnetizing body.

【図8】さらに別の発磁体とその製作過程を示す説明図
である。
FIG. 8 is an explanatory view showing still another magnetizing body and a manufacturing process thereof.

【図9】本発明によるエンコーダの例における出力信号
の特性曲線図である。
FIG. 9 is a characteristic curve diagram of an output signal in the example of the encoder according to the present invention.

【図10】他の実施例における出力信号の特性曲線図で
ある。
FIG. 10 is a characteristic curve diagram of an output signal in another embodiment.

【図11】磁気ドラム形の例を簡略に示す斜視図であ
る。
FIG. 11 is a perspective view schematically showing an example of a magnetic drum type.

【図12】図11の例における偏心した場合の出力信号
の特性曲線図である。
12 is a characteristic curve diagram of an output signal in the case of eccentricity in the example of FIG.

【図13】従来の例を示す斜視図である。FIG. 13 is a perspective view showing a conventional example.

【図14】従来の例における偏心した状態を示す説明図
である。
FIG. 14 is an explanatory diagram showing an eccentric state in a conventional example.

【符号の説明】[Explanation of symbols]

1 回転軸 2 発磁体 3 支持板 4 空隙 5a、5b、5c、5d 磁界検出素子 6 取付座 8 永久磁石ブロック 9 切断部 10 磁性体 REFERENCE SIGNS LIST 1 rotating shaft 2 magnetizing body 3 support plate 4 gap 5a, 5b, 5c, 5d magnetic field detecting element 6 mounting seat 8 permanent magnet block 9 cutting section 10 magnetic body

───────────────────────────────────────────────────── フロントページの続き (72)発明者 松崎 一成 福岡県北九州市八幡西区黒崎城石2番1号 株式会社安川電機内 Fターム(参考) 2F077 AA47 CC02 JJ02 JJ07 JJ23 NN17 NN24 PP05 QQ02 VV01 VV11  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Kazunari Matsuzaki 2-1 Kurosaki Castle Stone, Yawatanishi-ku, Kitakyushu-shi, Fukuoka F-term (reference) 2F077 AA47 CC02 JJ02 JJ07 JJ23 NN17 NN24 PP05 QQ02 VV01 VV11

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 発磁体による磁界内に磁界検出素子を設
け、発磁体と磁界検出素子との相対的な回転による磁界
検出素子からの出力信号を処理する磁気式エンコーダに
おいて、前記発磁体を筒状に形成し、その中心軸に対し
て垂直方向に均等な一方向の磁界を発生させ、前記発磁
体の空隙内に所定の角位相差で磁界検出素子を配置した
ことを特徴とする磁気式エンコーダ。
1. A magnetic encoder for providing a magnetic field detecting element in a magnetic field generated by a magnetic body and processing an output signal from the magnetic field detecting element due to a relative rotation between the magnetic body and the magnetic field detecting element. A magnetic field, wherein a magnetic field in one direction is generated in a direction perpendicular to the center axis of the magnetic field, and a magnetic field detecting element is arranged with a predetermined angular phase difference in a gap of the magnet. Encoder.
【請求項2】 前記発磁体が、筒状の永久磁石からな
り、一方向に着磁されている請求項1に記載した磁気式
エンコーダ。
2. The magnetic encoder according to claim 1, wherein the magnetizing body is formed of a cylindrical permanent magnet and is magnetized in one direction.
【請求項3】 前記発磁体の外周に、磁気回路を形成す
る筒状の磁性体をそなえた請求項1また2の磁気式エン
コーダ。
3. The magnetic encoder according to claim 1, further comprising a cylindrical magnetic body forming a magnetic circuit on an outer periphery of said magnetic body.
【請求項4】 前記発磁体が、周方向位置の磁化方向が
徐々に変化して、空隙内に一方向の磁界を形成している
請求項1の磁気式エンコーダ。
4. The magnetic encoder according to claim 1, wherein the magnetizing body forms a magnetic field in one direction in a gap by gradually changing a magnetization direction at a circumferential position.
【請求項5】 前記発磁体が、台形にした複数の永久磁
石ブロックを、短辺を内側にし、磁化方向を順次に異な
らせて筒状に組み合わせ、中央の空隙内に一方向の磁界
を形成するようにした請求項4の磁気式エンコーダ。
5. A magnetic body in which a plurality of trapezoidal permanent magnet blocks are combined in a cylindrical shape with the short sides inside and the magnetization directions are sequentially changed to form a unidirectional magnetic field in a central gap. The magnetic encoder according to claim 4, wherein
【請求項6】 前記発磁体が、筒状のゴム磁石を一方向
の磁界を発生するように着磁した後、1カ所を切り離し
て内周面が外側になるように反転させて筒状に戻すこと
により、磁化方向が徐々に変化して一方向の磁界を形成
させた請求項4の磁気式エンコーダ。
6. The magnetizing member magnetizes a cylindrical rubber magnet so as to generate a magnetic field in one direction, and then cuts one portion and inverts the inner peripheral surface to the outside to form a cylindrical shape. 5. The magnetic encoder according to claim 4, wherein the return causes the magnetization direction to gradually change to form a magnetic field in one direction.
JP2001028372A 2000-12-14 2001-02-05 Magnetic encoder Expired - Fee Related JP4304869B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2001028372A JP4304869B2 (en) 2001-02-05 2001-02-05 Magnetic encoder
TW090130428A TW528856B (en) 2000-12-14 2001-12-07 Magnetic type encoder
PCT/JP2001/010816 WO2002048652A1 (en) 2000-12-14 2001-12-10 Magnetic encoder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001028372A JP4304869B2 (en) 2001-02-05 2001-02-05 Magnetic encoder

Publications (2)

Publication Number Publication Date
JP2002228486A true JP2002228486A (en) 2002-08-14
JP4304869B2 JP4304869B2 (en) 2009-07-29

Family

ID=18892881

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001028372A Expired - Fee Related JP4304869B2 (en) 2000-12-14 2001-02-05 Magnetic encoder

Country Status (1)

Country Link
JP (1) JP4304869B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005124285A1 (en) * 2004-06-16 2005-12-29 Kabushiki Kaisha Yaskawa Denki Magnetic encoder device
JP2007256250A (en) * 2006-02-23 2007-10-04 Denso Corp Rotation angle detecting device
JP2008233090A (en) * 2007-03-22 2008-10-02 Tyco Electronics Amp Gmbh Indicating element and magnetic rotation angle sensor
JP2009133794A (en) * 2007-12-03 2009-06-18 Yaskawa Electric Corp Magnetic encoder
US20100072830A1 (en) * 2008-09-25 2010-03-25 Nti Ag Apparatus for determination of the axial position of the armature of a linear motor
JP2015038527A (en) * 2011-10-28 2015-02-26 ピーエス特機株式会社 Position detector
US11549830B2 (en) 2007-05-30 2023-01-10 Infineon Technologies Ag Shaft-integrated angle sensing device
DE102016009006B4 (en) 2015-07-29 2024-01-25 Infineon Technologies Ag DRIVE TRAIN OF A MOTOR VEHICLE SYSTEM HAVING A SHAFT-INTEGRATED ANGLE SCANNING DEVICE

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6175213A (en) * 1984-09-20 1986-04-17 Graphtec Corp Angle detector
JPH05157506A (en) * 1991-12-04 1993-06-22 Nippondenso Co Ltd Throttle position sensor
JPH10132506A (en) * 1996-10-30 1998-05-22 Denso Corp Rotation angle sensor
JPH11237257A (en) * 1998-02-20 1999-08-31 Yaskawa Electric Corp Magnetic encoder and its manufacture
JP2001004315A (en) * 1999-06-17 2001-01-12 Denso Corp Apparatus for detecting angle of rotation

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6175213A (en) * 1984-09-20 1986-04-17 Graphtec Corp Angle detector
JPH05157506A (en) * 1991-12-04 1993-06-22 Nippondenso Co Ltd Throttle position sensor
JPH10132506A (en) * 1996-10-30 1998-05-22 Denso Corp Rotation angle sensor
JPH11237257A (en) * 1998-02-20 1999-08-31 Yaskawa Electric Corp Magnetic encoder and its manufacture
JP2001004315A (en) * 1999-06-17 2001-01-12 Denso Corp Apparatus for detecting angle of rotation

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2005124285A1 (en) * 2004-06-16 2008-04-10 株式会社安川電機 Magnetic encoder device
US7595635B2 (en) 2004-06-16 2009-09-29 Kabushiki Kaisha Yaskawa Denki Small size magnetic encoder unit with low power consumption
WO2005124285A1 (en) * 2004-06-16 2005-12-29 Kabushiki Kaisha Yaskawa Denki Magnetic encoder device
JP4678371B2 (en) * 2004-06-16 2011-04-27 株式会社安川電機 Magnetic encoder device
JP2007256250A (en) * 2006-02-23 2007-10-04 Denso Corp Rotation angle detecting device
JP4607049B2 (en) * 2006-02-23 2011-01-05 株式会社デンソー Rotation angle detector
DE102007013755B4 (en) * 2007-03-22 2020-10-29 Te Connectivity Germany Gmbh Indicator element for a magnetic rotary encoder
JP2008233090A (en) * 2007-03-22 2008-10-02 Tyco Electronics Amp Gmbh Indicating element and magnetic rotation angle sensor
US11549830B2 (en) 2007-05-30 2023-01-10 Infineon Technologies Ag Shaft-integrated angle sensing device
JP2009133794A (en) * 2007-12-03 2009-06-18 Yaskawa Electric Corp Magnetic encoder
US20100072830A1 (en) * 2008-09-25 2010-03-25 Nti Ag Apparatus for determination of the axial position of the armature of a linear motor
US8547083B2 (en) * 2008-09-25 2013-10-01 Nti Ag Apparatus for determination of the axial position of the armature of a linear motor
JP2015038527A (en) * 2011-10-28 2015-02-26 ピーエス特機株式会社 Position detector
DE102016009006B4 (en) 2015-07-29 2024-01-25 Infineon Technologies Ag DRIVE TRAIN OF A MOTOR VEHICLE SYSTEM HAVING A SHAFT-INTEGRATED ANGLE SCANNING DEVICE

Also Published As

Publication number Publication date
JP4304869B2 (en) 2009-07-29

Similar Documents

Publication Publication Date Title
CN100510641C (en) Magnetic encoder device and actuator
JPH05153744A (en) Permanent magnet field type rotor
JP2009534637A (en) Magnetic rotation angle generator
JPH09159684A (en) Magnetic rotary detection device
TW201403032A (en) Magnetic rotation angle detector
JPH08136558A (en) Rotational speed detector
US5057727A (en) Shaft position sensor employing a wiegand-effect device
JP4304869B2 (en) Magnetic encoder
JP2008086166A (en) Motor for driving sewing machine
JP2023123781A (en) Rotation detection device
JP2012010571A (en) Magnet rotor for rotary electric machine, manufacturing method of the same, and inner rotor type motor
JP2002310609A (en) Rotation angle detector
JPH048926B2 (en)
JP2007221877A (en) Magnet rotor
JPS6349948Y2 (en)
WO2020195003A1 (en) Motor
JP2000092805A (en) Servo motor
US4914334A (en) Permanent magnet DC machine
US20180226862A1 (en) Rotational position detection device and motor device
TW528856B (en) Magnetic type encoder
WO2023276488A1 (en) Rotation detector
JP2002199669A (en) Magnetizing method for permanent magnet
JP2004120817A (en) Rotor and manufacturing method thereof
JPH05252711A (en) Resolver
JP2006308371A (en) Noncontact rotary displacement sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090407

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090420

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120515

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130515

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140515

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees