WO2023276488A1 - Rotation detector - Google Patents

Rotation detector Download PDF

Info

Publication number
WO2023276488A1
WO2023276488A1 PCT/JP2022/021057 JP2022021057W WO2023276488A1 WO 2023276488 A1 WO2023276488 A1 WO 2023276488A1 JP 2022021057 W JP2022021057 W JP 2022021057W WO 2023276488 A1 WO2023276488 A1 WO 2023276488A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotation axis
magnets
pair
rotation
edge
Prior art date
Application number
PCT/JP2022/021057
Other languages
French (fr)
Japanese (ja)
Inventor
智行 村西
優紀 田中
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to CN202280042574.8A priority Critical patent/CN117501072A/en
Priority to JP2023531708A priority patent/JPWO2023276488A1/ja
Publication of WO2023276488A1 publication Critical patent/WO2023276488A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/244Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
    • G01D5/245Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains using a variable number of pulses in a train

Definitions

  • the present disclosure relates to a rotation detector, and more particularly to a rotation detector that detects rotation of a rotating shaft.
  • Patent Literature 1 discloses a disk-shaped magnet provided on a shaft, and three power generation units each composed of a magnetic wire and a pickup coil. A rotation detector is disclosed that is positioned on each side of a virtual triangle.
  • Patent Document 1 has a problem that the distribution of the magnetic flux density in the longitudinal direction of the power generation section tends to be biased, making it difficult to generate power appropriately.
  • the present disclosure has been made to solve such problems, and aims to provide a rotation detector that facilitates appropriate power generation of the power generation element.
  • a rotation detector includes a pair of magnets that rotate together with a rotating shaft, and a power generation element that generates power by a change in magnetic field caused by the rotation of the pair of magnets together with the rotating shaft.
  • the pair of magnets are spaced apart in a first orthogonal direction that sandwiches the rotation axis of the rotation shaft and is perpendicular to the rotation axis, and satisfies (1) or (2) below.
  • (1) The north and south poles of each of the pair of magnets are aligned in the first orthogonal direction such that the north pole is positioned on one side in the first orthogonal direction.
  • the north and south poles of one of the pair of magnets are aligned in the direction of the rotation axis such that the north pole is positioned on one side in the direction of the rotation axis, and the north pole of the other of the pair of magnets is aligned in the direction of the rotation axis.
  • the pole and the south pole are aligned in the direction of the rotation axis such that the north pole is located on the other side in the direction of the rotation axis.
  • FIG. 1 is a diagram showing a motor provided with a rotation detector according to the first embodiment.
  • 2 is a diagram showing the rotation detector of FIG. 1;
  • FIG. 3 is a diagram showing a pair of magnets of the rotation detector of FIG. 1;
  • FIG. 4 is a diagram showing the relationship between the rotational position of a pair of magnets and the distribution of magnetic flux density in the longitudinal direction of the power generation element.
  • FIG. 5 is a diagram showing the relationship between the rotational position of a pair of magnets and the distribution of magnetic flux density in the longitudinal direction of the power generation element.
  • FIG. 6 is a diagram showing the relationship between the rotational position of a pair of magnets and the distribution of magnetic flux density in the longitudinal direction of the power generation element.
  • FIG. 7 is a diagram showing a rotation detector according to the second embodiment.
  • FIG. 8 is a diagram showing a rotation detector according to the third embodiment.
  • FIG. 9 is a diagram showing a rotation detector according to the fourth embodiment.
  • FIG. 10 is a diagram showing a rotation detector according to the fifth embodiment.
  • FIG. 11 is a diagram showing a rotation detector according to the sixth embodiment.
  • FIG. 12 is a diagram showing a rotation detector according to the seventh embodiment.
  • FIG. 13A is a diagram showing another example of a magnet;
  • FIG. 13B is a diagram showing still another example of a magnet;
  • FIG. 14A is a diagram showing still another example of a magnet;
  • FIG. 14B is a diagram showing still another example of a magnet;
  • each figure is a schematic diagram and is not necessarily strictly illustrated.
  • symbol is attached
  • FIG. 1 shows a motor 1 having a rotation detector 14 according to the first embodiment.
  • FIG. 2 is a diagram showing the rotation detector 14 of FIG.
  • FIG. 3 is a diagram showing a pair of magnets 20, 22 of rotation detector 14 of FIG. Note that FIG. 1 shows the case 12 and the pair of magnets 20 and 22 in cross section. Further, in FIG. 1, illustration of the power generation element 26 and the control circuit 28 is omitted.
  • the motor 1 includes a main body 4, a rotor 6, a stator 8, a rotating shaft 10, a case 12, and a rotation detector 14.
  • the rotation axis direction is the direction in which the rotation axis A of the rotating shaft 10 extends (the direction indicated by arrow X in FIG. 1).
  • the rotor 6 and stator 8 are housed in the main body 4. Rotor 6 rotates with respect to stator 8 .
  • the rotating shaft 10 extends in the direction of the rotation axis and has a rod shape such as a columnar shape.
  • the axis of the rotating shaft 10 and the rotation axis A are aligned.
  • the rotating shaft 10 is fixed to the rotor 6 and rotates about the rotation axis A.
  • the direction of rotation of the rotating shaft 10 (the direction indicated by the arrow Z in FIG. 2) coincides with the circumferential direction about the axis of rotation A.
  • a rotation detector 14 is provided at one end of the rotating shaft 10 in the rotation axis direction.
  • a load (not shown) or the like that is rotationally driven by the rotation of the rotating shaft 10 is attached to the other end of the rotating shaft 10 in the rotation axis direction.
  • the rotating shaft 10 is made of magnetic metal such as iron.
  • the case 12 is attached to the main body 4 so as to cover one end of the rotating shaft 10 in the rotation axis direction and the rotation detector 14 .
  • the case 12 is made of magnetic metal such as iron.
  • the rotation detector 14 detects rotation of the rotating shaft 10 .
  • the rotation detector 14 detects the rotational position of the rotating shaft 10, the rotating direction of the rotating shaft 10, the rotation speed of the rotating shaft 10, and the like.
  • rotation detector 14 is an absolute encoder.
  • the rotation detector 14 is provided at one end of the rotation shaft 10 in the direction of the rotation axis, as described above. As shown in FIGS. 1 and 2, the rotation detector 14 has a rotating plate 16, a substrate 18, a pair of magnets 20 and 22, a plurality of power generation elements 24 and 26, and a control circuit 28. there is
  • the rotating plate 16 extends in a direction orthogonal to the rotation axis direction.
  • the rotating plate 16 has a disc shape having a main surface extending in a direction orthogonal to the rotation axis direction, and is circular when viewed from the rotation axis direction.
  • the rotating plate 16 is attached to one end of the rotating shaft 10 in the rotation axis direction.
  • the axis of the rotary plate 16 and the rotation axis A are aligned. The rotating plate 16 rotates together with the rotating shaft 10 .
  • the substrate 18 extends in a direction orthogonal to the rotation axis direction.
  • the substrate 18 has a disc shape having a main surface perpendicular to the rotation axis direction, and is circular when viewed from the rotation axis direction.
  • the substrate 18 is arranged to be spaced apart from one end of the rotating shaft 10 and the rotating plate 16 in the rotation axis direction, and faces the rotating plate 16 .
  • the axis of the substrate 18 and the rotation axis A are aligned.
  • the substrate 18 is fixed to the inner surface of the case 12 and does not rotate.
  • a pair of magnets 20 and 22 rotate together with the rotating shaft 10 .
  • the pair of magnets 20 and 22 rotate together with the rotating shaft 10 and the rotating plate 16 when the rotating shaft 10 rotates.
  • a pair of magnets 20 , 22 are arranged on the main surface of the rotating plate 16 facing away from the substrate 18 .
  • the pair of magnets 20 and 22 are arranged at positions separated from the plurality of power generation elements 24 and 26 in the rotation axis direction.
  • the pair of magnets 20 and 22 overlap the substrate 18 when viewed from the rotation axis direction.
  • the pair of magnets 20 and 22 are arranged with a gap in a first orthogonal direction (the direction indicated by arrow B in FIG. 2) sandwiching the rotation axis A of the rotation shaft 10 and orthogonal to the rotation axis A. That is, the rotation axis A of the rotation shaft 10 is located between the pair of magnets 20 and 22, forming a space.
  • each of the pair of magnets 20 and 22 are arranged in the first orthogonal direction so that the north pole is positioned on one side in the first orthogonal direction. That is, each of the pair of magnets 20 and 22 is magnetized in the first orthogonal direction.
  • the N pole and S pole of the magnet 20 are arranged in the first orthogonal direction, and the N pole of the magnet 20 is located on one side of the first orthogonal direction relative to the S pole of the magnet 20.
  • the north pole of the magnet 20 is located closer to the axis of rotation A than the south pole of the magnet 20 in the first orthogonal direction.
  • the N pole and S pole of the magnet 22 are arranged in the first orthogonal direction, and the N pole of the magnet 22 is located on one side of the first orthogonal direction relative to the S pole of the magnet 22.
  • the north pole of the magnet 22 is located farther from the axis of rotation A than the south pole of the magnet 22 in the first orthogonal direction.
  • the north and south poles of each of the pair of magnets 20, 22 are aligned in the first orthogonal direction such that the north pole is located in one of the first orthogonal directions. Magnetic fields oriented in one orthogonal direction can be generated (see arrows in FIG. 3).
  • Each of the pair of magnets 20 and 22 is arranged along the rotation direction of the rotating shaft 10 .
  • Each of the pair of magnets 20 and 22 has an arcuate shape along the rotation direction of the rotating shaft 10 .
  • a pair of magnets 20 and 22 are arranged symmetrically with the rotation axis A interposed therebetween.
  • the pair of magnets 20 and 22 have the same shape and are arranged symmetrically in the first orthogonal direction.
  • One ends of the pair of magnets 20 and 22 in a second orthogonal direction (the direction indicated by arrow C in FIG. 2) orthogonal to the rotation axis A and orthogonal to the first orthogonal direction are aligned in a direction parallel to the first orthogonal direction.
  • the magnets 20 and 22 are opposed to each other with a space therebetween, and the other ends of the pair of magnets 20 and 22 in the second orthogonal direction are opposed to each other with a space therebetween in a direction parallel to the first orthogonal direction.
  • Each of the pair of magnets 20 and 22 is plate-shaped with the rotation axis direction as the thickness direction.
  • Each of the pair of magnets 20 and 22 has a main surface on the side of the power generation elements 24 and 26 in the rotation axis direction and a main surface on the side opposite to the power generation elements 24 and 26 in the rotation axis direction.
  • the main surface on the power generation element side in the rotation axis direction of the magnet refers to the main surface facing the rotation axis direction of the magnet and facing toward the power generation element.
  • the main surface on the side opposite to the power generation element in the direction of the rotation axis of the magnet is the main surface facing the direction of the rotation axis of the magnet and facing away from the power generation element.
  • Each of the plurality of power generating elements 24 and 26 generates power by changing the magnetic field caused by the rotation of the pair of magnets 20 and 22 together with the rotating shaft 10 .
  • Each of the plurality of power generation elements 24 and 26 is arranged on the main surface of the substrate 18 facing away from the rotating plate 16 .
  • the plurality of power generation elements 24 and 26 overlap the substrate 18 when viewed from the rotation axis direction.
  • the plurality of power generation elements 24 and 26 are arranged at positions offset from the rotation axis A. That is, the plurality of power generation elements 24 and 26 do not overlap the rotation axis A when viewed from the rotation axis direction.
  • the plurality of power generation elements 24 and 26 are arranged with a phase difference in the rotation direction of the rotating shaft 10 . That is, the plurality of power generation elements 24 and 26 are arranged at mutually different positions in the rotation direction of the rotating shaft 10 .
  • the distance from the rotation axis A to each of the plurality of power generation elements 24 and 26 in the radial direction centered on the rotation axis A is It is approximately equal to the distance to the outer magnetic pole of each magnetic pole. That is, the distance from the rotation axis A to the power generation element 24 in the radial direction is approximately equal to the distance from the rotation axis A to the south pole of the magnet 20, and approximately equal to the distance from the rotation axis A to the north pole of the magnet 22. .
  • the distance from the rotation axis A to the power generating element 26 in the radial direction is approximately equal to the distance from the rotation axis A to the south pole of the magnet 20, and approximately equal to the distance from the rotation axis A to the north pole of the magnet 22. .
  • the power generating element 24 extends tangentially to the rotating direction of the rotating shaft 10 and is arranged on the main surface of the substrate 18 facing away from the rotating shaft 10 (opposite to the rotating plate 16).
  • the power generation element 24 has a magnetic sensing portion 30 and a coil 32 wound around the magnetic sensing portion 30 .
  • the magnetic sensing part 30 is a magnetic body extending in a tangential direction to the rotating direction of the rotating shaft 10 and is located on the main surface of the substrate 18 facing away from the rotating plate 16 .
  • the magneto-sensitive portion 30 is a magnetic material that produces a large Barkhausen effect, and is a Wiegand Wire extending along a tangential line in the rotating direction of the rotating shaft 10 .
  • a Wiegand wire is a magnetic material whose magnetization direction is aligned in one longitudinal direction when a magnetic field of a predetermined value or more is applied along the longitudinal direction of the Wiegand wire.
  • the magnetization direction of the Wiegand wire jumps and a voltage pulse is induced across the coil wound on the Wiegand wire.
  • the power generation element 24 generates power.
  • the power generation element 26 extends along a tangential line in the rotation direction of the rotating shaft 10 and is arranged on the main surface of the substrate 18 facing away from the rotating shaft 10 (opposite to the rotating plate 16).
  • the power generation element 26 has a magnetic sensing portion 34 and a coil 36 wound around the magnetic sensing portion 34 .
  • the magnetic sensing part 34 is a magnetic body extending along a tangential line in the rotating direction of the rotating shaft 10 and is located on the main surface of the substrate 18 facing away from the rotating plate 16 .
  • the magnetic field sensing portion 34 is a magnetic material that produces a large Barkhausen effect, and is a Wiegand wire extending tangentially to the rotational direction of the rotating shaft 10 .
  • Power generation element 26 generates power in the same manner as power generation element 24 .
  • the control circuit 28 is arranged on the main surface of the substrate 18 facing the rotating shaft 10 (rotating plate 16), and is electrically connected to the power generation element 24 and the like. For example, the control circuit 28 determines the rotational position of the rotary shaft 10 depending on which of the power generating elements 24 and 26 generates power. Further, for example, the rotation detector 14 may further include one or more magnetic sensors (not shown) that operate based on power from the plurality of power generation elements 24 and 26, and the control circuit 28 may include a plurality of The rotational position of the rotating shaft 10 may be determined based on which of the power generating elements 24 and 26 generated power and the detection result of the one or more magnetic sensors.
  • FIG. 4 to 6 are diagrams showing the relationship between the rotational positions of the pair of magnets 20 and 22 and the magnetic flux density distribution in the longitudinal direction of the power generating element 24.
  • FIG. 4 to 6 are diagrams showing the relationship between the rotational positions of the pair of magnets 20 and 22 and the magnetic flux density distribution in the longitudinal direction of the power generating element 24.
  • the magnetism sensing portion 30 of the power generation element 24 has a pair of magnets when viewed from the rotation axis direction. 20 and 22, and is positioned near one end of each of the pair of magnets 20 and 22 in the second orthogonal direction.
  • the magnetic field sensing portion 30 of the power generation element 24 is located at the position of the rotation axis 10 when viewed from the rotation axis direction. overlaps the central portion of the north pole of the magnet 22 in the direction of rotation of .
  • the power generation element 24 in a state between a state in which the first orthogonal direction is parallel to the longitudinal direction of the power generating element 24 and a state in which the second orthogonal direction is parallel to the longitudinal direction of the power generating element 24 , the power generation element 24 generates a power generation pulse.
  • the peak is positioned near the central portion in the longitudinal direction of the magnetic sensing portion 30 .
  • the magnetic flux density in the longitudinal direction of the magnetic field sensing portion 30 of the power generation element 24 can be distributed appropriately, so that the power generation element 24 can easily generate power.
  • the power generation element 26 can easily generate power as well as the power generation element 24 .
  • the rotation detector 14 according to the first embodiment has been described above.
  • the rotation detector 14 includes a pair of magnets 20 and 22 that rotate together with the rotating shaft 10, and a power generation element 24 that generates power by a change in the magnetic field caused by the rotation of the pair of magnets 20 and 22 together with the rotating shaft 10. and
  • the pair of magnets 20 and 22 are arranged with a space therebetween in a first orthogonal direction that sandwiches the rotation axis A of the rotation shaft 10 and is orthogonal to the rotation axis A.
  • the north pole and south pole of each of the pair of magnets 20 and 22 are arranged in the first orthogonal direction so that the north pole is located on one side in the first orthogonal direction.
  • the magnetic flux density in the longitudinal direction of the power generating element 24 can be easily distributed, so that the power generating element 24 can easily generate power.
  • each of the pair of magnets 20 and 22 is arranged along the rotation direction of the rotation shaft 10 .
  • the rotating shaft 10 can be easily provided between the pair of magnets 20 and 22 .
  • the pair of magnets 20 and 22 are arranged symmetrically with the rotation axis A interposed therebetween.
  • the magnetic flux density in the longitudinal direction of the power generation element 24 can be suppressed, so that the power generation element 24 can more easily generate power.
  • the power generation element 24 is arranged at a position shifted from the rotation axis A.
  • the magnetic flux density in the longitudinal direction of the power generation element 24 can be easily distributed appropriately, so that the power generation element 24 can easily generate power.
  • the rotation detector 14 includes a plurality of power generating elements 24 and 26.
  • FIG. 7 is a diagram showing a rotation detector according to the second embodiment. 7, illustration of the coil 32, the coil 36, and the like is omitted. The same applies to FIGS. 8 to 12 as well.
  • the rotation detector according to the second embodiment includes a pair of magnets 20a and 22a (a pair of magnets 20a and 22a) different from the pair of magnets 20 and 22. , is different from the rotation detector 14 .
  • Each of the pair of magnets 20a, 22a is mainly different from the pair of magnets 20, 22 in that each is a bar-shaped magnet extending in a direction orthogonal to the first orthogonal direction.
  • the north pole and south pole of each of the pair of magnets 20a and 22a are arranged in the first orthogonal direction such that the north pole is located on one side in the first orthogonal direction.
  • FIG. 8 is a diagram showing a rotation detector according to the third embodiment.
  • the rotation detector according to the third embodiment is arranged between one ends of the pair of magnets 20 and 22 in the second orthogonal direction and between the pair of magnets 20 and 22 in the second orthogonal direction.
  • the main difference from the rotation detector 14 is that it further includes a pair of magnetic bodies 38 and 40 arranged between the other ends of the detector.
  • the magnetic body 38 is arranged between one end portions of the pair of magnets 20 and 22 in the second orthogonal direction, and connects the one end portions.
  • the thickness of the magnetic body 38 in the rotation axis direction is equal to the thickness of the pair of magnets 20 and 22 .
  • the magnetic body 40 is arranged between the other ends of the pair of magnets 20 and 22 in the second orthogonal direction, and connects the other ends.
  • the thickness of the magnetic body 40 in the rotation axis direction is equal to the thickness of the pair of magnets 20 and 22 .
  • the rotation detector according to the present embodiment is arranged between one ends of the pair of magnets 20 and 22 in the second orthogonal direction orthogonal to the rotation axis A and orthogonal to the first orthogonal direction, and between one end of the pair of magnets 20 and 22 in the second orthogonal direction.
  • a pair of magnetic bodies 38 and 40 are arranged between the other ends of the magnets 20 and 22, respectively.
  • FIG. 9 is a diagram showing a rotation detector according to the fourth embodiment.
  • the rotation detector according to the fourth embodiment is mainly different from the rotation detector 14 in that a pair of magnets 20b and 22b different from the pair of magnets 20 and 22 is provided. ing.
  • each of the pair of magnets 20b and 22b in the first orthogonal direction on the side of the rotation axis A and the edge on the side opposite to the rotation axis A are curved in an elliptical arc when viewed from the direction of the rotation axis. ing. That is, the edge 42 of the magnet 20b on the rotation axis A side and the edge 44 on the side opposite to the rotation axis A in the first orthogonal direction are curved in an elliptical arc shape when viewed from the rotation axis direction.
  • An edge 46 on the side of the rotation axis A of the magnet 22b and an edge 48 on the side opposite to the rotation axis A in the first orthogonal direction are curved in an elliptical arc shape when viewed from the rotation axis direction.
  • the “edge on the rotation axis A side” refers to the edge of the magnet facing toward the rotation axis A.
  • the edge on the side opposite to the rotation axis A refers to the edge of the magnet facing in the opposite direction to the rotation axis A. As shown in FIG. These are the same for the following.
  • each of the pair of magnets 20b and 22b on the side of the rotation axis A is curved into an arc of an ellipse D centered on the rotation axis A, and each of the pair of magnets 20b and 22b
  • the edge on the side opposite to the rotation axis A is curved in the shape of an ellipse E with the rotation axis A as the center.
  • the ellipse related to the edge on the rotation axis A side of one magnet and the ellipse related to the edge on the rotation axis A side of the other magnet are different from each other. good too. Further, for example, the ellipse related to the edge of one of the magnets 20b and 22b opposite to the rotation axis A and the ellipse related to the edge of the other magnet opposite to the rotation axis A , may be different from each other.
  • each of the pair of magnets 20b and 22b on the side of the rotation axis A and the edge on the side opposite to the rotation axis A are curved outward in the radial direction about the rotation axis A.
  • the ellipticity of the ellipse D related to the edge on the rotation axis A side of each of the pair of magnets 20b and 22b is different from the ellipticity of the ellipse E related to the edge on the side opposite to the rotation axis A of the magnet.
  • ellipticity is represented by minor axis/major axis.
  • the ellipticity of the ellipse D related to the edge on the rotation axis A side of each of the pair of magnets 20b and 22b is the ellipse of the ellipse E related to the edge on the side opposite to the rotation axis A of the magnet. less than the rate.
  • the major axis of ellipse D is smaller than the major axis of ellipse E
  • the minor axis of ellipse D is smaller than the minor axis of ellipse E.
  • the major axis direction of the ellipse D related to the edge on the rotation axis A side of each of the pair of magnets 20b and 22b coincides with the major axis direction of the ellipse E related to the edge on the side opposite to the rotation axis A of the magnet.
  • Each of the longitudinal directions coincides with the second orthogonal direction.
  • the edge of each of the pair of magnets 20b and 22b on the side of the rotation axis A and the edge on the side opposite to the rotation axis A form an elliptical circle when viewed from the direction of the rotation axis. curved in an arc.
  • the ellipticity of the ellipse D related to the edge on the rotation axis A side of each of the pair of magnets 20b and 22b is different from the ellipticity of the ellipse E related to the edge on the side opposite to the rotation axis A of the magnet.
  • FIG. 10 is a diagram showing a rotation detector according to the fifth embodiment.
  • the rotation detector according to the fifth embodiment is mainly different from the rotation detector 14 in that a pair of magnets 20c and 22c different from the pair of magnets 20 and 22 is provided. ing.
  • Each of the pair of magnets 20c and 22c is arranged in the first position so that the edge of the magnet opposite to the rotation axis A is located closer to the power generation element 24 with respect to the edge of the magnet on the rotation axis A side. Tilted with respect to the orthogonal direction.
  • the magnet 20c is arranged in the first orthogonal direction so that the edge 50 of the magnet 20c opposite to the rotation axis A is positioned closer to the power generating element 24 than the edge 52 of the magnet 20c on the rotation axis A side. tilted against
  • the magnet 22c is arranged in the first orthogonal direction so that the edge 54 of the magnet 22c opposite to the rotation axis A is positioned closer to the power generating element 24 than the edge 56 of the magnet 22c on the rotation axis A side. tilted against
  • each of the pair of magnets 20c and 22c opposite to the power generation element 24 in the direction of the rotation axis is positioned with respect to the first orthogonal direction so that it is gradually positioned closer to the power generation element 24 as the distance from the rotation axis A increases.
  • the main surface 58 of the magnet 20c on the side opposite to the power generation element 24 in the rotation axis direction is inclined with respect to the first orthogonal direction so as to be positioned gradually closer to the power generation element 24 as the distance from the rotation axis A increases.
  • the main surface 60 of the magnet 22c opposite to the power generation element 24 in the rotation axis direction is inclined with respect to the first orthogonal direction so as to be positioned gradually closer to the power generation element 24 as the distance from the rotation axis A increases.
  • the power generation element 24 and the pair of magnets 20c and 22c are arranged at different positions in the rotation axis direction.
  • Each of the pair of magnets 20c and 22c is arranged so that the end of the magnet opposite to the rotation axis A is positioned closer to the power generation element 24 with respect to the end of the magnet on the rotation axis A side. Tilted with respect to the orthogonal direction.
  • the end on the rotation axis A side indicates the end of the magnet facing toward the rotation axis A.
  • the end opposite to the rotation axis A refers to the end of the magnet facing in the opposite direction to the rotation axis A. As shown in FIG. These are the same for the following.
  • the power generation element 24 and the pair of magnets 20c and 22c are arranged at different positions in the rotation axis direction.
  • the main surface of each of the pair of magnets 20c and 22c facing away from the power generation element 24 in the direction of the rotation axis is arranged to be gradually closer to the power generation element 24 in the direction of the rotation axis as the distance from the rotation axis A increases. Tilted with respect to the orthogonal direction.
  • FIG. 11 is a diagram showing a rotation detector according to the sixth embodiment.
  • the rotation detector according to the sixth embodiment is mainly different from the rotation detector 14 in that a pair of magnets 20d and 22d different from the pair of magnets 20 and 22 is provided. ing.
  • the pair of magnets 20d and 22d each have a semicircular arc shape along the rotation direction of the rotating shaft 10, and are formed integrally with each other to form an annular magnet. That is, the rotation detector according to the sixth embodiment has an annular magnet along the rotation direction of the rotating shaft 10 .
  • the semi-arc-shaped magnet 20d and the semi-arc-shaped magnet 22d may be separately formed, and then the magnets 20d and 22d may be integrally formed by joining them with a joining member or the like.
  • an annular magnet may be formed by magnetizing an annular member. In this case, one half of the ring-shaped magnet corresponds to the magnet 20d and the other half of the ring-shaped magnet corresponds to the magnet 22d.
  • the N pole of the magnet 20d is arranged continuously side by side with the S pole of the magnet 22d in the rotation direction of the rotating shaft 10, and the S pole of the magnet 20d is aligned with the N pole of the magnet 22d in the rotating direction of the rotating shaft 10. They are arranged consecutively alongside the poles.
  • the pair of magnets 20d and 22d each have a semicircular arc shape along the rotation direction of the rotating shaft 10, and are formed integrally with each other to form an annular magnet.
  • the positional relationship between the pair of magnets 20d and 22d can be easily fixed, so that the power generating element 24 can more easily generate power.
  • FIG. 12 is a diagram showing a rotation detector according to the seventh embodiment.
  • the rotation detector according to the seventh embodiment includes a pair of magnets 20e, 22e different from the pair of magnets 20, 22, and a plurality of magnetic bodies 62, 64, It is mainly different from rotation detector 14 in that 66 is further provided.
  • the pair of magnets 20e and 22e each have a semicircular arc shape along the direction of rotation, and are formed integrally with each other to form an annular magnet.
  • the north and south poles of one of the pair of magnets 20e and 22e are arranged in the direction of the rotation axis so that the north pole is positioned on one side in the direction of the rotation axis.
  • the other north pole and south pole of the pair of magnets 20e and 22e are aligned in the rotation axis direction so that the north pole is positioned on the other side in the rotation axis direction.
  • the north and south poles of the magnet 20e are arranged in the rotation axis direction so that the north pole is located in the direction opposite to the power generation element 24 in the rotation axis direction.
  • the N pole and S pole of the magnet 22e are aligned in the rotation axis direction such that the N pole is positioned in the direction of the power generation element 24 in the rotation axis direction.
  • the plurality of magnetic bodies 62, 64 are arranged at the edges on the rotation axis A side of the pair of magnets 20e, 22e, respectively.
  • the magnetic body 62 is arranged on the edge portion 68 of the magnet 20e on the rotation axis A side, and is arranged along the rotation direction of the rotation shaft 10.
  • the magnetic body 64 is arranged on the edge 70 of the magnet 22 e on the rotation axis A side, and is arranged along the rotation direction of the rotation shaft 10 .
  • the magnetic bodies 62 and 64 are separated from each other.
  • the magnetic body 66 is arranged on the main surface of the pair of magnets 20e and 22e on the side opposite to the power generating element 24. Specifically, the magnetic body 66 is arranged on the main surface 72 of the magnet 20e opposite to the power generating element 24 and the main surface 74 of the magnet 22e opposite to the power generating element 24. As shown in FIG. The magnetic body 66 is arranged along the rotation direction of the rotation shaft 10, and overlaps the pair of magnets 20e and 22e when viewed from the rotation axis direction.
  • the north and south poles of one of the pair of magnets 20e and 22e are aligned in the rotation axis direction so that the north pole is located on one side in the rotation axis direction.
  • the other north pole and south pole of the pair of magnets 20e and 22e are aligned in the rotation axis direction so that the north pole is positioned on the other side in the rotation axis direction.
  • It further includes a plurality of magnetic bodies 62 and 64 respectively arranged at the edges of the pair of magnets 20e and 22e in the first orthogonal direction on the rotation axis A side.
  • FIG. 13A is a diagram showing another example of the magnet
  • FIGS. 13B, 14A and 14B are diagrams showing still another example of the magnet.
  • magnets may be formed as shown in FIGS. 13A, 13B, 14A and 14B.
  • 13A, 13B, 14A, and 14B show only one of the pair of magnets, and the illustration of the other magnet is omitted.
  • the other magnet is formed symmetrically with the one magnet.
  • FIG. 13A is a diagram showing another example of a magnet.
  • the edge 102 of the magnet 100 on the side of the rotation axis A is curved into an ellipse G having a center point F different from the rotation axis A when viewed from the rotation axis direction.
  • the edge 104 of the magnet 100 on the side opposite to the rotation axis A may be curved in the shape of an ellipse H with the point F as the center when viewed from the rotation axis direction.
  • the ellipticity of the ellipse G associated with the edge 102 is equal to the ellipticity of the ellipse H associated with the edge 104 .
  • the major axis direction of the ellipse G related to the edge 102 is different from the major axis direction of the ellipse H related to the edge 104 .
  • the long axis direction of the ellipse G related to the edge 102 is orthogonal to the long axis direction of the ellipse H related to the edge 104 .
  • the long axis direction of the ellipse G related to the edge 102 does not have to be orthogonal to the long axis direction of the ellipse H related to the edge 104 .
  • the major axis direction of ellipse G associated with edge 102 is parallel to the second orthogonal direction, and the major axis direction of ellipse H associated with edge 104 coincides with the first orthogonal direction.
  • Ellipse G is the same size as ellipse H.
  • FIG. 13B is a diagram showing another example of a magnet.
  • the edge 108 of the magnet 106 on the rotation axis A side curves into an arc of an ellipse J centered at a point I different from the rotation axis A when viewed from the rotation axis direction.
  • the edge 110 of the magnet 106 on the side opposite to the rotation axis A may be curved in the shape of an ellipse K with the point I as the center when viewed from the rotation axis direction.
  • the ellipticity of the ellipse J associated with the edge 108 is different from the ellipticity of the ellipse K associated with the edge 110 .
  • the major axis direction of the ellipse J associated with the edge 108 is different from the major axis direction of the ellipse K associated with the edge 110 .
  • the long axis direction of the ellipse J related to the edge 108 is orthogonal to the long axis direction of the ellipse K related to the edge 110 .
  • the long axis direction of the ellipse J related to the edge 108 does not have to be orthogonal to the long axis direction of the ellipse K related to the edge 110 .
  • the major axis direction of ellipse J associated with edge 108 coincides with the first orthogonal direction
  • the major axis direction of ellipse K associated with edge 110 is parallel to the second orthogonal direction.
  • the major axis of ellipse J associated with edge 108 is smaller than the minor axis of ellipse K associated with edge 110 .
  • FIG. 14A is a diagram showing still another example of a magnet.
  • the edge 114 of the magnet 112 on the rotation axis A side curves into an arc of an ellipse M centered at a point L different from the rotation axis A when viewed from the rotation axis direction.
  • the edge 116 of the magnet 112 on the side opposite to the rotation axis A may be curved in an arc of an ellipse N with the point L as the center when viewed from the rotation axis direction.
  • the ellipticity of the ellipse M associated with the edge 114 is different from the ellipticity of the ellipse N associated with the edge 116 .
  • the major axis direction of the ellipse M associated with the edge 114 coincides with the major axis direction of the ellipse N associated with the edge 116 .
  • the major axis direction of ellipse M associated with edge 114 and the major axis direction of ellipse N associated with edge 116 are each aligned with the first orthogonal direction.
  • the major axis of the ellipse M associated with the edge 114 is smaller than the major axis of the ellipse N associated with the edge 116 and larger than the minor axis of the ellipse N.
  • the minor axis of ellipse M associated with edge 114 is smaller than the minor axis of ellipse N associated with edge 116 .
  • FIG. 14B is a diagram showing still another example of the magnet.
  • the edge 120 of the magnet 118 on the rotation axis A side curves into an arc of an ellipse P centered at a point O different from the rotation axis A when viewed from the rotation axis direction.
  • the edge 122 of the magnet 118 on the side opposite to the rotation axis A may be curved in the shape of an ellipse Q with the point O as the center when viewed from the rotation axis direction.
  • the ellipticity of the ellipse P associated with the edge 120 is different from the ellipticity of the ellipse Q associated with the edge 122 .
  • the long axis direction of the ellipse P related to the edge 120 coincides with the long axis direction of the ellipse Q related to the edge 122 .
  • the major axis direction of ellipse P associated with edge 120 and the major axis direction of ellipse Q associated with edge 122 are each parallel to the second orthogonal direction.
  • the major axis of the ellipse P associated with the edge 120 is smaller than the major axis of the ellipse Q associated with the edge 122 and larger than the minor axis of the ellipse Q.
  • the minor axis of ellipse P associated with edge 120 is smaller than the minor axis of ellipse Q associated with edge 122 .
  • the rotation detector 14 includes a plurality of power generation elements 24 and 26 has been described, but the present invention is not limited to this.
  • the rotation detector may have only one power generating element.
  • the present invention is not limited to this.
  • a plurality of power generating elements may be arranged on the main surface of the substrate facing the rotating plate.
  • the present invention is not limited to this.
  • a pair of magnets may be arranged on the major surface of the rotating plate facing the substrate.
  • the rotation detector according to the present disclosure can be used to detect rotation of a rotating shaft of a motor that rotates a load.
  • rotation detector 16 rotating plate 18 substrate 20, 20a, 20b, 20c, 20d, 20e, 22, 22a, 22b, 22c, 22d, 22e, 100, 106, 112, 118 magnets 24, 26 power generating element 28 control circuit 30 , 34 magneto-sensitive parts 32, 36 coils 38, 40, 62, 64, 66 magnetic bodies 42, 44, 46, 48, 50, 52, 54, 56, 68, 70, 102, 104, 108, 110, 114, 116, 120, 122 Edge 58, 60, 72, 74 Main surface

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

Provided is a rotation detector that facilitates proper power generation of a power generation element. A rotation detector (14) includes a pair of magnets (20), (22) that rotate with a rotary shaft, and a power generation element (24) that generates power by means of changes of a magnetic field caused by the pair of magnets (20), (22) rotating with the rotary shaft. The pair of magnets (20), (22) are arranged on both sides of a rotation axis A of the rotary shaft so as to be spaced apart in a first orthogonal direction, which is orthogonal to the rotation axis A. The N pole and the S pole of each of the pair of magnets (20), (22) are arranged along the first orthogonal direction such that the N pole is located on one side in the first orthogonal direction.

Description

回転検出器rotation detector
 本開示は、回転検出器に関し、特に回転軸の回転を検出する回転検出器に関する。 The present disclosure relates to a rotation detector, and more particularly to a rotation detector that detects rotation of a rotating shaft.
 従来、モータの回転軸の回転を検出する回転検出器が知られている。たとえば、特許文献1には、シャフトに設けられた円板形状の磁石と、磁性ワイヤおよびピックアップコイルで構成される3つの発電部とを備え、3つの発電部は、磁石の端面側に構成された仮想的な三角形の複数の辺にそれぞれ配置されている回転検出器が開示されている。 Conventionally, a rotation detector that detects the rotation of the rotating shaft of a motor is known. For example, Patent Literature 1 discloses a disk-shaped magnet provided on a shaft, and three power generation units each composed of a magnetic wire and a pickup coil. A rotation detector is disclosed that is positioned on each side of a virtual triangle.
日本国特許第6336232号公報Japanese Patent No. 6336232
 しかしながら、特許文献1の回転検出器では、発電部の長手方向の磁束密度の分布が偏り易く、適切に発電し難いという問題がある。 However, the rotation detector of Patent Document 1 has a problem that the distribution of the magnetic flux density in the longitudinal direction of the power generation section tends to be biased, making it difficult to generate power appropriately.
 本開示は、このような問題を解決するためになされたものであり、発電素子を適切に発電させ易い回転検出器を提供することを目的とする。 The present disclosure has been made to solve such problems, and aims to provide a rotation detector that facilitates appropriate power generation of the power generation element.
 本開示の一態様に係る回転検出器は、回転軸とともに回転する一対の磁石と、前記一対の磁石が前記回転軸とともに回転することによる磁界の変化によって発電する発電素子とを備える。前記一対の磁石は、前記回転軸の回転軸線を挟みかつ前記回転軸線に直交する第1直交方向に間隔を空けて配置されており、以下の(1)または(2)を満たす。
(1)前記一対の磁石の各々のN極およびS極は、前記第1直交方向における一方にN極が位置するように前記第1直交方向に並んでいる。
(2)前記一対の磁石の一方のN極およびS極は、前記回転軸線方向における一方にN極が位置するように前記回転軸線方向に並んでおり、また、前記一対の磁石の他方のN極およびS極は、前記回転軸線方向における他方にN極が位置するように前記回転軸線方向に並んでいる。
A rotation detector according to an aspect of the present disclosure includes a pair of magnets that rotate together with a rotating shaft, and a power generation element that generates power by a change in magnetic field caused by the rotation of the pair of magnets together with the rotating shaft. The pair of magnets are spaced apart in a first orthogonal direction that sandwiches the rotation axis of the rotation shaft and is perpendicular to the rotation axis, and satisfies (1) or (2) below.
(1) The north and south poles of each of the pair of magnets are aligned in the first orthogonal direction such that the north pole is positioned on one side in the first orthogonal direction.
(2) The north and south poles of one of the pair of magnets are aligned in the direction of the rotation axis such that the north pole is positioned on one side in the direction of the rotation axis, and the north pole of the other of the pair of magnets is aligned in the direction of the rotation axis. The pole and the south pole are aligned in the direction of the rotation axis such that the north pole is located on the other side in the direction of the rotation axis.
 本開示によれば、発電素子を適切に発電させ易い回転検出器を提供できる。 According to the present disclosure, it is possible to provide a rotation detector that facilitates appropriate power generation of the power generation element.
図1は、第1の実施の形態に係る回転検出器を備えるモータを示す図である。FIG. 1 is a diagram showing a motor provided with a rotation detector according to the first embodiment. 図2は、図1の回転検出器を示す図である。2 is a diagram showing the rotation detector of FIG. 1; FIG. 図3は、図1の回転検出器の一対の磁石を示す図である。3 is a diagram showing a pair of magnets of the rotation detector of FIG. 1; FIG. 図4は、一対の磁石の回転位置と発電素子の長手方向の磁束密度の分布との関係を示す図である。FIG. 4 is a diagram showing the relationship between the rotational position of a pair of magnets and the distribution of magnetic flux density in the longitudinal direction of the power generation element. 図5は、一対の磁石の回転位置と発電素子の長手方向の磁束密度の分布との関係を示す図である。FIG. 5 is a diagram showing the relationship between the rotational position of a pair of magnets and the distribution of magnetic flux density in the longitudinal direction of the power generation element. 図6は、一対の磁石の回転位置と発電素子の長手方向の磁束密度の分布との関係を示す図である。FIG. 6 is a diagram showing the relationship between the rotational position of a pair of magnets and the distribution of magnetic flux density in the longitudinal direction of the power generation element. 図7は、第2の実施の形態に係る回転検出器を示す図である。FIG. 7 is a diagram showing a rotation detector according to the second embodiment. 図8は、第3の実施の形態に係る回転検出器を示す図である。FIG. 8 is a diagram showing a rotation detector according to the third embodiment. 図9は、第4の実施の形態に係る回転検出器を示す図である。FIG. 9 is a diagram showing a rotation detector according to the fourth embodiment. 図10は、第5の実施の形態に係る回転検出器を示す図である。FIG. 10 is a diagram showing a rotation detector according to the fifth embodiment. 図11は、第6の実施の形態に係る回転検出器を示す図である。FIG. 11 is a diagram showing a rotation detector according to the sixth embodiment. 図12は、第7の実施の形態に係る回転検出器を示す図である。FIG. 12 is a diagram showing a rotation detector according to the seventh embodiment. 図13Aは、磁石の他の例を示す図である。FIG. 13A is a diagram showing another example of a magnet; 図13Bは、磁石のさらに他の例を示す図である。FIG. 13B is a diagram showing still another example of a magnet; 図14Aは、磁石のさらに他の例を示す図である。FIG. 14A is a diagram showing still another example of a magnet; 図14Bは、磁石のさらに他の例を示す図である。FIG. 14B is a diagram showing still another example of a magnet;
 以下、本開示の実施の形態について説明する。なお、以下に説明する実施の形態は、いずれも本開示の一具体例を示すものである。したがって、以下の実施の形態で示される、数値、構成要素、構成要素の配置位置および接続形態、ならびに、工程および工程の順序等は、一例であって本開示を限定する主旨ではない。よって、以下の実施の形態における構成要素のうち、本開示の最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。 An embodiment of the present disclosure will be described below. It should be noted that each of the embodiments described below is a specific example of the present disclosure. Therefore, numerical values, components, arrangement positions and connection forms of components, steps, order of steps, and the like shown in the following embodiments are examples and are not intended to limit the present disclosure. Therefore, among the constituent elements in the following embodiments, constituent elements that are not described in independent claims representing the highest concept of the present disclosure will be described as optional constituent elements.
 また、各図は、模式図であり、必ずしも厳密に図示されたものではない。なお、各図において、他の図と実質的に同一の構成に対しては同一の符号を付しており、重複する説明は省略または簡略化する。 In addition, each figure is a schematic diagram and is not necessarily strictly illustrated. In addition, in each figure, the same code|symbol is attached|subjected to the substantially same structure as other figures, and the overlapping description is abbreviate|omitted or simplified.
 (第1の実施の形態)
 図1は、第1の実施の形態に係る回転検出器14を備えるモータ1を示す図である。図2は、図1の回転検出器14を示す図である。図3は、図1の回転検出器14の一対の磁石20,22を示す図である。なお、図1では、ケース12、および一対の磁石20,22を断面で示している。また、図1では、発電素子26および制御回路28の図示を省略している。
(First embodiment)
FIG. 1 shows a motor 1 having a rotation detector 14 according to the first embodiment. FIG. 2 is a diagram showing the rotation detector 14 of FIG. FIG. 3 is a diagram showing a pair of magnets 20, 22 of rotation detector 14 of FIG. Note that FIG. 1 shows the case 12 and the pair of magnets 20 and 22 in cross section. Further, in FIG. 1, illustration of the power generation element 26 and the control circuit 28 is omitted.
 図1に示すように、モータ1は、本体4と、回転子6と、固定子8と、回転軸10と、ケース12と、回転検出器14とを備えている。なお、以下の説明で、回転軸線方向とは、回転軸10の回転軸線Aが延びている方向(図1に矢印Xで示す方向)である。 As shown in FIG. 1, the motor 1 includes a main body 4, a rotor 6, a stator 8, a rotating shaft 10, a case 12, and a rotation detector 14. In the following description, the rotation axis direction is the direction in which the rotation axis A of the rotating shaft 10 extends (the direction indicated by arrow X in FIG. 1).
 回転子6および固定子8は、本体4に収容されている。回転子6は、固定子8に対して回転する。 The rotor 6 and stator 8 are housed in the main body 4. Rotor 6 rotates with respect to stator 8 .
 回転軸10は、回転軸線方向に延び、円柱状等の棒状である。回転軸10の軸心と回転軸線Aとは、一致している。回転軸10は、回転子6に固定されており、回転軸線Aを中心にして回転する。たとえば、回転軸10は、モータ1に電力が供給されると、当該電力に基づいて、回転子6とともに回転軸線Aを回転中心として回転する。回転軸10の回転方向(図2に矢印Zで示す方向)は、回転軸線Aを中心とする周方向と一致する。回転軸線方向における回転軸10の一端部には、回転検出器14が設けられている。回転軸線方向における回転軸10の他端部には、回転軸10の回転によって回転駆動される負荷(図示せず)等が取り付けられる。たとえば、回転軸10は、鉄等の磁性体金属によって形成されている。 The rotating shaft 10 extends in the direction of the rotation axis and has a rod shape such as a columnar shape. The axis of the rotating shaft 10 and the rotation axis A are aligned. The rotating shaft 10 is fixed to the rotor 6 and rotates about the rotation axis A. As shown in FIG. For example, when electric power is supplied to the motor 1, the rotating shaft 10 rotates about the rotation axis A together with the rotor 6 based on the electric power. The direction of rotation of the rotating shaft 10 (the direction indicated by the arrow Z in FIG. 2) coincides with the circumferential direction about the axis of rotation A. As shown in FIG. A rotation detector 14 is provided at one end of the rotating shaft 10 in the rotation axis direction. A load (not shown) or the like that is rotationally driven by the rotation of the rotating shaft 10 is attached to the other end of the rotating shaft 10 in the rotation axis direction. For example, the rotating shaft 10 is made of magnetic metal such as iron.
 ケース12は、回転軸線方向における回転軸10の一端部および回転検出器14を覆うように、本体4に取り付けられている。たとえば、ケース12は、鉄等の磁性体金属によって形成されている。 The case 12 is attached to the main body 4 so as to cover one end of the rotating shaft 10 in the rotation axis direction and the rotation detector 14 . For example, the case 12 is made of magnetic metal such as iron.
 回転検出器14は、回転軸10の回転を検出する。たとえば、回転検出器14は、回転軸10の回転位置、回転軸10の回転方向、および回転軸10の回転数等を検出する。たとえば、回転検出器14は、アブソリュートエンコーダである。回転検出器14は、上述したように、回転軸線方向における回転軸10の一端部に設けられている。図1および図2に示すように、回転検出器14は、回転板16と、基板18と、一対の磁石20,22と、複数の発電素子24,26と、制御回路28とを有している。 The rotation detector 14 detects rotation of the rotating shaft 10 . For example, the rotation detector 14 detects the rotational position of the rotating shaft 10, the rotating direction of the rotating shaft 10, the rotation speed of the rotating shaft 10, and the like. For example, rotation detector 14 is an absolute encoder. The rotation detector 14 is provided at one end of the rotation shaft 10 in the direction of the rotation axis, as described above. As shown in FIGS. 1 and 2, the rotation detector 14 has a rotating plate 16, a substrate 18, a pair of magnets 20 and 22, a plurality of power generation elements 24 and 26, and a control circuit 28. there is
 回転板16は、回転軸線方向に直交する方向に延びる。具体的には、回転板16は、回転軸線方向に直交する方向に延びる主面を有する円板状であり、回転軸線方向から見たとき円形である。回転板16は、回転軸線方向における回転軸10の一端部に取り付けられている。回転板16の軸心と回転軸線Aとは、一致している。回転板16は、回転軸10とともに回転する。 The rotating plate 16 extends in a direction orthogonal to the rotation axis direction. Specifically, the rotating plate 16 has a disc shape having a main surface extending in a direction orthogonal to the rotation axis direction, and is circular when viewed from the rotation axis direction. The rotating plate 16 is attached to one end of the rotating shaft 10 in the rotation axis direction. The axis of the rotary plate 16 and the rotation axis A are aligned. The rotating plate 16 rotates together with the rotating shaft 10 .
 基板18は、回転軸線方向に直交する方向に延びる。具体的には、基板18は、回転軸線方向に直交する主面を有する円板状であり、回転軸線方向から見たとき円形である。基板18は、回転軸線方向において、回転軸10の一端部および回転板16と間隔を空けて配置され、回転板16と対向している。基板18の軸心と回転軸線Aとは、一致している。基板18は、ケース12の内面に固定されており、回転しない。 The substrate 18 extends in a direction orthogonal to the rotation axis direction. Specifically, the substrate 18 has a disc shape having a main surface perpendicular to the rotation axis direction, and is circular when viewed from the rotation axis direction. The substrate 18 is arranged to be spaced apart from one end of the rotating shaft 10 and the rotating plate 16 in the rotation axis direction, and faces the rotating plate 16 . The axis of the substrate 18 and the rotation axis A are aligned. The substrate 18 is fixed to the inner surface of the case 12 and does not rotate.
 一対の磁石20,22は、回転軸10とともに回転する。具体的には、一対の磁石20,22は、回転軸10が回転すると、回転軸10および回転板16とともに回転する。一対の磁石20,22は、回転板16の基板18とは反対に向いた主面に配置されている。一対の磁石20,22は、複数の発電素子24、26から回転軸線方向において離れた位置に配置されている。一対の磁石20,22は、回転軸線方向から見たとき、基板18と重なっている。 A pair of magnets 20 and 22 rotate together with the rotating shaft 10 . Specifically, the pair of magnets 20 and 22 rotate together with the rotating shaft 10 and the rotating plate 16 when the rotating shaft 10 rotates. A pair of magnets 20 , 22 are arranged on the main surface of the rotating plate 16 facing away from the substrate 18 . The pair of magnets 20 and 22 are arranged at positions separated from the plurality of power generation elements 24 and 26 in the rotation axis direction. The pair of magnets 20 and 22 overlap the substrate 18 when viewed from the rotation axis direction.
 一対の磁石20,22は、回転軸10の回転軸線Aを挟みかつ回転軸線Aに直交する第1直交方向(図2に矢印Bで示す方向)に間隔を空けて配置されている。つまり、一対の磁石20,22の間には、回転軸10の回転軸線Aが位置し、空間が形成されている。 The pair of magnets 20 and 22 are arranged with a gap in a first orthogonal direction (the direction indicated by arrow B in FIG. 2) sandwiching the rotation axis A of the rotation shaft 10 and orthogonal to the rotation axis A. That is, the rotation axis A of the rotation shaft 10 is located between the pair of magnets 20 and 22, forming a space.
 一対の磁石20,22の各々のN極およびS極は、第1直交方向における一方にN極が位置するように第1直交方向に並んでいる。つまり、一対の磁石20,22の各々は、第1直交方向に着磁されている。 The north and south poles of each of the pair of magnets 20 and 22 are arranged in the first orthogonal direction so that the north pole is positioned on one side in the first orthogonal direction. That is, each of the pair of magnets 20 and 22 is magnetized in the first orthogonal direction.
 磁石20のN極およびS極は、第1直交方向に並んでおり、磁石20のN極は、磁石20のS極よりも第1直交方向の一方に位置している。磁石20のN極は、第1直交方向において、磁石20のS極よりも回転軸線Aに近い位置に配置されている。 The N pole and S pole of the magnet 20 are arranged in the first orthogonal direction, and the N pole of the magnet 20 is located on one side of the first orthogonal direction relative to the S pole of the magnet 20. The north pole of the magnet 20 is located closer to the axis of rotation A than the south pole of the magnet 20 in the first orthogonal direction.
 磁石22のN極およびS極は、第1直交方向に並んでおり、磁石22のN極は、磁石22のS極よりも第1直交方向の一方に位置している。磁石22のN極は、第1直交方向において、磁石22のS極と比べて回転軸線Aと離れた位置に配置されている。 The N pole and S pole of the magnet 22 are arranged in the first orthogonal direction, and the N pole of the magnet 22 is located on one side of the first orthogonal direction relative to the S pole of the magnet 22. The north pole of the magnet 22 is located farther from the axis of rotation A than the south pole of the magnet 22 in the first orthogonal direction.
 図3に示すように、一対の磁石20,22の各々のN極およびS極が、第1直交方向の一方にN極が位置するように第1直交方向に並んでいることによって、第1直交方向の一方向に向かう磁界を発生させることができる(図3の矢印を参照)。 As shown in FIG. 3, the north and south poles of each of the pair of magnets 20, 22 are aligned in the first orthogonal direction such that the north pole is located in one of the first orthogonal directions. Magnetic fields oriented in one orthogonal direction can be generated (see arrows in FIG. 3).
 一対の磁石20,22の各々は、回転軸10の回転方向に沿って配置されている。一対の磁石20,22の各々は、回転軸10の回転方向に沿う円弧状である。 Each of the pair of magnets 20 and 22 is arranged along the rotation direction of the rotating shaft 10 . Each of the pair of magnets 20 and 22 has an arcuate shape along the rotation direction of the rotating shaft 10 .
 一対の磁石20,22は、回転軸線Aを挟んで対称に配置されている。一対の磁石20,22は、相互に同形状であり、第1直交方向において対称に配置されている。 A pair of magnets 20 and 22 are arranged symmetrically with the rotation axis A interposed therebetween. The pair of magnets 20 and 22 have the same shape and are arranged symmetrically in the first orthogonal direction.
 回転軸線Aに直交しかつ第1直交方向に直交する第2直交方向(図2に矢印Cで示す方向)における一対の磁石20,22の一端部同士は、第1直交方向と平行な方向において間隔を空けて対向しており、第2直交方向における一対の磁石20,22の他端部同士は、第1直交方向と平行な方向において間隔を空けて対向している。 One ends of the pair of magnets 20 and 22 in a second orthogonal direction (the direction indicated by arrow C in FIG. 2) orthogonal to the rotation axis A and orthogonal to the first orthogonal direction are aligned in a direction parallel to the first orthogonal direction. The magnets 20 and 22 are opposed to each other with a space therebetween, and the other ends of the pair of magnets 20 and 22 in the second orthogonal direction are opposed to each other with a space therebetween in a direction parallel to the first orthogonal direction.
 一対の磁石20,22の各々は、回転軸線方向を厚み方向とする板状である。一対の磁石20,22の各々は、回転軸線方向における複数の発電素子24,26側の主面と、回転軸線方向における複数の発電素子24,26とは反対側の主面とを有している。なお、ここで、「磁石の回転軸線方向における発電素子側の主面」とは、磁石の回転軸線方向に面する主面であって、発電素子へ向かって面する主面のことをいう。また、「磁石の回転軸線方向における発電素子とは反対側の主面」とは、磁石の回転軸線方向に面する主面であって、発電素子とは反対へ向かって面する主面のことをいう。これらのことは、以下について同様である。 Each of the pair of magnets 20 and 22 is plate-shaped with the rotation axis direction as the thickness direction. Each of the pair of magnets 20 and 22 has a main surface on the side of the power generation elements 24 and 26 in the rotation axis direction and a main surface on the side opposite to the power generation elements 24 and 26 in the rotation axis direction. there is Here, "the main surface on the power generation element side in the rotation axis direction of the magnet" refers to the main surface facing the rotation axis direction of the magnet and facing toward the power generation element. In addition, "the main surface on the side opposite to the power generation element in the direction of the rotation axis of the magnet" is the main surface facing the direction of the rotation axis of the magnet and facing away from the power generation element. Say. These are the same for the following.
 複数の発電素子24,26の各々は、一対の磁石20,22が回転軸10とともに回転することによる磁界の変化によって発電する。複数の発電素子24,26の各々は、基板18の回転板16とは反対に向いた主面に配置されている。複数の発電素子24,26は、回転軸線方向から見たとき、基板18と重なっている。 Each of the plurality of power generating elements 24 and 26 generates power by changing the magnetic field caused by the rotation of the pair of magnets 20 and 22 together with the rotating shaft 10 . Each of the plurality of power generation elements 24 and 26 is arranged on the main surface of the substrate 18 facing away from the rotating plate 16 . The plurality of power generation elements 24 and 26 overlap the substrate 18 when viewed from the rotation axis direction.
 複数の発電素子24,26は、回転軸線Aとずれた位置に配置されている。つまり、複数の発電素子24,26は、回転軸線方向から見たとき回転軸線Aと重なっていない。 The plurality of power generation elements 24 and 26 are arranged at positions offset from the rotation axis A. That is, the plurality of power generation elements 24 and 26 do not overlap the rotation axis A when viewed from the rotation axis direction.
 複数の発電素子24,26は、回転軸10の回転方向において、位相差を持って配置されている。つまり、複数の発電素子24,26は、回転軸10の回転方向において、相互に異なる位置に配置されている。 The plurality of power generation elements 24 and 26 are arranged with a phase difference in the rotation direction of the rotating shaft 10 . That is, the plurality of power generation elements 24 and 26 are arranged at mutually different positions in the rotation direction of the rotating shaft 10 .
 回転軸線Aを中心とする径方向(図2に矢印Yで示す方向)における、回転軸線Aから複数の発電素子24,26の各々までの距離は、回転軸線Aから一対の磁石20,22の各々の磁極のうち外側の磁極までの距離とほぼ等しい。つまり、当該径方向における、回転軸線Aから発電素子24までの距離は、回転軸線Aから磁石20のS極までの距離とほぼ等しく、回転軸線Aから磁石22のN極までの距離とほぼ等しい。また、当該径方向における、回転軸線Aから発電素子26までの距離は、回転軸線Aから磁石20のS極までの距離とほぼ等しく、回転軸線Aから磁石22のN極までの距離とほぼ等しい。 The distance from the rotation axis A to each of the plurality of power generation elements 24 and 26 in the radial direction centered on the rotation axis A (the direction indicated by the arrow Y in FIG. 2) is It is approximately equal to the distance to the outer magnetic pole of each magnetic pole. That is, the distance from the rotation axis A to the power generation element 24 in the radial direction is approximately equal to the distance from the rotation axis A to the south pole of the magnet 20, and approximately equal to the distance from the rotation axis A to the north pole of the magnet 22. . In addition, the distance from the rotation axis A to the power generating element 26 in the radial direction is approximately equal to the distance from the rotation axis A to the south pole of the magnet 20, and approximately equal to the distance from the rotation axis A to the north pole of the magnet 22. .
 発電素子24は、回転軸10の回転方向の接線方向に延び、基板18の回転軸10とは反対(回転板16とは反対)に向いた主面に配置されている。発電素子24は、感磁部30と、感磁部30に巻回されるコイル32とを有している。感磁部30は、回転軸10の回転方向の接線方向に延びる磁性体であり、基板18の回転板16とは反対に向いた主面上に位置している。たとえば、感磁部30は、大バルクハウゼン効果を発現させる磁性体であり、回転軸10の回転方向の接線に沿って延びるウィーガントワイヤ(Wiegand Wire)である。ウィーガントワイヤは、所定値以上の磁界がウィーガントワイヤの長手方向に沿って印加されると、磁化方向が長手方向の一方に向かうように揃う磁性体である。ウィーガントワイヤの長手方向に沿って流れる磁束の向きが変化すると、ウィーガントワイヤの磁化方向が跳躍的に反転し、ウィーガントワイヤに巻回されているコイルの両端に電圧パルスが誘起される。このようにして、発電素子24は、発電する。 The power generating element 24 extends tangentially to the rotating direction of the rotating shaft 10 and is arranged on the main surface of the substrate 18 facing away from the rotating shaft 10 (opposite to the rotating plate 16). The power generation element 24 has a magnetic sensing portion 30 and a coil 32 wound around the magnetic sensing portion 30 . The magnetic sensing part 30 is a magnetic body extending in a tangential direction to the rotating direction of the rotating shaft 10 and is located on the main surface of the substrate 18 facing away from the rotating plate 16 . For example, the magneto-sensitive portion 30 is a magnetic material that produces a large Barkhausen effect, and is a Wiegand Wire extending along a tangential line in the rotating direction of the rotating shaft 10 . A Wiegand wire is a magnetic material whose magnetization direction is aligned in one longitudinal direction when a magnetic field of a predetermined value or more is applied along the longitudinal direction of the Wiegand wire. When the direction of the magnetic flux flowing along the length of the Wiegand wire changes, the magnetization direction of the Wiegand wire jumps and a voltage pulse is induced across the coil wound on the Wiegand wire. Thus, the power generation element 24 generates power.
 発電素子26は、回転軸10の回転方向の接線に沿って延び、基板18の回転軸10とは反対(回転板16とは反対)に向いた主面に配置されている。発電素子26は、感磁部34と、感磁部34に巻回されるコイル36とを有している。感磁部34は、回転軸10の回転方向の接線に沿って延びる磁性体であり、基板18の回転板16とは反対に向いた主面上に位置している。たとえば、感磁部34は、大バルクハウゼン効果を発現させる磁性体であり、回転軸10の回転方向の接線方向に延びるウィーガントワイヤである。発電素子26は、発電素子24と同じようにして、発電する。 The power generation element 26 extends along a tangential line in the rotation direction of the rotating shaft 10 and is arranged on the main surface of the substrate 18 facing away from the rotating shaft 10 (opposite to the rotating plate 16). The power generation element 26 has a magnetic sensing portion 34 and a coil 36 wound around the magnetic sensing portion 34 . The magnetic sensing part 34 is a magnetic body extending along a tangential line in the rotating direction of the rotating shaft 10 and is located on the main surface of the substrate 18 facing away from the rotating plate 16 . For example, the magnetic field sensing portion 34 is a magnetic material that produces a large Barkhausen effect, and is a Wiegand wire extending tangentially to the rotational direction of the rotating shaft 10 . Power generation element 26 generates power in the same manner as power generation element 24 .
 制御回路28は、基板18の回転軸10(回転板16)に向いた主面に配置されており、発電素子24等と電気的に接続されている。たとえば、制御回路28は、複数の発電素子24,26のうちいずれの発電素子が発電したかによって、回転軸10の回転位置を判定する。また、たとえば、回転検出器14は、複数の発電素子24,26からの電力に基づいて動作する1つ以上の磁気センサ(図示せず)をさらに備えていてもよく、制御回路28は、複数の発電素子24,26のうちいずれの発電素子が発電したか、および当該1つ以上の磁気センサの検出結果に基づいて、回転軸10の回転位置を判定してもよい。 The control circuit 28 is arranged on the main surface of the substrate 18 facing the rotating shaft 10 (rotating plate 16), and is electrically connected to the power generation element 24 and the like. For example, the control circuit 28 determines the rotational position of the rotary shaft 10 depending on which of the power generating elements 24 and 26 generates power. Further, for example, the rotation detector 14 may further include one or more magnetic sensors (not shown) that operate based on power from the plurality of power generation elements 24 and 26, and the control circuit 28 may include a plurality of The rotational position of the rotating shaft 10 may be determined based on which of the power generating elements 24 and 26 generated power and the detection result of the one or more magnetic sensors.
 図4から図6は、一対の磁石20,22の回転位置と発電素子24の長手方向の磁束密度の分布との関係を示す図である。 4 to 6 are diagrams showing the relationship between the rotational positions of the pair of magnets 20 and 22 and the magnetic flux density distribution in the longitudinal direction of the power generating element 24. FIG.
 図4の(a)に示すように、第1直交方向と発電素子24の長手方向とが平行の状態において、発電素子24の感磁部30は、回転軸線方向から見たとき、一対の磁石20,22と重なっておらず、第2直交方向における一対の磁石20,22の各々の一端部の近傍に位置している。 As shown in FIG. 4A, in a state in which the first orthogonal direction is parallel to the longitudinal direction of the power generation element 24, the magnetism sensing portion 30 of the power generation element 24 has a pair of magnets when viewed from the rotation axis direction. 20 and 22, and is positioned near one end of each of the pair of magnets 20 and 22 in the second orthogonal direction.
 このとき、図4の(b)に示すように、感磁部30の長手方向の磁束密度の分布は、感磁部30の長手方向の中央部にピークが位置するのではなく、感磁部30の長手方向の中央部近傍においてほぼ均一になっている。 At this time, as shown in (b) of FIG. It is almost uniform in the vicinity of the central portion in the longitudinal direction of 30 .
 図5の(a)に示すように、第2直交方向と発電素子24の長手方向とが平行の状態において、発電素子24の感磁部30は、回転軸線方向から見たとき、回転軸10の回転方向における磁石22のN極の中央部と重なっている。 As shown in FIG. 5A, in a state in which the second orthogonal direction is parallel to the longitudinal direction of the power generation element 24, the magnetic field sensing portion 30 of the power generation element 24 is located at the position of the rotation axis 10 when viewed from the rotation axis direction. overlaps the central portion of the north pole of the magnet 22 in the direction of rotation of .
 このとき、図5の(b)に示すように、感磁部30の長手方向の磁束密度の分布は、図4の(a)の状態よりも小さくなっており、0に近い値となっている。 At this time, as shown in (b) of FIG. 5, the distribution of the magnetic flux density in the longitudinal direction of the magnetic sensing section 30 is smaller than the state shown in (a) of FIG. there is
 図6の(a)に示すように、第1直交方向と発電素子24の長手方向とが平行の状態と第2直交方向と発電素子24の長手方向とが平行の状態との間の状態において、発電素子24は、発電パルスを発生させる。 As shown in (a) of FIG. 6, in a state between a state in which the first orthogonal direction is parallel to the longitudinal direction of the power generating element 24 and a state in which the second orthogonal direction is parallel to the longitudinal direction of the power generating element 24 , the power generation element 24 generates a power generation pulse.
 このとき、図6の(b)に示すように、感磁部30の長手方向の磁束密度の分布は、感磁部30の長手方向の中央部からずれた位置にピークが位置するのではなく、感磁部30の長手方向の中央部近傍にピークが位置するようになっている。 At this time, as shown in (b) of FIG. , the peak is positioned near the central portion in the longitudinal direction of the magnetic sensing portion 30 .
 上述したように、回転軸10が回転することによって、発電素子24の感磁部30の長手方向の磁束密度を適切に分布させることができるので、発電素子24を適切に発電させ易くなる。 As described above, by rotating the rotating shaft 10, the magnetic flux density in the longitudinal direction of the magnetic field sensing portion 30 of the power generation element 24 can be distributed appropriately, so that the power generation element 24 can easily generate power.
 発電素子26の感磁部34の長手方向の磁束密度の分布については、上述した発電素子24の感磁部30の長手方向の磁束密度の分布の説明を参照することにより詳細な説明を省略するが、発電素子26も発電素子24と同様に適切に発電させ易くなる。 Regarding the distribution of the magnetic flux density in the longitudinal direction of the magnetic field sensing portion 34 of the power generating element 26, the detailed description will be omitted by referring to the above-described description of the magnetic flux density distribution in the longitudinal direction of the magnetic field sensing portion 30 of the power generating element 24. However, the power generation element 26 can easily generate power as well as the power generation element 24 .
 以上、第1の実施の形態に係る回転検出器14について説明した。 The rotation detector 14 according to the first embodiment has been described above.
 本実施の形態に係る回転検出器14は、回転軸10とともに回転する一対の磁石20,22と、一対の磁石20,22が回転軸10とともに回転することによる磁界の変化によって発電する発電素子24とを備える。一対の磁石20,22は、回転軸10の回転軸線Aを挟みかつ回転軸線Aに直交する第1直交方向に間隔を空けて配置されている。また、一対の磁石20,22のそれぞれのN極およびS極は、第1直交方向における一方にN極が位置するように第1直交方向に並んでいる。 The rotation detector 14 according to the present embodiment includes a pair of magnets 20 and 22 that rotate together with the rotating shaft 10, and a power generation element 24 that generates power by a change in the magnetic field caused by the rotation of the pair of magnets 20 and 22 together with the rotating shaft 10. and The pair of magnets 20 and 22 are arranged with a space therebetween in a first orthogonal direction that sandwiches the rotation axis A of the rotation shaft 10 and is orthogonal to the rotation axis A. As shown in FIG. The north pole and south pole of each of the pair of magnets 20 and 22 are arranged in the first orthogonal direction so that the north pole is located on one side in the first orthogonal direction.
 これによれば、発電素子24の長手方向の磁束密度を適切に分布させ易くなるので、発電素子24を適切に発電し易くなる。 According to this, the magnetic flux density in the longitudinal direction of the power generating element 24 can be easily distributed, so that the power generating element 24 can easily generate power.
 また、本実施の形態に係る回転検出器14において、一対の磁石20,22のそれぞれは、回転軸10の回転方向に沿って配置されている。 Also, in the rotation detector 14 according to the present embodiment, each of the pair of magnets 20 and 22 is arranged along the rotation direction of the rotation shaft 10 .
 これによれば、発電素子24の長手方向の磁束密度をさらに適切に分布させ易くなるので、発電素子24をさらに適切に発電し易くなる。また、一対の磁石20,22の間に回転軸10を容易に設けることができる。 This makes it easier to distribute the magnetic flux density in the longitudinal direction of the power generation element 24 more appropriately, so that the power generation element 24 can more easily generate power. Also, the rotating shaft 10 can be easily provided between the pair of magnets 20 and 22 .
 また、本実施の形態に係る回転検出器14において、一対の磁石20,22は、回転軸線Aを挟んで対称に配置されている。 Also, in the rotation detector 14 according to the present embodiment, the pair of magnets 20 and 22 are arranged symmetrically with the rotation axis A interposed therebetween.
 これによれば、発電素子24の長手方向の磁束密度が偏ることを抑制できるので、発電素子24をさらに適切に発電し易くなる。 According to this, the magnetic flux density in the longitudinal direction of the power generation element 24 can be suppressed, so that the power generation element 24 can more easily generate power.
 また、本実施の形態に係る回転検出器14において、発電素子24は、回転軸線Aとずれた位置に配置されている。 Further, in the rotation detector 14 according to the present embodiment, the power generation element 24 is arranged at a position shifted from the rotation axis A.
 これによれば、発電素子24を回転軸線A上に配置できない場合であっても、発電素子24の長手方向の磁束密度を適切に分布させ易くなるので、発電素子24を適切に発電し易くなる。 According to this, even if the power generation element 24 cannot be arranged on the rotation axis A, the magnetic flux density in the longitudinal direction of the power generation element 24 can be easily distributed appropriately, so that the power generation element 24 can easily generate power. .
 また、本実施の形態に係る回転検出器14は、複数の発電素子24,26を備える。 Also, the rotation detector 14 according to the present embodiment includes a plurality of power generating elements 24 and 26.
 これによれば、複数の発電素子24,26のそれぞれを適切に発電し易くなるとともに、発電素子が1つの場合よりも発電回数を増やすことができるので、回転軸10の回転位置をより精度よく検出できる。 According to this, it becomes easy to appropriately generate power from each of the plurality of power generation elements 24 and 26, and the number of times of power generation can be increased compared to the case where there is only one power generation element. detectable.
 (第2の実施の形態)
 図7は、第2の実施の形態に係る回転検出器を示す図である。なお、図7では、コイル32およびコイル36等の図示を省略している。図8から図12についても同様である。
(Second embodiment)
FIG. 7 is a diagram showing a rotation detector according to the second embodiment. 7, illustration of the coil 32, the coil 36, and the like is omitted. The same applies to FIGS. 8 to 12 as well.
 図7に示すように、第2の実施の形態に係る回転検出器は、一対の磁石20,22とは異なる一対である磁石20aおよび磁石22a(一対の磁石20a,22a)を備えている点において、回転検出器14と主に異なっている。 As shown in FIG. 7, the rotation detector according to the second embodiment includes a pair of magnets 20a and 22a (a pair of magnets 20a and 22a) different from the pair of magnets 20 and 22. , is different from the rotation detector 14 .
 一対の磁石20a,22aの各々は、第1直交方向に直交する方向に延びる棒状の磁石である点において、一対の磁石20,22と主に異なっている。一対の磁石20a,磁石22aの各々のN極およびS極は、第1直交方向における一方にN極が位置するように第1直交方向に並んでいる。 Each of the pair of magnets 20a, 22a is mainly different from the pair of magnets 20, 22 in that each is a bar-shaped magnet extending in a direction orthogonal to the first orthogonal direction. The north pole and south pole of each of the pair of magnets 20a and 22a are arranged in the first orthogonal direction such that the north pole is located on one side in the first orthogonal direction.
 これによって、第1直交方向の一方に向かう磁界を発生させることができる(図7の(b)の矢印を参照)。 Thereby, a magnetic field directed in one of the first orthogonal directions can be generated (see the arrow in (b) of FIG. 7).
 (第3の実施の形態)
 図8は、第3の実施の形態に係る回転検出器を示す図である。
(Third Embodiment)
FIG. 8 is a diagram showing a rotation detector according to the third embodiment.
 図8に示すように、第3の実施の形態に係る回転検出器は、第2直交方向における一対の磁石20,22の一端部同士の間、および第2直交方向における一対の磁石20,22の他端部同士の間に配置されている一対の磁性体38,40をさらに備えている点において、回転検出器14と主に異なっている。 As shown in FIG. 8, the rotation detector according to the third embodiment is arranged between one ends of the pair of magnets 20 and 22 in the second orthogonal direction and between the pair of magnets 20 and 22 in the second orthogonal direction. The main difference from the rotation detector 14 is that it further includes a pair of magnetic bodies 38 and 40 arranged between the other ends of the detector.
 磁性体38は、第2直交方向における一対の磁石20,22の一端部同士の間に配置されており、当該一端部同士を連結している。回転軸線方向における、磁性体38の厚みは、一対の磁石20,22の厚みと等しい。 The magnetic body 38 is arranged between one end portions of the pair of magnets 20 and 22 in the second orthogonal direction, and connects the one end portions. The thickness of the magnetic body 38 in the rotation axis direction is equal to the thickness of the pair of magnets 20 and 22 .
 磁性体40は、第2直交方向における一対の磁石20,22の他端部同士の間に配置されており、当該他端部同士を連結している。回転軸線方向における、磁性体40の厚みは、一対の磁石20,22の厚みと等しい。 The magnetic body 40 is arranged between the other ends of the pair of magnets 20 and 22 in the second orthogonal direction, and connects the other ends. The thickness of the magnetic body 40 in the rotation axis direction is equal to the thickness of the pair of magnets 20 and 22 .
 これによって、第1直交方向の一方に向かう磁界を発生させることができる(図8の(b)の矢印を参照)とともに、当該磁界の強さをより強くできる。 As a result, it is possible to generate a magnetic field in one of the first orthogonal directions (see the arrow in (b) of FIG. 8), and to increase the strength of the magnetic field.
 本実施の形態に係る回転検出器は、回転軸線Aに直交しかつ第1直交方向に直交する第2直交方向における一対の磁石20,22の一端部同士の間、および第2直交方向における一対の磁石20,22の他端部同士の間にそれぞれ配置されている一対の磁性体38,40をさらに備える。 The rotation detector according to the present embodiment is arranged between one ends of the pair of magnets 20 and 22 in the second orthogonal direction orthogonal to the rotation axis A and orthogonal to the first orthogonal direction, and between one end of the pair of magnets 20 and 22 in the second orthogonal direction. A pair of magnetic bodies 38 and 40 are arranged between the other ends of the magnets 20 and 22, respectively.
 これによれば、発電素子24の長手方向の磁束の強さを確保し易い。また、パーミアンス係数を高め易く、高温時に発電素子24の長手方向の磁束の強さが弱くなることを抑制し易い。したがって、発電素子24を適切に発電し易くなる。 With this, it is easy to ensure the strength of the magnetic flux in the longitudinal direction of the power generation element 24 . In addition, it is easy to increase the permeance coefficient, and it is easy to suppress the weakening of the strength of the magnetic flux in the longitudinal direction of the power generation element 24 at high temperatures. Therefore, it becomes easier for the power generation element 24 to generate power appropriately.
 (第4の実施の形態)
 図9は、第4の実施の形態に係る回転検出器を示す図である。
(Fourth embodiment)
FIG. 9 is a diagram showing a rotation detector according to the fourth embodiment.
 図9に示すように、第4の実施の形態に係る回転検出器は、一対の磁石20,22とは異なる一対の磁石20b,22bを備えている点において、回転検出器14と主に異なっている。 As shown in FIG. 9, the rotation detector according to the fourth embodiment is mainly different from the rotation detector 14 in that a pair of magnets 20b and 22b different from the pair of magnets 20 and 22 is provided. ing.
 第1直交方向における、一対の磁石20b,22bの各々の、回転軸線A側の縁部および回転軸線Aとは反対側の縁部は、回転軸線方向から見たとき楕円の円弧状に湾曲している。つまり、第1直交方向における、磁石20bの回転軸線A側の縁部42および回転軸線Aとは反対側の縁部44は、回転軸線方向から見たとき楕円の円弧状に湾曲している。また、第1直交方向における、磁石22bの回転軸線A側の縁部46および回転軸線Aとは反対側の縁部48は、回転軸線方向から見たとき楕円の円弧状に湾曲している。なお、ここで「回転軸線A側の縁部」とは、磁石の縁部であって回転軸線Aへ向かって面する縁部を示す。また、「回転軸線Aとは反対側の縁部」とは、磁石の縁部であって回転軸線Aとは反対向きに面する縁部を示す。これらのことは、以下について同様である。 The edge of each of the pair of magnets 20b and 22b in the first orthogonal direction on the side of the rotation axis A and the edge on the side opposite to the rotation axis A are curved in an elliptical arc when viewed from the direction of the rotation axis. ing. That is, the edge 42 of the magnet 20b on the rotation axis A side and the edge 44 on the side opposite to the rotation axis A in the first orthogonal direction are curved in an elliptical arc shape when viewed from the rotation axis direction. An edge 46 on the side of the rotation axis A of the magnet 22b and an edge 48 on the side opposite to the rotation axis A in the first orthogonal direction are curved in an elliptical arc shape when viewed from the rotation axis direction. Here, the “edge on the rotation axis A side” refers to the edge of the magnet facing toward the rotation axis A. As shown in FIG. In addition, "the edge on the side opposite to the rotation axis A" refers to the edge of the magnet facing in the opposite direction to the rotation axis A. As shown in FIG. These are the same for the following.
 この実施の形態では、一対の磁石20b、22bの各々の回転軸線A側の縁部は、回転軸線Aを中心とする楕円Dの円弧状に湾曲しており、一対の磁石20b、22bの各々の回転軸線Aとは反対側の縁部は、回転軸線Aを中心とする楕円Eの円弧状に湾曲している。 In this embodiment, the edge of each of the pair of magnets 20b and 22b on the side of the rotation axis A is curved into an arc of an ellipse D centered on the rotation axis A, and each of the pair of magnets 20b and 22b The edge on the side opposite to the rotation axis A is curved in the shape of an ellipse E with the rotation axis A as the center.
 なお、たとえば、一対の磁石20b、22bのうち、一方の磁石の回転軸線A側の縁部に係る楕円と他方の磁石の回転軸線A側の縁部に係る楕円とは、相互に異なっていてもよい。また、たとえば、一対の磁石20b、22bのうち、一方の磁石の回転軸線Aとは反対側の縁部に係る楕円と他方の磁石の回転軸線Aとは反対側の縁部に係る楕円とは、相互に異なっていてもよい。 It should be noted that, for example, of the pair of magnets 20b and 22b, the ellipse related to the edge on the rotation axis A side of one magnet and the ellipse related to the edge on the rotation axis A side of the other magnet are different from each other. good too. Further, for example, the ellipse related to the edge of one of the magnets 20b and 22b opposite to the rotation axis A and the ellipse related to the edge of the other magnet opposite to the rotation axis A , may be different from each other.
 一対の磁石20b,22bのそれぞれの回転軸線A側の縁部および回転軸線Aとは反対側の縁部は、回転軸線Aを中心とする径方向の外方に湾曲している。 The edge of each of the pair of magnets 20b and 22b on the side of the rotation axis A and the edge on the side opposite to the rotation axis A are curved outward in the radial direction about the rotation axis A.
 一対の磁石20b,22bのそれぞれの回転軸線A側の縁部に係る楕円Dの楕円率は、当該磁石の回転軸線Aとは反対側の縁部に係る楕円Eの楕円率と異なっている。たとえば、楕円率は、短径/長径で表される。この実施の形態では、一対の磁石20b,22bのそれぞれの回転軸線A側の縁部に係る楕円Dの楕円率は、当該磁石の回転軸線Aとは反対側の縁部に係る楕円Eの楕円率よりも小さい。この実施の形態では、楕円Dの長径は、楕円Eの長径よりも小さく、楕円Dの短径は、楕円Eの短径よりも小さい。 The ellipticity of the ellipse D related to the edge on the rotation axis A side of each of the pair of magnets 20b and 22b is different from the ellipticity of the ellipse E related to the edge on the side opposite to the rotation axis A of the magnet. For example, ellipticity is represented by minor axis/major axis. In this embodiment, the ellipticity of the ellipse D related to the edge on the rotation axis A side of each of the pair of magnets 20b and 22b is the ellipse of the ellipse E related to the edge on the side opposite to the rotation axis A of the magnet. less than the rate. In this embodiment, the major axis of ellipse D is smaller than the major axis of ellipse E, and the minor axis of ellipse D is smaller than the minor axis of ellipse E.
 一対の磁石20b、22bの各々の回転軸線A側の縁部に係る楕円Dの長軸方向は、当該磁石の回転軸線Aとは反対側の縁部に係る楕円Eの長軸方向と一致している。この実施の形態では、一対の磁石20b、22bの各々の回転軸線A側の縁部に係る楕円Dの長軸方向、および当該磁石の回転軸線Aとは反対側の縁部に係る楕円Eの長軸方向の各々は、第2直交方向と一致している。 The major axis direction of the ellipse D related to the edge on the rotation axis A side of each of the pair of magnets 20b and 22b coincides with the major axis direction of the ellipse E related to the edge on the side opposite to the rotation axis A of the magnet. ing. In this embodiment, the long axis direction of the ellipse D related to the edge on the rotation axis A side of each of the pair of magnets 20b and 22b and the ellipse E related to the edge on the side opposite to the rotation axis A of the magnets. Each of the longitudinal directions coincides with the second orthogonal direction.
 これによって、第1直交方向の一方側に向かう磁界を発生させることができる(図9の(b)の矢印を参照)とともに、発電素子24の長手方向の磁束密度を調整し易くなる。 This makes it possible to generate a magnetic field directed to one side of the first orthogonal direction (see the arrow in (b) of FIG. 9) and facilitate adjustment of the magnetic flux density in the longitudinal direction of the power generation element 24 .
 本実施の形態に係る回転検出器において、一対の磁石20b、22bの各々の回転軸線A側の縁部および回転軸線Aとは反対側の縁部は、回転軸線方向から見たとき楕円の円弧状に湾曲している。一対の磁石20b,22bの各々の回転軸線A側の縁部に係る楕円Dの楕円率は、当該磁石の回転軸線Aとは反対側の縁部に係る楕円Eの楕円率と異なっている。 In the rotation detector according to the present embodiment, the edge of each of the pair of magnets 20b and 22b on the side of the rotation axis A and the edge on the side opposite to the rotation axis A form an elliptical circle when viewed from the direction of the rotation axis. curved in an arc. The ellipticity of the ellipse D related to the edge on the rotation axis A side of each of the pair of magnets 20b and 22b is different from the ellipticity of the ellipse E related to the edge on the side opposite to the rotation axis A of the magnet.
 これによれば、発電素子24の長手方向の磁束密度を調整し易くなり、発電素子24を適切に発電し易くなる。 This makes it easier to adjust the magnetic flux density in the longitudinal direction of the power generation element 24, making it easier for the power generation element 24 to generate power appropriately.
 (第5の実施の形態)
 図10は、第5の実施の形態に係る回転検出器を示す図である。
(Fifth embodiment)
FIG. 10 is a diagram showing a rotation detector according to the fifth embodiment.
 図10に示すように、第5の実施の形態に係る回転検出器は、一対の磁石20,22とは異なる一対の磁石20c,22cを備えている点において、回転検出器14と主に異なっている。 As shown in FIG. 10, the rotation detector according to the fifth embodiment is mainly different from the rotation detector 14 in that a pair of magnets 20c and 22c different from the pair of magnets 20 and 22 is provided. ing.
 一対の磁石20c,22cの各々は、当該磁石の回転軸線Aとは反対側の縁部が当該磁石の回転軸線A側の縁部に対して発電素子24により近くに位置するように、第1直交方向に対して傾いている。 Each of the pair of magnets 20c and 22c is arranged in the first position so that the edge of the magnet opposite to the rotation axis A is located closer to the power generation element 24 with respect to the edge of the magnet on the rotation axis A side. Tilted with respect to the orthogonal direction.
 つまり、磁石20cは、磁石20cの回転軸線Aとは反対側の縁部50が磁石20cの回転軸線A側の縁部52に対して発電素子24により近くに位置するように、第1直交方向に対して傾いている。 That is, the magnet 20c is arranged in the first orthogonal direction so that the edge 50 of the magnet 20c opposite to the rotation axis A is positioned closer to the power generating element 24 than the edge 52 of the magnet 20c on the rotation axis A side. tilted against
 また、磁石22cは、磁石22cの回転軸線Aとは反対側の縁部54が磁石22cの回転軸線A側の縁部56に対して発電素子24により近くに位置するように、第1直交方向に対して傾いている。 In addition, the magnet 22c is arranged in the first orthogonal direction so that the edge 54 of the magnet 22c opposite to the rotation axis A is positioned closer to the power generating element 24 than the edge 56 of the magnet 22c on the rotation axis A side. tilted against
 一対の磁石20c,22cの各々の回転軸線方向における発電素子24とは反対側の主面は、回転軸線Aから離れるにつれて漸次発電素子24により近くに位置するように、第1直交方向に対して傾いている。 The main surface of each of the pair of magnets 20c and 22c opposite to the power generation element 24 in the direction of the rotation axis is positioned with respect to the first orthogonal direction so that it is gradually positioned closer to the power generation element 24 as the distance from the rotation axis A increases. leaning
 つまり、磁石20cの回転軸線方向における発電素子24とは反対側の主面58は、回転軸線Aから離れるにつれて漸次発電素子24により近くに位置するように、第1直交方向に対して傾いている。 In other words, the main surface 58 of the magnet 20c on the side opposite to the power generation element 24 in the rotation axis direction is inclined with respect to the first orthogonal direction so as to be positioned gradually closer to the power generation element 24 as the distance from the rotation axis A increases. .
 また、磁石22cの回転軸線方向における発電素子24とは反対側の主面60は、回転軸線Aから離れるにつれて漸次発電素子24により近くに位置するように、第1直交方向に対して傾いている。 In addition, the main surface 60 of the magnet 22c opposite to the power generation element 24 in the rotation axis direction is inclined with respect to the first orthogonal direction so as to be positioned gradually closer to the power generation element 24 as the distance from the rotation axis A increases. .
 これによって、第1直交方向の一方に向かう磁界を発生させることができる(図10の(b)の矢印を参照)とともに、発電素子24に磁束が届き易くなる。 This makes it possible to generate a magnetic field directed to one of the first orthogonal directions (see the arrow in FIG. 10(b)), and makes it easier for the magnetic flux to reach the power generation element 24 .
 本実施の形態に係る回転検出器において、発電素子24と一対の磁石20c,22cとは、回転軸線方向において異なる位置に配置されている。一対の磁石20c,22cの各々は、当該磁石の回転軸線Aとは反対側の端部が当該磁石の回転軸線A側の端部に対して発電素子24により近くに位置するように、第1直交方向に対して傾いている。なお、ここで「回転軸線A側の端部」とは、磁石の端部であって回転軸線Aへ向けて面する端部を示す。また、「回転軸線Aとは反対側の端部」とは、磁石の端部であって回転軸線Aとは反対向きに面する端部を示す。これらのことは、以下について同様である。 In the rotation detector according to the present embodiment, the power generation element 24 and the pair of magnets 20c and 22c are arranged at different positions in the rotation axis direction. Each of the pair of magnets 20c and 22c is arranged so that the end of the magnet opposite to the rotation axis A is positioned closer to the power generation element 24 with respect to the end of the magnet on the rotation axis A side. Tilted with respect to the orthogonal direction. Here, "the end on the rotation axis A side" indicates the end of the magnet facing toward the rotation axis A. As shown in FIG. In addition, "the end opposite to the rotation axis A" refers to the end of the magnet facing in the opposite direction to the rotation axis A. As shown in FIG. These are the same for the following.
 これによれば、発電素子24に磁束が届き易くなり、発電素子24をさらに適切に発電し易くなる。 This makes it easier for the magnetic flux to reach the power generating element 24, making it easier for the power generating element 24 to generate power more appropriately.
 また、本実施の形態に係る回転検出器において、発電素子24と一対の磁石20c,22cとは、回転軸線方向において異なる位置に配置されている。一対の磁石20c,22cの各々の回転軸線方向において発電素子24とは反対へ向いた主面は、回転軸線Aから離れるにつれて漸次回転軸線方向における発電素子24により近くに位置するように、第1直交方向に対して傾いている。 Also, in the rotation detector according to the present embodiment, the power generation element 24 and the pair of magnets 20c and 22c are arranged at different positions in the rotation axis direction. The main surface of each of the pair of magnets 20c and 22c facing away from the power generation element 24 in the direction of the rotation axis is arranged to be gradually closer to the power generation element 24 in the direction of the rotation axis as the distance from the rotation axis A increases. Tilted with respect to the orthogonal direction.
 これによれば、発電素子24に磁束がさらに届き易くなり、発電素子24をさらに適切に発電し易くなる。 This makes it easier for the magnetic flux to reach the power generation element 24 and makes it easier for the power generation element 24 to generate power more appropriately.
 (第6の実施の形態)
 図11は、第6の実施の形態に係る回転検出器を示す図である。
(Sixth embodiment)
FIG. 11 is a diagram showing a rotation detector according to the sixth embodiment.
 図11に示すように、第6の実施の形態に係る回転検出器は、一対の磁石20,22とは異なる一対の磁石20d,22dを備えている点において、回転検出器14と主に異なっている。 As shown in FIG. 11, the rotation detector according to the sixth embodiment is mainly different from the rotation detector 14 in that a pair of magnets 20d and 22d different from the pair of magnets 20 and 22 is provided. ing.
 一対の磁石20d,22dは、各々が回転軸10の回転方向に沿う半円弧状であり、相互に一体的に形成されて環状の磁石を構成している。つまり、第6の実施の形態に係る回転検出器は、回転軸10の回転方向に沿う環状の磁石を備えている。 The pair of magnets 20d and 22d each have a semicircular arc shape along the rotation direction of the rotating shaft 10, and are formed integrally with each other to form an annular magnet. That is, the rotation detector according to the sixth embodiment has an annular magnet along the rotation direction of the rotating shaft 10 .
 たとえば、半円弧状の磁石20dおよび半円弧状の磁石22dを別々に形成した後、接合部材等によって磁石20dと磁石22dとを接合して一体的に形成してもよい。また、環状の部材を着磁して環状の磁石を形成してもよい。この場合、当該環状の磁石の一方の半分が磁石20dに相当し、当該環状の磁石の他方の半分が磁石22dに相当する。 For example, the semi-arc-shaped magnet 20d and the semi-arc-shaped magnet 22d may be separately formed, and then the magnets 20d and 22d may be integrally formed by joining them with a joining member or the like. Alternatively, an annular magnet may be formed by magnetizing an annular member. In this case, one half of the ring-shaped magnet corresponds to the magnet 20d and the other half of the ring-shaped magnet corresponds to the magnet 22d.
 磁石20dのN極は、回転軸10の回転方向において、磁石22dのS極と並んで連続して配置されており、磁石20dのS極は、回転軸10の回転方向において、磁石22dのN極と並んで連続して配置されている。 The N pole of the magnet 20d is arranged continuously side by side with the S pole of the magnet 22d in the rotation direction of the rotating shaft 10, and the S pole of the magnet 20d is aligned with the N pole of the magnet 22d in the rotating direction of the rotating shaft 10. They are arranged consecutively alongside the poles.
 これによって、第1直交方向の一方に向かう磁界を発生させることができる(図11の(b)の矢印を参照)。 This makes it possible to generate a magnetic field directed in one of the first orthogonal directions (see the arrow in FIG. 11(b)).
 本実施の形態に係る回転検出器において、一対の磁石20d,22dは、各々が回転軸10の回転方向に沿う半円弧状であり、相互に一体的に形成されて環状の磁石を構成している。 In the rotation detector according to the present embodiment, the pair of magnets 20d and 22d each have a semicircular arc shape along the rotation direction of the rotating shaft 10, and are formed integrally with each other to form an annular magnet. there is
 これによれば、一対の磁石20d,22dの位置関係を容易に固定できるので、発電素子24をさらに適切に発電し易くなる。 According to this, the positional relationship between the pair of magnets 20d and 22d can be easily fixed, so that the power generating element 24 can more easily generate power.
 (第7の実施の形態)
 図12は、第7の実施の形態に係る回転検出器を示す図である。
(Seventh embodiment)
FIG. 12 is a diagram showing a rotation detector according to the seventh embodiment.
 図12に示すように、第7の実施の形態に係る回転検出器は、一対の磁石20,22とは異なる一対の磁石20e,22eを備えている点、および複数の磁性体62,64,66をさらに備えている点において、回転検出器14と主に異なっている。 As shown in FIG. 12, the rotation detector according to the seventh embodiment includes a pair of magnets 20e, 22e different from the pair of magnets 20, 22, and a plurality of magnetic bodies 62, 64, It is mainly different from rotation detector 14 in that 66 is further provided.
 一対の磁石20e,22eは、各々が回転方向に沿う半円弧状であり、相互に一体的に形成されて環状の磁石を構成している。 The pair of magnets 20e and 22e each have a semicircular arc shape along the direction of rotation, and are formed integrally with each other to form an annular magnet.
 一対の磁石20e,22eの一方のN極およびS極は、回転軸線方向における一方にN極が位置するように回転軸線方向に並んでいる。一対の磁石20e,22eの他方のN極およびS極は、回転軸線方向における他方にN極が位置するように回転軸線方向に並んでいる。 The north and south poles of one of the pair of magnets 20e and 22e are arranged in the direction of the rotation axis so that the north pole is positioned on one side in the direction of the rotation axis. The other north pole and south pole of the pair of magnets 20e and 22e are aligned in the rotation axis direction so that the north pole is positioned on the other side in the rotation axis direction.
 具体的には、磁石20eのN極およびS極は、回転軸線方向における発電素子24とは反対方向にN極が位置するように回転軸線方向に並んでいる。磁石22eのN極およびS極は、回転軸線方向における発電素子24の方向にN極が位置するように回転軸線方向に並んでいる。 Specifically, the north and south poles of the magnet 20e are arranged in the rotation axis direction so that the north pole is located in the direction opposite to the power generation element 24 in the rotation axis direction. The N pole and S pole of the magnet 22e are aligned in the rotation axis direction such that the N pole is positioned in the direction of the power generation element 24 in the rotation axis direction.
 複数の磁性体62,64は、一対の磁石20e,22eの回転軸線A側の縁部にそれぞれ配置されている。磁性体62は、磁石20eの回転軸線A側の縁部68に配置されており、回転軸10の回転方向に沿って配置されている。磁性体64は、磁石22eの回転軸線A側の縁部70に配置されており、回転軸10の回転方向に沿って配置されている。磁性体62と磁性体64とは、相互に離れている。 The plurality of magnetic bodies 62, 64 are arranged at the edges on the rotation axis A side of the pair of magnets 20e, 22e, respectively. The magnetic body 62 is arranged on the edge portion 68 of the magnet 20e on the rotation axis A side, and is arranged along the rotation direction of the rotation shaft 10. As shown in FIG. The magnetic body 64 is arranged on the edge 70 of the magnet 22 e on the rotation axis A side, and is arranged along the rotation direction of the rotation shaft 10 . The magnetic bodies 62 and 64 are separated from each other.
 磁性体66は、一対の磁石20e,22eの発電素子24とは反対側の主面に配置されている。具体的には、磁性体66は、磁石20eの発電素子24とは反対側の主面72および磁石22eの発電素子24とは反対側の主面74に配置されている。磁性体66は、回転軸10の回転方向に沿って配置されており、回転軸線方向から見たとき一対の磁石20e,22eと重なっている。 The magnetic body 66 is arranged on the main surface of the pair of magnets 20e and 22e on the side opposite to the power generating element 24. Specifically, the magnetic body 66 is arranged on the main surface 72 of the magnet 20e opposite to the power generating element 24 and the main surface 74 of the magnet 22e opposite to the power generating element 24. As shown in FIG. The magnetic body 66 is arranged along the rotation direction of the rotation shaft 10, and overlaps the pair of magnets 20e and 22e when viewed from the rotation axis direction.
 これによって、回転軸線方向の一方へ向かう磁界および回転軸線方向の他方へ向かう磁界を発生させることができる(図12の(b)の矢印を参照)。 As a result, a magnetic field directed in one direction of the rotation axis and a magnetic field directed in the other direction of the rotation axis can be generated (see arrows in (b) of FIG. 12).
 本実施の形態に係る回転検出器において、一対の磁石20e,22eの一方のN極およびS極は、回転軸線方向における一方にN極が位置するように回転軸線方向に並んでいる。一対の磁石20e,22eの他方のN極およびS極は、回転軸線方向における他方にN極が位置するように回転軸線方向に並んでいる。第1直交方向における一対の磁石20e,22eの回転軸線A側の縁部にそれぞれ配置されている複数の磁性体62,64をさらに備える。 In the rotation detector according to the present embodiment, the north and south poles of one of the pair of magnets 20e and 22e are aligned in the rotation axis direction so that the north pole is located on one side in the rotation axis direction. The other north pole and south pole of the pair of magnets 20e and 22e are aligned in the rotation axis direction so that the north pole is positioned on the other side in the rotation axis direction. It further includes a plurality of magnetic bodies 62 and 64 respectively arranged at the edges of the pair of magnets 20e and 22e in the first orthogonal direction on the rotation axis A side.
 これによれば、一対の磁石20e,22eによる磁界が発電素子24に届き易くなるので、発電素子24をさらに適切に発電し易くなる。 This makes it easier for the magnetic field generated by the pair of magnets 20e and 22e to reach the power generation element 24, thereby making it easier for the power generation element 24 to generate power more appropriately.
 (他の実施の形態等)
 以上のように、本出願において開示する技術の例示として、実施の形態について説明した。しかしながら、本開示による技術は、これらに限定されず、本開示の趣旨を逸脱しない限り、適宜、変更、置き換え、付加、省略等を行った実施の形態または変形例にも適用可能である。
(Other embodiments, etc.)
As described above, the embodiment has been described as an example of the technology disclosed in the present application. However, the technology according to the present disclosure is not limited to these, and can be applied to embodiments or modified examples in which changes, replacements, additions, omissions, etc. are made as appropriate without departing from the gist of the present disclosure.
 上述した実施の形態では、一対の磁石20b、22bの各々の回転軸線A側の縁部が、楕円Dの円弧状に湾曲しており、当該磁石の回転軸線Aとは反対側の縁部が、楕円Eの円弧状に湾曲している場合について説明したが、これに限定されない。図13Aは、磁石の他の例を示す図であり、図13B、図14Aおよび図14Bは、磁石のさらに他の例を示す図である。たとえば、図13A、図13B、図14Aおよび図14Bに示すように、磁石が形成されていてもよい。なお、図13A、図13B、図14Aおよび図14Bでは、一対の磁石のうち、一方の磁石のみを示しており、他方の磁石の図示を省略している。たとえば、当該他方の磁石は、当該一方の磁石と対称的に形成される。 In the above-described embodiment, the edge of each of the pair of magnets 20b and 22b on the side of the rotation axis A is curved in an arc of an ellipse D, and the edge of the magnet on the side opposite to the rotation axis A , ellipse E, but the present invention is not limited to this. FIG. 13A is a diagram showing another example of the magnet, and FIGS. 13B, 14A and 14B are diagrams showing still another example of the magnet. For example, magnets may be formed as shown in FIGS. 13A, 13B, 14A and 14B. 13A, 13B, 14A, and 14B show only one of the pair of magnets, and the illustration of the other magnet is omitted. For example, the other magnet is formed symmetrically with the one magnet.
 図13Aは、磁石の他の例を示す図である。たとえば、図13Aに示すように、磁石100の回転軸線A側の縁部102は、回転軸線方向から見たとき、回転軸線Aとは異なる点Fを中心とする楕円Gの円弧状に湾曲しており、磁石100の回転軸線Aとは反対側の縁部104は、回転軸線方向から見たとき、点Fを中心とする楕円Hの円弧状に湾曲していてもよい。 FIG. 13A is a diagram showing another example of a magnet. For example, as shown in FIG. 13A, the edge 102 of the magnet 100 on the side of the rotation axis A is curved into an ellipse G having a center point F different from the rotation axis A when viewed from the rotation axis direction. The edge 104 of the magnet 100 on the side opposite to the rotation axis A may be curved in the shape of an ellipse H with the point F as the center when viewed from the rotation axis direction.
 縁部102に係る楕円Gの楕円率は、縁部104に係る楕円Hの楕円率と等しい。縁部102に係る楕円Gの長軸方向は、縁部104に係る楕円Hの長軸方向と異なっている。ここでは、縁部102に係る楕円Gの長軸方向は、縁部104に係る楕円Hの長軸方向と直交している。なお、たとえば、縁部102に係る楕円Gの長軸方向は、縁部104に係る楕円Hの長軸方向と直交していなくてもよい。たとえば、縁部102に係る楕円Gの長軸方向は、第2直交方向と平行であり、縁部104に係る楕円Hの長軸方向は、第1直交方向と一致している。楕円Gは、楕円Hと同じ大きさである。 The ellipticity of the ellipse G associated with the edge 102 is equal to the ellipticity of the ellipse H associated with the edge 104 . The major axis direction of the ellipse G related to the edge 102 is different from the major axis direction of the ellipse H related to the edge 104 . Here, the long axis direction of the ellipse G related to the edge 102 is orthogonal to the long axis direction of the ellipse H related to the edge 104 . Note that, for example, the long axis direction of the ellipse G related to the edge 102 does not have to be orthogonal to the long axis direction of the ellipse H related to the edge 104 . For example, the major axis direction of ellipse G associated with edge 102 is parallel to the second orthogonal direction, and the major axis direction of ellipse H associated with edge 104 coincides with the first orthogonal direction. Ellipse G is the same size as ellipse H.
 図13Bは、磁石の他の例を示す図である。たとえば、図13Bに示すように、磁石106の回転軸線A側の縁部108は、回転軸線方向から見たとき、回転軸線Aとは異なる点Iを中心とする楕円Jの円弧状に湾曲しており、磁石106の回転軸線Aとは反対側の縁部110は、回転軸線方向から見たとき、点Iを中心とする楕円Kの円弧状に湾曲していてもよい。 FIG. 13B is a diagram showing another example of a magnet. For example, as shown in FIG. 13B, the edge 108 of the magnet 106 on the rotation axis A side curves into an arc of an ellipse J centered at a point I different from the rotation axis A when viewed from the rotation axis direction. The edge 110 of the magnet 106 on the side opposite to the rotation axis A may be curved in the shape of an ellipse K with the point I as the center when viewed from the rotation axis direction.
 縁部108に係る楕円Jの楕円率は、縁部110に係る楕円Kの楕円率と異なっている。縁部108に係る楕円Jの長軸方向は、縁部110に係る楕円Kの長軸方向と異なっている。具体的には、縁部108に係る楕円Jの長軸方向は、縁部110に係る楕円Kの長軸方向と直交している。なお、たとえば、縁部108に係る楕円Jの長軸方向は、縁部110に係る楕円Kの長軸方向と直交していなくてもよい。たとえば、縁部108に係る楕円Jの長軸方向は、第1直交方向と一致し、縁部110に係る楕円Kの長軸方向は、第2直交方向と平行である。縁部108に係る楕円Jの長径は、縁部110に係る楕円Kの短径よりも小さい。 The ellipticity of the ellipse J associated with the edge 108 is different from the ellipticity of the ellipse K associated with the edge 110 . The major axis direction of the ellipse J associated with the edge 108 is different from the major axis direction of the ellipse K associated with the edge 110 . Specifically, the long axis direction of the ellipse J related to the edge 108 is orthogonal to the long axis direction of the ellipse K related to the edge 110 . Note that, for example, the long axis direction of the ellipse J related to the edge 108 does not have to be orthogonal to the long axis direction of the ellipse K related to the edge 110 . For example, the major axis direction of ellipse J associated with edge 108 coincides with the first orthogonal direction, and the major axis direction of ellipse K associated with edge 110 is parallel to the second orthogonal direction. The major axis of ellipse J associated with edge 108 is smaller than the minor axis of ellipse K associated with edge 110 .
 図14Aは、磁石のさらに他の例を示す図である。たとえば、図14Aに示すように、磁石112の回転軸線A側の縁部114は、回転軸線方向から見たとき、回転軸線Aとは異なる点Lを中心とする楕円Mの円弧状に湾曲しており、磁石112の回転軸線Aとは反対側の縁部116は、回転軸線方向から見たとき、点Lを中心とする楕円Nの円弧状に湾曲していてもよい。 FIG. 14A is a diagram showing still another example of a magnet. For example, as shown in FIG. 14A, the edge 114 of the magnet 112 on the rotation axis A side curves into an arc of an ellipse M centered at a point L different from the rotation axis A when viewed from the rotation axis direction. The edge 116 of the magnet 112 on the side opposite to the rotation axis A may be curved in an arc of an ellipse N with the point L as the center when viewed from the rotation axis direction.
 縁部114に係る楕円Mの楕円率は、縁部116に係る楕円Nの楕円率と異なっている。縁部114に係る楕円Mの長軸方向は、縁部116に係る楕円Nの長軸方向と一致している。たとえば、縁部114に係る楕円Mの長軸方向および縁部116に係る楕円Nの長軸方向のそれぞれは、第1直交方向と一致している。縁部114に係る楕円Mの長径は、縁部116に係る楕円Nの長径よりも小さく楕円Nの短径よりも大きい。縁部114に係る楕円Mの短径は、縁部116に係る楕円Nの短径よりも小さい。 The ellipticity of the ellipse M associated with the edge 114 is different from the ellipticity of the ellipse N associated with the edge 116 . The major axis direction of the ellipse M associated with the edge 114 coincides with the major axis direction of the ellipse N associated with the edge 116 . For example, the major axis direction of ellipse M associated with edge 114 and the major axis direction of ellipse N associated with edge 116 are each aligned with the first orthogonal direction. The major axis of the ellipse M associated with the edge 114 is smaller than the major axis of the ellipse N associated with the edge 116 and larger than the minor axis of the ellipse N. The minor axis of ellipse M associated with edge 114 is smaller than the minor axis of ellipse N associated with edge 116 .
 図14Bは、磁石のさらに他の例を示す図である。たとえば、図14Bに示すように、磁石118の回転軸線A側の縁部120は、回転軸線方向から見たとき、回転軸線Aとは異なる点Oを中心とする楕円Pの円弧状に湾曲しており、磁石118の回転軸線Aとは反対側の縁部122は、回転軸線方向から見たとき、点Oを中心とする楕円Qの円弧状に湾曲していてもよい。 FIG. 14B is a diagram showing still another example of the magnet. For example, as shown in FIG. 14B, the edge 120 of the magnet 118 on the rotation axis A side curves into an arc of an ellipse P centered at a point O different from the rotation axis A when viewed from the rotation axis direction. The edge 122 of the magnet 118 on the side opposite to the rotation axis A may be curved in the shape of an ellipse Q with the point O as the center when viewed from the rotation axis direction.
 縁部120に係る楕円Pの楕円率は、縁部122に係る楕円Qの楕円率と異なっている。縁部120に係る楕円Pの長軸方向は、縁部122に係る楕円Qの長軸方向と一致している。たとえば、縁部120に係る楕円Pの長軸方向および縁部122に係る楕円Qの長軸方向のそれぞれは、第2直交方向と平行である。縁部120に係る楕円Pの長径は、縁部122に係る楕円Qの長径よりも小さく楕円Qの短径よりも大きい。縁部120に係る楕円Pの短径は、縁部122に係る楕円Qの短径よりも小さい。 The ellipticity of the ellipse P associated with the edge 120 is different from the ellipticity of the ellipse Q associated with the edge 122 . The long axis direction of the ellipse P related to the edge 120 coincides with the long axis direction of the ellipse Q related to the edge 122 . For example, the major axis direction of ellipse P associated with edge 120 and the major axis direction of ellipse Q associated with edge 122 are each parallel to the second orthogonal direction. The major axis of the ellipse P associated with the edge 120 is smaller than the major axis of the ellipse Q associated with the edge 122 and larger than the minor axis of the ellipse Q. The minor axis of ellipse P associated with edge 120 is smaller than the minor axis of ellipse Q associated with edge 122 .
 また、上述した実施の形態では、回転検出器14が、複数の発電素子24,26を備えている場合について説明したが、これに限定されない。たとえば、回転検出器は、発電素子を1つだけ備えていてもよい。 Also, in the above-described embodiment, the case where the rotation detector 14 includes a plurality of power generation elements 24 and 26 has been described, but the present invention is not limited to this. For example, the rotation detector may have only one power generating element.
 また、上述した実施の形態では、複数の発電素子24,26が、基板18の回転板16とは反対に向いた主面に配置されている場合について説明したが、これに限定されない。たとえば、複数の発電素子は、基板の回転板に向いた主面に配置されていてもよい。 Also, in the above-described embodiment, the case where the plurality of power generation elements 24 and 26 are arranged on the main surface of the substrate 18 facing away from the rotating plate 16 has been described, but the present invention is not limited to this. For example, a plurality of power generating elements may be arranged on the main surface of the substrate facing the rotating plate.
 また、上述した実施の形態では、一対の磁石20,22が、回転板16の基板18とは反対に向いた主面に配置されている場合について説明したが、これに限定されない。たとえば、一対の磁石は、回転板の基板に向いた主面に配置されていてもよい。 Also, in the above-described embodiment, the case where the pair of magnets 20 and 22 are arranged on the main surface of the rotor plate 16 facing away from the substrate 18 has been described, but the present invention is not limited to this. For example, a pair of magnets may be arranged on the major surface of the rotating plate facing the substrate.
 本開示に係る回転検出器は、負荷を回転駆動させるモータの回転軸等の回転検出に利用可能である。 The rotation detector according to the present disclosure can be used to detect rotation of a rotating shaft of a motor that rotates a load.
 14   回転検出器
 16   回転板
 18   基板
 20,20a,20b,20c,20d,20e,22,22a,22b,22c,22d,22e,100,106,112,118   磁石
 24,26   発電素子
 28   制御回路
 30,34   感磁部
 32,36   コイル
 38,40,62,64,66   磁性体
 42,44,46,48,50,52,54,56,68,70,102,104,108,110,114,116,120,122   縁部
 58,60,72,74   主面
14 rotation detector 16 rotating plate 18 substrate 20, 20a, 20b, 20c, 20d, 20e, 22, 22a, 22b, 22c, 22d, 22e, 100, 106, 112, 118 magnets 24, 26 power generating element 28 control circuit 30 , 34 magneto- sensitive parts 32, 36 coils 38, 40, 62, 64, 66 magnetic bodies 42, 44, 46, 48, 50, 52, 54, 56, 68, 70, 102, 104, 108, 110, 114, 116, 120, 122 Edge 58, 60, 72, 74 Main surface

Claims (12)

  1.  回転軸とともに回転する一対の磁石と、
     前記一対の磁石が前記回転軸とともに回転することによる磁界の変化によって発電する発電素子とを備え、
     前記一対の磁石は、前記回転軸の回転軸線を挟みかつ前記回転軸線に直交する第1直交方向に間隔を空けて配置されており、
     以下の(1)または(2)を満たす、
     (1)前記一対の磁石の各々のN極およびS極は、前記第1直交方向における一方にN極が位置するように前記第1直交方向に並んでいる、
     (2)前記一対の磁石の一方のN極およびS極は、前記回転軸線方向における一方にN極が位置するように前記回転軸線方向に並んでおり、前記一対の磁石の他方のN極およびS極は、前記回転軸線方向における他方にN極が位置するように前記回転軸線方向に並んでいる、
     回転検出器。
    a pair of magnets rotating with the rotating shaft;
    a power generating element that generates power by a change in the magnetic field caused by the pair of magnets rotating together with the rotating shaft;
    The pair of magnets are arranged at intervals in a first orthogonal direction that sandwiches the rotation axis of the rotation shaft and is orthogonal to the rotation axis,
    satisfy the following (1) or (2),
    (1) the north pole and the south pole of each of the pair of magnets are arranged in the first orthogonal direction such that the north pole is located on one side in the first orthogonal direction;
    (2) The north and south poles of one of the pair of magnets are arranged in the direction of the rotation axis such that the north pole is positioned on one side in the direction of the rotation axis, and the other north pole and the south pole of the pair of magnets are aligned. The south poles are arranged in the direction of the rotation axis such that the north pole is located on the other side in the direction of the rotation axis.
    rotation detector.
  2.  前記一対の磁石の各々は、前記回転軸の回転方向に沿って配置されている、
     請求項1に記載の回転検出器。
    Each of the pair of magnets is arranged along the rotation direction of the rotation shaft,
    2. A rotation detector as claimed in claim 1.
  3.  前記一対の磁石は、前記回転軸線を挟んで対称に配置されている、
     請求項1または2に記載の回転検出器。
    The pair of magnets are arranged symmetrically across the rotation axis,
    A rotation detector according to claim 1 or 2.
  4.  前記一対の磁石の各々の前記回転軸線側の縁部および前記回転軸線とは反対側の縁部は、前記回転軸線方向から見たとき楕円の円弧状に湾曲しており、
     以下の(3)および(4)の少なくとも一方を満たす、
     (3)前記一対の磁石の各々の前記回転軸線側の縁部に係る楕円の楕円率は、当該磁石の前記回転軸線とは反対側の縁部に係る楕円の楕円率と異なっている、
     (4)前記一対の磁石の各々の前記回転軸線側の縁部に係る楕円の長軸方向は、当該磁石の前記回転軸線とは反対側の縁部に係る楕円の長軸方向と異なっている、
     請求項1から3のいずれか1項に記載の回転検出器。
    The edge of each of the pair of magnets on the side of the rotation axis and the edge on the side opposite to the axis of rotation are curved in an elliptical arc when viewed from the direction of the rotation axis,
    satisfy at least one of the following (3) and (4),
    (3) The ellipticity of the ellipse on the edge of each of the pair of magnets on the rotation axis side is different from the ellipticity of the ellipse on the edge of the magnet on the side opposite to the rotation axis.
    (4) The major axis direction of the ellipse related to the edge on the rotation axis side of each of the pair of magnets is different from the major axis direction of the ellipse related to the edge of the magnet on the side opposite to the rotation axis. ,
    A rotation detector according to any one of claims 1 to 3.
  5.  前記(4)を満たし、
     前記一対の磁石の各々の前記回転軸線側の縁部に係る楕円の長軸方向は、当該磁石の前記回転軸線とは反対側の縁部に係る楕円の長軸方向と直交している、
     請求項4に記載の回転検出器。
    satisfying the above (4),
    The major axis direction of the ellipse related to the edge on the rotation axis side of each of the pair of magnets is orthogonal to the major axis direction of the ellipse related to the edge of the magnet on the side opposite to the rotation axis,
    5. A rotation detector according to claim 4.
  6.  前記回転軸線に直交しかつ前記第1直交方向に直交する第2直交方向における前記一対の磁石の一端部同士の間、および前記第2直交方向における前記一対の磁石の他端部同士の間にそれぞれ配置されている一対の磁性体をさらに備える、
     請求項1から5のいずれか1項に記載の回転検出器。
    Between one ends of the pair of magnets in a second orthogonal direction orthogonal to the rotation axis and orthogonal to the first orthogonal direction and between the other ends of the pair of magnets in the second orthogonal direction Further comprising a pair of magnetic bodies arranged respectively,
    A rotation detector according to any one of claims 1 to 5.
  7.  前記発電素子と前記一対の磁石とは、前記回転軸線方向において異なる位置に配置されており、
     前記一対の磁石の各々は、当該磁石の前記回転軸線とは反対側の縁部が当該磁石の前記回転軸線側の縁部に対して前記回転軸線方向における前記発電素子側に位置するように、前記第1直交方向に対して傾いている、
     請求項1から6のいずれか1項に記載の回転検出器。
    The power generation element and the pair of magnets are arranged at different positions in the rotation axis direction,
    Each of the pair of magnets is arranged such that the edge of the magnet on the side opposite to the rotation axis is located on the side of the power generation element in the direction of the rotation axis with respect to the edge of the magnet on the side of the rotation axis, tilted with respect to the first orthogonal direction;
    A rotation detector according to any one of claims 1 to 6.
  8.  前記発電素子と前記一対の磁石とは、前記回転軸線方向において異なる位置に配置されており、
     前記一対の磁石の各々の前記回転軸線方向における前記発電素子とは反対側の主面は、前記回転軸線から離れるにつれて漸次前記回転軸線方向における前記発電素子側に位置するように、前記第1直交方向に対して傾いている、
     請求項1から7のいずれか1項に記載の回転検出器。
    The power generation element and the pair of magnets are arranged at different positions in the rotation axis direction,
    The main surface of each of the pair of magnets on the side opposite to the power generation element in the direction of the rotation axis is positioned on the side of the power generation element in the direction of the rotation axis as the distance from the axis of rotation increases. tilted in the direction of
    A rotation detector according to any one of claims 1 to 7.
  9.  前記一対の磁石は、各々が前記回転軸の回転方向に沿う半円弧状であり、相互に一体的に形成されて環状の磁石を構成している、
     請求項2に記載の回転検出器。
    Each of the pair of magnets has a semicircular arc shape along the rotation direction of the rotation shaft, and is integrally formed with each other to form an annular magnet.
    3. A rotation detector according to claim 2.
  10.  前記(2)を満たし、
     前記第1直交方向における前記一対の磁石の各々の前記回転軸線側の縁部に配置されている複数の磁性体をさらに備える、
     請求項9に記載の回転検出器。
    satisfying the above (2),
    Further comprising a plurality of magnetic bodies arranged at the edge of each of the pair of magnets on the rotation axis side in the first orthogonal direction,
    A rotation detector according to claim 9 .
  11.  前記発電素子は、前記回転軸線とずれた位置に配置されている、
     請求項1から10のいずれか1項に記載の回転検出器。
    The power generation element is arranged at a position shifted from the rotation axis,
    A rotation detector according to any one of claims 1 to 10.
  12.  複数の前記発電素子を備える、
     請求項1から11のいずれか1項に記載の回転検出器。
    comprising a plurality of the power generating elements,
    A rotation detector according to any one of claims 1 to 11.
PCT/JP2022/021057 2021-06-30 2022-05-23 Rotation detector WO2023276488A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280042574.8A CN117501072A (en) 2021-06-30 2022-05-23 Rotation detector
JP2023531708A JPWO2023276488A1 (en) 2021-06-30 2022-05-23

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-108666 2021-06-30
JP2021108666 2021-06-30

Publications (1)

Publication Number Publication Date
WO2023276488A1 true WO2023276488A1 (en) 2023-01-05

Family

ID=84691250

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/021057 WO2023276488A1 (en) 2021-06-30 2022-05-23 Rotation detector

Country Status (3)

Country Link
JP (1) JPWO2023276488A1 (en)
CN (1) CN117501072A (en)
WO (1) WO2023276488A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008203199A (en) * 2007-02-22 2008-09-04 Nsk Ltd Rotation angle detector
US20150130450A1 (en) * 2012-04-30 2015-05-14 Fritz Kubler Gmbh Zahl- Und Sensortechnik Energy-self-sufficient multiturn rotary encoder and method for determining a unique position of an encoder shaft by means of the multiturn rotary encoder
JP2015114192A (en) * 2013-12-11 2015-06-22 三菱電機株式会社 Rotation speed detector

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008203199A (en) * 2007-02-22 2008-09-04 Nsk Ltd Rotation angle detector
US20150130450A1 (en) * 2012-04-30 2015-05-14 Fritz Kubler Gmbh Zahl- Und Sensortechnik Energy-self-sufficient multiturn rotary encoder and method for determining a unique position of an encoder shaft by means of the multiturn rotary encoder
JP2015114192A (en) * 2013-12-11 2015-06-22 三菱電機株式会社 Rotation speed detector

Also Published As

Publication number Publication date
CN117501072A (en) 2024-02-02
JPWO2023276488A1 (en) 2023-01-05

Similar Documents

Publication Publication Date Title
US9515525B2 (en) Electric motor
WO2013098940A1 (en) Electric motor
US9515524B2 (en) Electric motor
JP6963857B1 (en) Variable reluctance type resolver
JPH03170870A (en) Variable reluctance revolving sensor
WO2023276488A1 (en) Rotation detector
US11322996B2 (en) Motor
WO2017090163A1 (en) Magnetic sensor and rotation device
JP2007221877A (en) Magnet rotor
US20180226862A1 (en) Rotational position detection device and motor device
CN113036961B (en) Rotary electric machine
JP6892219B2 (en) Rotating machine
JP2006025486A (en) Electric electric machine
JP5249174B2 (en) Rotation angle sensor
CN112787438B (en) Rotary electric machine
JP3758174B2 (en) Non-contact position sensor
JP6088465B2 (en) Drive unit
US12018962B2 (en) Resolver
JP2018129988A (en) Rotary electric machine resolver unit
WO2021182088A1 (en) Permanent magnet synchronous motor
US20240035857A1 (en) Resolver
WO2022124411A1 (en) Resolver
JP6965211B2 (en) Electric motor
JP2005102366A (en) Multipole rotary electric machine
JP2013225983A (en) Resolver

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22832647

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023531708

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202280042574.8

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE