WO2021182088A1 - Permanent magnet synchronous motor - Google Patents

Permanent magnet synchronous motor Download PDF

Info

Publication number
WO2021182088A1
WO2021182088A1 PCT/JP2021/006565 JP2021006565W WO2021182088A1 WO 2021182088 A1 WO2021182088 A1 WO 2021182088A1 JP 2021006565 W JP2021006565 W JP 2021006565W WO 2021182088 A1 WO2021182088 A1 WO 2021182088A1
Authority
WO
WIPO (PCT)
Prior art keywords
permanent magnet
synchronous motor
magnet synchronous
magnetic
permanent magnets
Prior art date
Application number
PCT/JP2021/006565
Other languages
French (fr)
Japanese (ja)
Inventor
暢孝 刈谷
Original Assignee
株式会社ミツバ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ミツバ filed Critical 株式会社ミツバ
Publication of WO2021182088A1 publication Critical patent/WO2021182088A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets

Definitions

  • the present invention relates to a permanent magnet synchronous motor, and particularly to a permanent magnet synchronous motor capable of increasing the variable magnetic flux width.
  • a variable magnetic flux motor capable of changing the magnetic flux interlinking with the stator has been developed (see, for example, Patent Document 1).
  • a flux bypass is provided between the permanent magnets adjacent to each other, and the leakage flux can be changed by the q-axis current.
  • variable magnetic flux width is limited because the strength of the leakage flux passing through the flux bypass is limited.
  • the present invention has been made to solve the above problem, and an object of the present invention is to increase the variable magnetic flux width.
  • one aspect of the present invention is a permanent magnet synchronous motor in which the rotor is provided with a plurality of permanent magnets, and each of the plurality of permanent magnets is magnetized in the circumferential direction and magnetized.
  • the rotor cores that are arranged so that the directions are alternately reversed and constitute the rotor include a plurality of non-magnetic regions provided corresponding to each of the plurality of permanent magnets, and each of the plurality of non-magnetic regions is provided.
  • a permanent magnet synchronous motor extending in the circumferential direction adjacent to each of the plurality of permanent magnets on a side farther from the stator than each of the plurality of permanent magnets.
  • FIG. 1 is a cross-sectional view showing the configuration of the permanent magnet synchronous motor of the present embodiment
  • FIG. 2 is a perspective view showing the configuration of the permanent magnet synchronous motor of the present embodiment
  • FIG. 3 is a permanent magnet synchronous motor of the present embodiment. It is an enlarged plan view which shows the structure of.
  • the permanent magnet synchronous motors of the present embodiment include a substantially cylindrical stator 10 and a rotor rotatably housed inside the stator 10 about a rotation axis 21 (FIG. 1). 20 and.
  • the circumferential direction and the radial direction are defined with reference to the rotation axis 21.
  • the side closer to the rotation axis 21 is defined as “inside”
  • the side away from the rotation axis 21 is defined as "outside”.
  • the stator 10 includes a stator core 11 in which a plurality of salient poles 12 are formed, and a plurality of coils 13 wound around the salient poles 12, respectively.
  • the salient poles 12 project inward in the radial direction, extend in the direction of the rotation axis 21, and are arranged at regular intervals in the circumferential direction.
  • the stator core 11 is configured by, for example, laminating a plurality of electromagnetic steel sheets in the direction of the rotation axis 21.
  • the rotor 20 includes a rotor core 23 to which a plurality of (6 in FIGS. 1 and 2) permanent magnets 22 are attached.
  • the rotor core 23 is configured by, for example, laminating a plurality of electromagnetic steel sheets in the direction of the rotation axis 21.
  • the rotor core 23 is formed from an inner peripheral portion 23a around the rotation axis 21, a plurality of radial portions 26 extending radially from the inner peripheral portion 23a, and radial outer ends of the plurality of radial portions 26. Includes a circumferential portion 23b extending on both sides in the circumferential direction.
  • the permanent magnets 22 are arranged between the circumferential portions 23b adjacent to each other in the circumferential direction.
  • the permanent magnets 22 extend in the direction of the rotation axis 21 along the outer peripheral surface of the rotor 20 and are arranged at regular intervals in the circumferential direction. Each of the permanent magnets 22 is magnetized in the circumferential direction and is arranged so that the magnetizing directions are alternately reversed. That is, the permanent magnets 22 adjacent to each other in the circumferential direction are arranged so that the north poles or the south poles face each other. A d-axis is formed in the middle of the permanent magnets 22 adjacent to each other in the circumferential direction, that is, in the radial direction passing through the radial portion 26 (FIG. 3).
  • the rotor core 23 includes a plurality of non-magnetic regions 25 (six in FIGS. 1 and 2) provided corresponding to the plurality of permanent magnets 22, and each of the plurality of non-magnetic regions 25 has a plurality of permanent magnets.
  • the permanent magnets 22 are adjacent to each of the plurality of permanent magnets 22 and extend in the circumferential direction.
  • a plurality of (6 in FIGS. 1 and 2) leakage flux paths 24 (six in FIGS. 1 and 2) are used to short-circuit the magnetic fluxes of the permanent magnets 22 inside the permanent magnets 22, that is, on the side away from the stator 10.
  • leakage flux path 24 is formed. Both the leakage flux path 24 and the non-magnetic region 25 extend in the direction of the rotation axis 21.
  • the shape of the leakage flux path 24 is defined according to the shape of the non-magnetic region 25, and the leakage flux path 24 is formed so as to surround the non-magnetic region 25. As shown in FIGS. 1 to 3, the radial portion 26 and the circumferential portion 23b each form a part of the leakage flux path 24.
  • leakage flux path 24 Although only one leakage flux path 24 is shown in FIG. 1, the other leakage flux paths 24 are similarly formed so as to surround the non-magnetic region 25 corresponding to each of the permanent magnets 22. (See also Figure 3).
  • each of the non-magnetic regions 25 is provided symmetrically on both sides in the circumferential direction with respect to each of the permanent magnets 22. That is, the diameter passing through the circumferential center of the non-magnetic region 25 (diameter extending from the rotating axis 21) and the diameter passing through the circumferential center of the corresponding permanent magnet 22 (diameter extending from the rotating axis 21) are the same. There is. Further, the non-magnetic region 25 and the permanent magnet 22 have a line-symmetrical shape with these diameters as the axes of symmetry.
  • the length of the non-magnetic region 25 in the circumferential direction is larger than the length of the permanent magnet 22 in the circumferential direction.
  • the circumferential width of the radial portion 26 (D1 indicated by the arrow in FIG. 3) sandwiched between the non-magnetic regions 25 adjacent to each other in the circumferential direction is the radial width of the permanent magnet 22 (indicated by the arrow in FIG. 3).
  • D2 the range of the ratio of D1 and D2 is not limited to the range of 1 to 1.2 times. The control of the leakage flux will be described later.
  • the non-magnetic region 25 can be formed as a void formed in the rotor core 23.
  • a notch corresponding to the non-magnetic region 25 may be formed in the electromagnetic steel sheet.
  • the non-magnetic region 25 can also be formed of a non-magnetic material.
  • the non-magnetic region 25 can be formed by filling the voids (voids corresponding to the non-magnetic regions 25) formed in the rotor core 23 with a non-magnetic material such as resin.
  • a non-magnetic material such as resin.
  • the electromagnetic steel plate and the permanent magnet 22 can be reliably fixed due to the adhesiveness of the resin.
  • the voids in the rotor core 23 are eliminated. Therefore, the robustness of the rotor 20 can be improved.
  • FIG. 4 is a cross-sectional view showing an example in which a cover portion 30 that covers the permanent magnet 22 from the outside is provided on the outer peripheral surface of the rotor 20.
  • a cover portion 30 that covers the permanent magnet 22 from the outside is provided on the outer peripheral surface of the rotor 20.
  • the cover portion 30 is made of a non-magnetic material.
  • FIGS. 5 to 5B are diagrams showing the flow of magnetic flux of a permanent magnet
  • FIG. 5 is a diagram showing the flow of magnetic flux when no power is applied
  • FIGS. 5A and 5B are magnetic fluxes when a d-axis current is applied. It is a figure which shows the flow of.
  • the permanent magnet synchronous motor of this embodiment has a first state in which the magnetic flux of the permanent magnet 22 heads toward the leakage flux path 24 when the d-axis current does not flow, and one of the leakage flux paths 24 when the d-axis current flows. It takes a second state in which the radial portion 26, which is a portion, is magnetically saturated.
  • the leakage flux to the leakage flux path 24 can be controlled in a wide range by the d-axis current. That is, the variable magnetic flux width of the leakage flux can be increased.
  • the d-axis current is zero or small, including when no power is applied, most of the magnetic flux of the permanent magnet 22 becomes the leakage flux to the leakage flux path 24. Therefore, the strength of the interlinkage magnetic flux can be made extremely small. Further, by passing a d-axis current in the direction of strengthening the magnetic flux of the permanent magnet 22, the ratio of the intensity of the interlinkage magnetic flux to the leakage flux to the leakage flux path 24 can be made extremely large.
  • the ratio of the leakage flux and the interlinkage flux to the leakage flux path 24 can be controlled over a wide range and flexibly via the d-axis current. Therefore, it is possible to improve the controllability at low speed, expand the high speed region, and improve the efficiency in the high speed region.
  • the present invention is different from the outer rotor type permanent magnet synchronous motor in which the rotor is arranged outside the stator. It is also possible to apply the invention.
  • FIG. 6 is an enlarged cross-sectional view showing the configuration of an outer rotor type permanent magnet synchronous motor.
  • FIG. 6 shows a cross section in a direction orthogonal to the rotation axis 21.
  • the outer rotor type permanent magnet synchronous motor includes a substantially cylindrical stator 110 and a rotor 120 rotatably housed outside the stator 110 about a rotation axis 21.
  • the stator 110 includes a stator core 111 in which a plurality of salient poles 112 are formed, and a plurality of coils 113 wound around the salient poles 112, respectively.
  • the salient poles 112 project outward in the radial direction, extend in the direction of the rotation axis 21, and are arranged at regular intervals in the circumferential direction.
  • the stator core 111 is configured by, for example, laminating a plurality of electromagnetic steel sheets in the direction of the rotation axis 21. Note that FIG. 6 illustrates only one salient pole 112.
  • the rotor 120 includes a rotor core 123 to which a plurality of permanent magnets 122 are attached.
  • the rotor core 123 is configured by, for example, laminating a plurality of electromagnetic steel sheets in the direction of the rotation axis 21. Note that FIG. 6 shows only a part of the permanent magnets 122.
  • the rotor core 123 extends from the outer peripheral portion 123a, the plurality of radial portions 126 extending in the radial direction from the outer peripheral portion 123a, and the radial inner ends of the plurality of radial portions 126 to both sides in the circumferential direction. Includes the circumferential portion 123b.
  • the permanent magnet 122 is arranged between the circumferential portions 123b adjacent to each other in the circumferential direction.
  • the permanent magnets 122 are extended in the direction of the rotation axis 21 along the outer peripheral surface of the rotor 120, and are arranged at regular intervals in the circumferential direction. Each of the permanent magnets 122 is magnetized in the circumferential direction and is arranged so that the magnetizing directions are alternately reversed. That is, the permanent magnets 122 that are adjacent to each other in the circumferential direction are arranged so that the north poles or the south poles face each other. A d-axis is formed in the middle of the permanent magnets 122 adjacent to each other in the circumferential direction, that is, in the radial direction passing through the radial portion 126.
  • the rotor core 123 includes a plurality of non-magnetic regions 125 provided corresponding to each of the plurality of permanent magnets 122, and each of the plurality of non-magnetic regions 125 is farther from the stator 110 than each of the plurality of permanent magnets 122. On the side (outside), it extends in the circumferential direction adjacent to each of the plurality of permanent magnets 122. As a result, a plurality of leakage flux paths 124 (dotted line in FIG. 6) are formed, which are paths for short-circuiting the magnetic fluxes of the permanent magnets 122 on the outside of the permanent magnets 122, that is, on the side away from the stator 110.
  • Both the leakage flux path 124 and the non-magnetic region 125 extend in the direction of the rotation axis 21.
  • the shape of the leakage flux path 124 is defined according to the shape of the non-magnetic region 125, and the leakage flux path 124 is formed so as to surround the non-magnetic region 125. As shown in FIG. 6, the radial portion 126 and the circumferential portion 123b each form a part of the leakage flux path 124.
  • the circumferential width of the radial portion 126 sandwiched between the non-magnetic regions 125 adjacent to each other in the circumferential direction is 1 times to the radial width of the permanent magnet 122.
  • the range can be 1.2 times. In this case, it becomes easy to control the strength of the leakage flux to the leakage flux path 124 in a wide range.
  • the permanent magnet synchronous motor shown in FIG. 6 has a first state in which the magnetic flux of the permanent magnet 122 heads toward the leakage flux path 124 when the d-axis current does not flow, and one of the leakage flux paths 124 when the d-axis current flows. It takes a second state in which the radial portion 126, which is a portion, is magnetically saturated.
  • the leakage flux to the leakage flux path 124 can be controlled in a wide range by the d-axis current. That is, the variable magnetic flux width of the leakage flux can be increased.
  • the d-axis current is zero or small, including when no power is applied, most of the magnetic flux of the permanent magnet 122 becomes the leakage flux to the leakage flux path 124. Therefore, the strength of the interlinkage magnetic flux can be made extremely small. Further, by passing a d-axis current in the direction of strengthening the magnetic flux of the permanent magnet 122, the ratio of the intensity of the interlinkage magnetic flux to the leakage flux to the leakage flux path 124 can be made extremely large.
  • a permanent magnet synchronous motor in which the rotors (20, 120) are provided with a plurality of permanent magnets (22, 122). Each of the plurality of permanent magnets is magnetized in the circumferential direction and arranged so that the magnetizing directions are alternately reversed.
  • the rotor cores (23, 123) constituting the rotor are A plurality of non-magnetic regions (25, 125) provided corresponding to each of the plurality of permanent magnets are provided.
  • Each of the plurality of non-magnetic regions is a permanent magnet extending in the circumferential direction adjacent to each of the plurality of permanent magnets on a side farther from the stator (10) than each of the plurality of permanent magnets. Synchronous motor.
  • a leakage flux path is formed which is a path for short-circuiting each magnetic flux of the permanent magnet on the side farther from the stator than each of the permanent magnets.
  • the non-magnetic region is a permanent magnet synchronous motor composed of a non-magnetic material or voids formed in the rotor core.
  • the leakage flux path can be defined according to the range of the non-magnetic region composed of the non-magnetic material or the voids formed in the rotor core.
  • the non-magnetic region is made of a non-magnetic material, the robustness of the rotor can be obtained.
  • Appendix 3 In the permanent magnet synchronous motor described in Appendix 1 or Appendix 2, A permanent magnet synchronous motor in which each of the non-magnetic regions and each of the permanent magnets are line-symmetrical with respect to a common axis of symmetry extending in the radial direction.
  • Appendix 4 In the permanent magnet synchronous motor according to any one of Appendix 1 to Appendix 3, A permanent magnet synchronous motor in which the length of the non-magnetic region in the circumferential direction is larger than the length of each of the permanent magnets in the circumferential direction.
  • the rotor core The inner peripheral part (23a) around the rotation axis (21) and A plurality of radial portions (26) extending in the radial direction from the inner peripheral portion, and Includes a circumferential portion (23b) extending from each radial outer end of each of the plurality of radial portions to both sides in the circumferential direction.
  • the permanent magnets are arranged between the circumferential portions adjacent to each other in the circumferential direction.
  • the non-magnetic region is a permanent magnet synchronous motor arranged between the radial portions adjacent to each other in the circumferential direction.
  • the leakage flux path is formed so as to pass through the circumferential portion and the radial portion.
  • the rotor core The outer peripheral portion (123a) around the rotation axis (21) and A plurality of radial portions (126) extending in the radial direction from the outer peripheral portion, and Includes a circumferential portion (123b) extending from each radial inner end of each of the plurality of radial portions to both sides in the circumferential direction.
  • the permanent magnets are arranged between the circumferential portions adjacent to each other in the circumferential direction.
  • the non-magnetic region is a permanent magnet synchronous motor arranged between the radial portions adjacent to each other in the circumferential direction.
  • a leakage flux path is formed so as to pass through the circumferential portion and the radial portion.
  • the circumferential width of the radial portion sandwiched between the non-magnetic regions adjacent to each other in the circumferential direction is in the range of 1 to 1.2 times the radial width of the permanent magnet. be able to. In this case, it becomes easy to control the strength of the leakage flux to the leakage flux path in a wide range.
  • the circumferential width of the radial portion is in the range of 1 to 1.2 times the radial width of the permanent magnet, so that the radial width in which the leakage flux path is formed is formed.
  • the width of the part in the circumferential direction can be appropriately defined, and the strength of the leakage flux to the leakage flux path can be easily controlled in a wide range.
  • Appendix 7 In the permanent magnet synchronous motor according to any one of Appendix 1 to Appendix 6, The rotor is arranged inside the stator and The rotor is a permanent magnet synchronous motor including a cover portion that covers the permanent magnet from the outside.
  • the cover portion can prevent the rotor from falling off to the outside.
  • the permanent magnet synchronous motor according to any one of claims 1 to 6.
  • Leakage flux paths (24, 124) that short-circuit the magnetic fluxes of the permanent magnets are formed in the rotor core.
  • the leakage flux paths are formed so as to surround a non-magnetic region on a side away from each of the permanent magnets.
  • the permanent magnet synchronous motor is The first state in which the magnetic flux of the permanent magnet goes toward the leakage flux path when the d-axis current is not passed, A second state in which at least a part of the leakage flux path is magnetically saturated when the d-axis current is passed. Take, permanent magnet synchronous motor.
  • the permanent magnet synchronous motor takes a first state in which the magnetic flux of the permanent magnet goes toward the leakage flux path and a second state in which at least a part of the leakage flux path is magnetically saturated. Therefore, the strength of the magnetic flux interlinking with the stator can be controlled in a wide range.

Abstract

The present invention increases a variable magnetic flux width. This permanent magnet synchronous motor is provided with a plurality of permanent magnets in a rotor, wherein: the plurality of permanent magnets are each magnetized in the circumferential direction and disposed so that the magnetization directions are alternately reversed; a rotor core constituting the rotor is provided with a plurality of non-magnetic regions provided corresponding to the plurality of respective permanent magnets; and the plurality of non-magnetic regions are respectively extended in the circumferential direction, adjacently to the plurality of respective permanent magnets, on the side more apart from the stator than the plurality of respective permanent magnets.

Description

永久磁石同期モータPermanent magnet synchronous motor
 本発明は、永久磁石同期モータに関し、とくに可変磁束幅を増大させることが可能な永久磁石同期モータに関する。 The present invention relates to a permanent magnet synchronous motor, and particularly to a permanent magnet synchronous motor capable of increasing the variable magnetic flux width.
 一般的な永久磁石同期モータでは、無通電時でも磁石の磁束がステータに鎖交するため、それによって生ずる誘起電圧が高速領域の拡大や高速領域における効率化を阻害する。このような現象を抑制できるモータとして、ステータに鎖交する磁束を変化させることができる可変磁束モータが開発されている(例えば、特許文献1参照)。この可変磁束モータでは、互いに隣接する永久磁石間にフラックスバイパスを設け、q軸電流により漏れ磁束を変化させることができる。 In a general permanent magnet synchronous motor, the magnetic flux of the magnet interlinks with the stator even when it is not energized, so the induced voltage generated by it hinders the expansion of the high-speed region and the efficiency improvement in the high-speed region. As a motor capable of suppressing such a phenomenon, a variable magnetic flux motor capable of changing the magnetic flux interlinking with the stator has been developed (see, for example, Patent Document 1). In this variable magnetic flux motor, a flux bypass is provided between the permanent magnets adjacent to each other, and the leakage flux can be changed by the q-axis current.
特開2017-225277号公報Japanese Unexamined Patent Publication No. 2017-225277
 上記の可変磁束モータでは、フラックスバイパスを通る漏れ磁束の強さには制約があるため、可変磁束幅が制限されるという問題がある。 In the above variable magnetic flux motor, there is a problem that the variable magnetic flux width is limited because the strength of the leakage flux passing through the flux bypass is limited.
 本発明は、上記問題を解決すべくなされたもので、可変磁束幅を増大させることを目的とする。 The present invention has been made to solve the above problem, and an object of the present invention is to increase the variable magnetic flux width.
 上記問題を解決するために、本発明の一態様は、ロータに複数の永久磁石を備える永久磁石同期モータであって、前記複数の永久磁石のそれぞれは周方向に着磁されるとともに、着磁方向が交互に反転するように配置され、前記ロータを構成するロータコアは、前記複数の永久磁石のそれぞれに対応して設けられた複数の非磁性領域を備え、前記複数の非磁性領域のそれぞれは、前記複数の永久磁石のそれぞれよりも前記ステータから離れた側において前記複数の永久磁石のそれぞれと隣接して周方向に延設されている、永久磁石同期モータを提供する。 In order to solve the above problem, one aspect of the present invention is a permanent magnet synchronous motor in which the rotor is provided with a plurality of permanent magnets, and each of the plurality of permanent magnets is magnetized in the circumferential direction and magnetized. The rotor cores that are arranged so that the directions are alternately reversed and constitute the rotor include a plurality of non-magnetic regions provided corresponding to each of the plurality of permanent magnets, and each of the plurality of non-magnetic regions is provided. Provided is a permanent magnet synchronous motor extending in the circumferential direction adjacent to each of the plurality of permanent magnets on a side farther from the stator than each of the plurality of permanent magnets.
 この発明によれば、可変磁束幅を増大させることが可能となる。 According to the present invention, it is possible to increase the variable magnetic flux width.
本実施例の永久磁石同期モータの構成を示す断面図である。It is sectional drawing which shows the structure of the permanent magnet synchronous motor of this Example. 本実施例の永久磁石同期モータの構成を示す斜視図である。It is a perspective view which shows the structure of the permanent magnet synchronous motor of this Example. 本実施例の永久磁石同期モータの構成を示す拡大平面図である。It is an enlarged plan view which shows the structure of the permanent magnet synchronous motor of this Example. ロータの外周面に、永久磁石を外側から覆うカバー部を設ける例を示す断面図である。It is sectional drawing which shows the example which provides the cover part which covers a permanent magnet from the outside on the outer peripheral surface of a rotor. 無通電時における磁束の流れを示す図である。It is a figure which shows the flow of the magnetic flux at the time of de-energization. d軸電流を流した場合における磁束の流れを示す図である。It is a figure which shows the flow of the magnetic flux when the d-axis current is passed. d軸電流を流した場合における磁束の流れを示す図である。It is a figure which shows the flow of the magnetic flux when the d-axis current is passed. アウターロータ型の永久磁石同期モータの構成を示す拡大断面図である。It is an enlarged cross-sectional view which shows the structure of the outer rotor type permanent magnet synchronous motor.
 以下、本発明の実施形態について図面を参照して説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 図1は、本実施例の永久磁石同期モータの構成を示す断面図、図2は、本実施例の永久磁石同期モータの構成を示す斜視図、図3は、本実施例の永久磁石同期モータの構成を示す拡大平面図である。 FIG. 1 is a cross-sectional view showing the configuration of the permanent magnet synchronous motor of the present embodiment, FIG. 2 is a perspective view showing the configuration of the permanent magnet synchronous motor of the present embodiment, and FIG. 3 is a permanent magnet synchronous motor of the present embodiment. It is an enlarged plan view which shows the structure of.
 図1~図3に示すように、本実施例の永久磁石同期モータは、略円筒形状のステータ10と、ステータ10の内部において回転軸線21(図1)を中心として回転可能に収容されるロータ20と、を備える。なお、以下の記載において、回転軸線21を基準として周方向および径方向を規定している。また、回転軸線21に近い側を「内側」とし、回転軸線21から離れた側を「外側」と規定している。 As shown in FIGS. 1 to 3, the permanent magnet synchronous motors of the present embodiment include a substantially cylindrical stator 10 and a rotor rotatably housed inside the stator 10 about a rotation axis 21 (FIG. 1). 20 and. In the following description, the circumferential direction and the radial direction are defined with reference to the rotation axis 21. Further, the side closer to the rotation axis 21 is defined as "inside", and the side away from the rotation axis 21 is defined as "outside".
 ステータ10は、複数の突極12が形成されたステータコア11と、突極12にそれぞれ巻き回される複数のコイル13と、を備える。突極12は、径方向内側に向けて突出し、回転軸線21方向に延設されるとともに、周方向に一定間隔で配置されている。ステータコア11は、例えば、複数枚の電磁鋼板を回転軸線21方向に積層して構成されている。 The stator 10 includes a stator core 11 in which a plurality of salient poles 12 are formed, and a plurality of coils 13 wound around the salient poles 12, respectively. The salient poles 12 project inward in the radial direction, extend in the direction of the rotation axis 21, and are arranged at regular intervals in the circumferential direction. The stator core 11 is configured by, for example, laminating a plurality of electromagnetic steel sheets in the direction of the rotation axis 21.
 ロータ20は、複数(図1~図2では6個)の永久磁石22が取り付けられたロータコア23を備える。ロータコア23は、例えば、複数枚の電磁鋼板を回転軸線21方向に積層して構成されている。 The rotor 20 includes a rotor core 23 to which a plurality of (6 in FIGS. 1 and 2) permanent magnets 22 are attached. The rotor core 23 is configured by, for example, laminating a plurality of electromagnetic steel sheets in the direction of the rotation axis 21.
 ロータコア23は、回転軸線21まわりの内周部位23aと、内周部位23aから径方向に延設される複数の径方向部位26と、複数の径方向部位26のそれぞれの径方向外側端部から周方向両側に延設される周方向部位23bとを含む。永久磁石22は、周方向で隣り合う周方向部位23bの間に配置される。 The rotor core 23 is formed from an inner peripheral portion 23a around the rotation axis 21, a plurality of radial portions 26 extending radially from the inner peripheral portion 23a, and radial outer ends of the plurality of radial portions 26. Includes a circumferential portion 23b extending on both sides in the circumferential direction. The permanent magnets 22 are arranged between the circumferential portions 23b adjacent to each other in the circumferential direction.
 永久磁石22は、ロータ20の外周面に沿って回転軸線21方向に延設されるとともに、周方向に一定間隔で配置されている。永久磁石22のそれぞれは、周方向に着磁されるとともに、着磁方向が交互に反転するように配置されている。すなわち、周方向に互いに隣接する永久磁石22は、N極又はS極どうしが互いに対向した向きに配置されている。周方向に互いに隣接する永久磁石22の中間、すなわち径方向部位26を通る径方向にd軸が形成される(図3)。 The permanent magnets 22 extend in the direction of the rotation axis 21 along the outer peripheral surface of the rotor 20 and are arranged at regular intervals in the circumferential direction. Each of the permanent magnets 22 is magnetized in the circumferential direction and is arranged so that the magnetizing directions are alternately reversed. That is, the permanent magnets 22 adjacent to each other in the circumferential direction are arranged so that the north poles or the south poles face each other. A d-axis is formed in the middle of the permanent magnets 22 adjacent to each other in the circumferential direction, that is, in the radial direction passing through the radial portion 26 (FIG. 3).
 ロータコア23は、複数の永久磁石22のそれぞれに対応して設けられた複数(図1~図2では6個)の非磁性領域25を備え、複数の非磁性領域25のそれぞれは、複数の永久磁石22のそれぞれよりもステータ10から離れた側(内側)において複数の永久磁石22のそれぞれと隣接して周方向に延設されている。これにより、永久磁石22のそれぞれの磁束を永久磁石22のそれぞれよりも内側、すなわちステータ10から離れた側において短絡する経路となる複数(図1~図2では6個)の漏れ磁束路24(図1の点線)が形成される。漏れ磁束路24および非磁性領域25は、いずれも回転軸線21方向に延設されている。漏れ磁束路24の形状は、非磁性領域25の形状に応じて規定され、漏れ磁束路24は非磁性領域25を取り囲むように形成される。図1~図3に示すように、径方向部位26および周方向部位23bは、それぞれ漏れ磁束路24の一部を構成する。 The rotor core 23 includes a plurality of non-magnetic regions 25 (six in FIGS. 1 and 2) provided corresponding to the plurality of permanent magnets 22, and each of the plurality of non-magnetic regions 25 has a plurality of permanent magnets. On the side (inside) away from each of the stators 10 than each of the magnets 22, the permanent magnets 22 are adjacent to each of the plurality of permanent magnets 22 and extend in the circumferential direction. As a result, a plurality of (6 in FIGS. 1 and 2) leakage flux paths 24 (six in FIGS. 1 and 2) are used to short-circuit the magnetic fluxes of the permanent magnets 22 inside the permanent magnets 22, that is, on the side away from the stator 10. The dotted line in FIG. 1) is formed. Both the leakage flux path 24 and the non-magnetic region 25 extend in the direction of the rotation axis 21. The shape of the leakage flux path 24 is defined according to the shape of the non-magnetic region 25, and the leakage flux path 24 is formed so as to surround the non-magnetic region 25. As shown in FIGS. 1 to 3, the radial portion 26 and the circumferential portion 23b each form a part of the leakage flux path 24.
 なお、図1において、漏れ磁束路24を1つのみ図示しているが、永久磁石22のそれぞれに対応して、他の漏れ磁束路24は非磁性領域25を取り囲むような形状に同様に形成される(図3も参照)。 Although only one leakage flux path 24 is shown in FIG. 1, the other leakage flux paths 24 are similarly formed so as to surround the non-magnetic region 25 corresponding to each of the permanent magnets 22. (See also Figure 3).
 図1~図3に示すように、非磁性領域25のそれぞれは、永久磁石22のそれぞれに対して、周方向両側で対称に設けられている。すなわち、非磁性領域25の周方向の中心を通る径(回転軸線21から延びる径)と、対応する永久磁石22の周方向の中心を通る径(回転軸線21から延びる径)は、一致している。また、これらの径を対称軸として、非磁性領域25および永久磁石22は線対称の形状とされている。 As shown in FIGS. 1 to 3, each of the non-magnetic regions 25 is provided symmetrically on both sides in the circumferential direction with respect to each of the permanent magnets 22. That is, the diameter passing through the circumferential center of the non-magnetic region 25 (diameter extending from the rotating axis 21) and the diameter passing through the circumferential center of the corresponding permanent magnet 22 (diameter extending from the rotating axis 21) are the same. There is. Further, the non-magnetic region 25 and the permanent magnet 22 have a line-symmetrical shape with these diameters as the axes of symmetry.
 また、図1~図3に示すように、非磁性領域25の周方向における長さは、永久磁石22の周方向における長さよりも大きい。 Further, as shown in FIGS. 1 to 3, the length of the non-magnetic region 25 in the circumferential direction is larger than the length of the permanent magnet 22 in the circumferential direction.
 さらに、周方向に互いに隣接する非磁性領域25に挟まれた径方向部位26の周方向の幅(図3の矢印で示すD1)は、永久磁石22の径方向の幅(図3の矢印で示すD2)の1倍~1.2倍の範囲とすると、漏れ磁束路24への漏れ磁束の強度を広い範囲で制御しやすくなる。ただし、D1とD2との比率の範囲は、1倍~1.2倍の範囲に限定されない。漏れ磁束の制御については後述する。 Further, the circumferential width of the radial portion 26 (D1 indicated by the arrow in FIG. 3) sandwiched between the non-magnetic regions 25 adjacent to each other in the circumferential direction is the radial width of the permanent magnet 22 (indicated by the arrow in FIG. 3). When the range is 1 to 1.2 times that of D2) shown, it becomes easy to control the strength of the leakage magnetic flux to the leakage magnetic flux path 24 in a wide range. However, the range of the ratio of D1 and D2 is not limited to the range of 1 to 1.2 times. The control of the leakage flux will be described later.
 非磁性領域25は、ロータコア23に形成された空隙として形成することができる。ロータコア23が複数枚の電磁鋼板を積層して構成される場合には、電磁鋼板に非磁性領域25に対応する切欠きを形成すればよい。 The non-magnetic region 25 can be formed as a void formed in the rotor core 23. When the rotor core 23 is formed by laminating a plurality of electromagnetic steel sheets, a notch corresponding to the non-magnetic region 25 may be formed in the electromagnetic steel sheet.
 非磁性領域25を非磁性材料により形成することもできる。例えば、ロータコア23に形成された空隙(非磁性領域25に対応する空隙)に、樹脂等の非磁性材料を充填することで、非磁性領域25を形成することができる。この場合、ロータコア23に形成された空隙が樹脂等で充填されるため、樹脂の接着性により電磁鋼板および永久磁石22を確実に固定することが可能となる。また、ロータコア23内の空隙がなくなる。このため、ロータ20の堅牢性を向上させることができる。 The non-magnetic region 25 can also be formed of a non-magnetic material. For example, the non-magnetic region 25 can be formed by filling the voids (voids corresponding to the non-magnetic regions 25) formed in the rotor core 23 with a non-magnetic material such as resin. In this case, since the voids formed in the rotor core 23 are filled with resin or the like, the electromagnetic steel plate and the permanent magnet 22 can be reliably fixed due to the adhesiveness of the resin. In addition, the voids in the rotor core 23 are eliminated. Therefore, the robustness of the rotor 20 can be improved.
 図4は、ロータ20の外周面に、永久磁石22を外側から覆うカバー部30を設ける例を示す断面図である。図4に示すように、カバー部30をロータ20の外周面に設けることにより、永久磁石22を外側から支持できるため、永久磁石22が外側に脱落することを防止できる。カバー部30は非磁性材料により形成されることが望ましい。また、ロータコア23の外周面と、ステータコア11(突極12)の内周面との距離を極力小さく保つために、カバー部30の厚みを小さく抑えることが望ましい。 FIG. 4 is a cross-sectional view showing an example in which a cover portion 30 that covers the permanent magnet 22 from the outside is provided on the outer peripheral surface of the rotor 20. As shown in FIG. 4, by providing the cover portion 30 on the outer peripheral surface of the rotor 20, the permanent magnet 22 can be supported from the outside, so that the permanent magnet 22 can be prevented from falling off to the outside. It is desirable that the cover portion 30 is made of a non-magnetic material. Further, in order to keep the distance between the outer peripheral surface of the rotor core 23 and the inner peripheral surface of the stator core 11 (protrusion pole 12) as small as possible, it is desirable to keep the thickness of the cover portion 30 small.
 図5~図5Bは、永久磁石の磁束の流れを示す図であり、図5は、無通電時における磁束の流れを示す図、図5Aおよび図5Bは、d軸電流を流した場合における磁束の流れを示す図である。 5 to 5B are diagrams showing the flow of magnetic flux of a permanent magnet, FIG. 5 is a diagram showing the flow of magnetic flux when no power is applied, and FIGS. 5A and 5B are magnetic fluxes when a d-axis current is applied. It is a figure which shows the flow of.
 本実施例の永久磁石同期モータは、d軸電流が流れないときに永久磁石22の磁束が漏れ磁束路24に向かう第1の状態と、d軸電流が流れたときに漏れ磁束路24の一部である径方向部位26が磁気的に飽和する第2の状態とをとる。 The permanent magnet synchronous motor of this embodiment has a first state in which the magnetic flux of the permanent magnet 22 heads toward the leakage flux path 24 when the d-axis current does not flow, and one of the leakage flux paths 24 when the d-axis current flows. It takes a second state in which the radial portion 26, which is a portion, is magnetically saturated.
 コイル13に電流(d軸電流を含む電流)を流さない場合、図5に示すように、永久磁石22のほぼすべての磁束は漏れ磁束路24に沿った磁束100となる。したがって、この場合には、ステータ10にはほとんど磁束は鎖交しておらず、無通電時のコギングトルクが極めて小さくなる。この結果、モータ始動時の高い制御性を得ることができる。また、鎖交磁束による誘起電圧が抑制されるため、とくに高速領域の拡大と、高速領域での高効率化を図ることができる。 When no current (current including d-axis current) is passed through the coil 13, almost all the magnetic flux of the permanent magnet 22 becomes the magnetic flux 100 along the leakage flux path 24, as shown in FIG. Therefore, in this case, almost no magnetic flux is interlinked with the stator 10, and the cogging torque when the stator 10 is not energized becomes extremely small. As a result, high controllability at the time of starting the motor can be obtained. Further, since the induced voltage due to the interlinkage magnetic flux is suppressed, it is possible to expand the high-speed region and improve the efficiency in the high-speed region.
 図5Aおよび図5Bに示すように、対応するコイル13に永久磁石22の磁束を強める方向のd軸電流を流した場合、周方向に互いに隣接する非磁性領域25に挟まれた径方向部位26(漏れ磁束路24の一部)は、d軸電流により飽和する。このため、永久磁石22から周方向に延びる磁束の大部分は漏れ磁束路24に沿った内周方向に向かわず、磁束200として示すように、90°折れ曲がるようにして外周方向に向かう。磁束200はステータ10とロータ20との間の間隙を介して、鎖交磁束としてステータ10内を流れる。したがって、この場合には、d軸電流と永久磁石22による磁束のほとんどが鎖交磁束となり、磁束が漏れ磁束路24に分流することによるトルクの低下などが抑制される。 As shown in FIGS. 5A and 5B, when a d-axis current in a direction for strengthening the magnetic flux of the permanent magnet 22 is passed through the corresponding coil 13, the radial portion 26 sandwiched between the non-magnetic regions 25 adjacent to each other in the circumferential direction. (A part of the leakage flux path 24) is saturated by the d-axis current. Therefore, most of the magnetic flux extending in the circumferential direction from the permanent magnet 22 does not go in the inner peripheral direction along the leakage flux path 24, but goes in the outer peripheral direction so as to be bent by 90 ° as shown as the magnetic flux 200. The magnetic flux 200 flows in the stator 10 as an interlinkage magnetic flux through the gap between the stator 10 and the rotor 20. Therefore, in this case, most of the d-axis current and the magnetic flux generated by the permanent magnet 22 become the interlinkage magnetic flux, and the decrease in torque due to the flux flowing into the leakage flux path 24 is suppressed.
 このように、本実施例の永久磁石同期モータでは、d軸電流により漏れ磁束路24への漏れ磁束を広範囲で制御できる。すなわち、漏れ磁束の可変磁束幅を増大させることができる。とくに、無通電時を含め、d軸電流がゼロの場合、又は小さい場合には、永久磁石22の磁束の大部分が漏れ磁束路24への漏れ磁束となる。このため、鎖交磁束の強度を極めて小さくすることができる。また、永久磁石22の磁束を強める方向のd軸電流を流すことにより、漏れ磁束路24への漏れ磁束に対する鎖交磁束の強度の割合を極めて大きくすることができる。 As described above, in the permanent magnet synchronous motor of this embodiment, the leakage flux to the leakage flux path 24 can be controlled in a wide range by the d-axis current. That is, the variable magnetic flux width of the leakage flux can be increased. In particular, when the d-axis current is zero or small, including when no power is applied, most of the magnetic flux of the permanent magnet 22 becomes the leakage flux to the leakage flux path 24. Therefore, the strength of the interlinkage magnetic flux can be made extremely small. Further, by passing a d-axis current in the direction of strengthening the magnetic flux of the permanent magnet 22, the ratio of the intensity of the interlinkage magnetic flux to the leakage flux to the leakage flux path 24 can be made extremely large.
 このように、本実施例の永久磁石同期モータでは、d軸電流を介して、漏れ磁束路24への漏れ磁束および鎖交磁束の割合を広範囲かつ柔軟に制御することができる。したがって、低速時の制御性の向上、高速領域の拡大、高速領域における高効率化などを図ることができる。 As described above, in the permanent magnet synchronous motor of this embodiment, the ratio of the leakage flux and the interlinkage flux to the leakage flux path 24 can be controlled over a wide range and flexibly via the d-axis current. Therefore, it is possible to improve the controllability at low speed, expand the high speed region, and improve the efficiency in the high speed region.
 以上、この発明の実施例について図面を参照して詳述してきたが、具体的な構成はこの実施例に限られるものではなく、この発明の要旨を逸脱しない範囲の設計等も含まれる。 Although the examples of the present invention have been described in detail with reference to the drawings, the specific configuration is not limited to the examples, and the design and the like within a range not deviating from the gist of the present invention are also included.
 例えば、上記実施例では、ロータがステータの内側に配置されるインナーロータ型の永久磁石同期モータについて説明したが、ロータがステータの外側に配置されるアウターロータ型の永久磁石同期モータに対し、本発明を適用することも可能である。 For example, in the above embodiment, the inner rotor type permanent magnet synchronous motor in which the rotor is arranged inside the stator has been described, but the present invention is different from the outer rotor type permanent magnet synchronous motor in which the rotor is arranged outside the stator. It is also possible to apply the invention.
 図6は、アウターロータ型の永久磁石同期モータの構成を示す拡大断面図である。図6は、回転軸線21に直交する方向の断面を示している。
 図6に示すように、アウターロータ型の永久磁石同期モータは、略円柱形状のステータ110と、ステータ110の外部において回転軸線21を中心として回転可能に収容されるロータ120と、を備える。
FIG. 6 is an enlarged cross-sectional view showing the configuration of an outer rotor type permanent magnet synchronous motor. FIG. 6 shows a cross section in a direction orthogonal to the rotation axis 21.
As shown in FIG. 6, the outer rotor type permanent magnet synchronous motor includes a substantially cylindrical stator 110 and a rotor 120 rotatably housed outside the stator 110 about a rotation axis 21.
 ステータ110は、複数の突極112が形成されたステータコア111と、突極112にそれぞれ巻き回される複数のコイル113と、を備える。突極112は、径方向外側に向けて突出し、回転軸線21方向に延設されるとともに、周方向に一定間隔で配置されている。ステータコア111は、例えば、複数枚の電磁鋼板を回転軸線21方向に積層して構成されている。なお、図6では、1つの突極112のみを図示している。 The stator 110 includes a stator core 111 in which a plurality of salient poles 112 are formed, and a plurality of coils 113 wound around the salient poles 112, respectively. The salient poles 112 project outward in the radial direction, extend in the direction of the rotation axis 21, and are arranged at regular intervals in the circumferential direction. The stator core 111 is configured by, for example, laminating a plurality of electromagnetic steel sheets in the direction of the rotation axis 21. Note that FIG. 6 illustrates only one salient pole 112.
 ロータ120は、複数の永久磁石122が取り付けられたロータコア123を備える。ロータコア123は、例えば、複数枚の電磁鋼板を回転軸線21方向に積層して構成されている。なお、図6では、一部の永久磁石122のみを図示している。 The rotor 120 includes a rotor core 123 to which a plurality of permanent magnets 122 are attached. The rotor core 123 is configured by, for example, laminating a plurality of electromagnetic steel sheets in the direction of the rotation axis 21. Note that FIG. 6 shows only a part of the permanent magnets 122.
 ロータコア123は、外周部位123aと、外周部位123aから径方向に延設される複数の径方向部位126と、複数の径方向部位126のそれぞれの径方向内側端部から周方向両側に延設される周方向部位123bとを含む。永久磁石122は、周方向で隣り合う周方向部位123bの間に配置される。 The rotor core 123 extends from the outer peripheral portion 123a, the plurality of radial portions 126 extending in the radial direction from the outer peripheral portion 123a, and the radial inner ends of the plurality of radial portions 126 to both sides in the circumferential direction. Includes the circumferential portion 123b. The permanent magnet 122 is arranged between the circumferential portions 123b adjacent to each other in the circumferential direction.
 永久磁石122は、ロータ120の外周面に沿って回転軸線21方向に延設されるとともに、周方向に一定間隔で配置されている。永久磁石122のそれぞれは、周方向に着磁されるとともに、着磁方向が交互に反転するように配置されている。すなわち、周方向に互いに隣接する永久磁石122は、N極又はS極どうしが互いに対向した向きに配置されている。周方向に互いに隣接する永久磁石122の中間、すなわち径方向部位126を通る径方向にd軸が形成される。 The permanent magnets 122 are extended in the direction of the rotation axis 21 along the outer peripheral surface of the rotor 120, and are arranged at regular intervals in the circumferential direction. Each of the permanent magnets 122 is magnetized in the circumferential direction and is arranged so that the magnetizing directions are alternately reversed. That is, the permanent magnets 122 that are adjacent to each other in the circumferential direction are arranged so that the north poles or the south poles face each other. A d-axis is formed in the middle of the permanent magnets 122 adjacent to each other in the circumferential direction, that is, in the radial direction passing through the radial portion 126.
 ロータコア123は、複数の永久磁石122のそれぞれに対応して設けられた複数の非磁性領域125を備え、複数の非磁性領域125のそれぞれは、複数の永久磁石122のそれぞれよりもステータ110から離れた側(外側)において複数の永久磁石122のそれぞれと隣接して周方向に延設されている。これにより、永久磁石122のそれぞれの磁束を永久磁石122のそれぞれよりも外側、すなわちステータ110から離れた側において短絡する経路となる複数の漏れ磁束路124(図6の点線)が形成される。漏れ磁束路124および非磁性領域125は、いずれも回転軸線21方向に延設されている。漏れ磁束路124の形状は、非磁性領域125の形状に応じて規定され、漏れ磁束路124は非磁性領域125を取り囲むように形成される。図6に示すように、径方向部位126および周方向部位123bは、それぞれ漏れ磁束路124の一部を構成する。 The rotor core 123 includes a plurality of non-magnetic regions 125 provided corresponding to each of the plurality of permanent magnets 122, and each of the plurality of non-magnetic regions 125 is farther from the stator 110 than each of the plurality of permanent magnets 122. On the side (outside), it extends in the circumferential direction adjacent to each of the plurality of permanent magnets 122. As a result, a plurality of leakage flux paths 124 (dotted line in FIG. 6) are formed, which are paths for short-circuiting the magnetic fluxes of the permanent magnets 122 on the outside of the permanent magnets 122, that is, on the side away from the stator 110. Both the leakage flux path 124 and the non-magnetic region 125 extend in the direction of the rotation axis 21. The shape of the leakage flux path 124 is defined according to the shape of the non-magnetic region 125, and the leakage flux path 124 is formed so as to surround the non-magnetic region 125. As shown in FIG. 6, the radial portion 126 and the circumferential portion 123b each form a part of the leakage flux path 124.
 なお、図6に示す永久磁石同期モータにおいても、周方向に互いに隣接する非磁性領域125に挟まれた径方向部位126の周方向の幅を、永久磁石122の径方向の幅の1倍~1.2倍の範囲とすることができる。この場合、漏れ磁束路124への漏れ磁束の強度を広い範囲で制御しやすくなる。 Also in the permanent magnet synchronous motor shown in FIG. 6, the circumferential width of the radial portion 126 sandwiched between the non-magnetic regions 125 adjacent to each other in the circumferential direction is 1 times to the radial width of the permanent magnet 122. The range can be 1.2 times. In this case, it becomes easy to control the strength of the leakage flux to the leakage flux path 124 in a wide range.
 図6に示す永久磁石同期モータは、d軸電流が流れないときに永久磁石122の磁束が漏れ磁束路124に向かう第1の状態と、d軸電流が流れたときに漏れ磁束路124の一部である径方向部位126が磁気的に飽和する第2の状態とをとる。 The permanent magnet synchronous motor shown in FIG. 6 has a first state in which the magnetic flux of the permanent magnet 122 heads toward the leakage flux path 124 when the d-axis current does not flow, and one of the leakage flux paths 124 when the d-axis current flows. It takes a second state in which the radial portion 126, which is a portion, is magnetically saturated.
 コイル113に電流(d軸電流を含む電流)を流さない場合、永久磁石122のほぼすべての磁束は漏れ磁束路124に沿った磁束となる。したがって、この場合には、ステータ110にはほとんど磁束は鎖交しておらず、無通電時のコギングトルクが極めて小さくなる。この結果、モータ始動時の高い制御性を得ることができる。また、鎖交磁束による誘起電圧が抑制されるため、とくに高速領域の拡大と、高速領域での高効率化を図ることができる。 When no current (current including d-axis current) is passed through the coil 113, almost all the magnetic flux of the permanent magnet 122 becomes the magnetic flux along the leakage flux path 124. Therefore, in this case, almost no magnetic flux is interlinked with the stator 110, and the cogging torque when the stator 110 is not energized becomes extremely small. As a result, high controllability at the time of starting the motor can be obtained. Further, since the induced voltage due to the interlinkage magnetic flux is suppressed, it is possible to expand the high-speed region and improve the efficiency in the high-speed region.
 対応するコイル113に永久磁石122の磁束を強める方向のd軸電流を流した場合、周方向に互いに隣接する非磁性領域125に挟まれた径方向部位126(漏れ磁束路124の一部)は、d軸電流により飽和する。このため、永久磁石122から周方向に延びる磁束の大部分は漏れ磁束路124に沿った外周方向に向かわず、磁束200として示すように、90°折れ曲がるようにして内周方向に向かう。磁束200はステータ110とロータ120との間の間隙を介して、鎖交磁束としてステータ110内を流れる。したがって、この場合には、d軸電流と永久磁石122による磁束のほとんどが鎖交磁束となり、磁束が漏れ磁束路124に分流することによるトルクの低下などが抑制される。 When a d-axis current in the direction of increasing the magnetic flux of the permanent magnet 122 is passed through the corresponding coil 113, the radial portion 126 (a part of the leakage flux path 124) sandwiched between the non-magnetic regions 125 adjacent to each other in the circumferential direction is formed. , D-axis current saturates. Therefore, most of the magnetic flux extending in the circumferential direction from the permanent magnet 122 does not go toward the outer peripheral direction along the leakage flux path 124, but goes toward the inner peripheral direction so as to bend by 90 ° as shown as the magnetic flux 200. The magnetic flux 200 flows in the stator 110 as interlinkage magnetic flux through the gap between the stator 110 and the rotor 120. Therefore, in this case, most of the d-axis current and the magnetic flux generated by the permanent magnet 122 become the interlinkage magnetic flux, and the decrease in torque due to the flux flowing into the leakage flux path 124 is suppressed.
 このように、図6に示す永久磁石同期モータにおいても、d軸電流により漏れ磁束路124への漏れ磁束を広範囲で制御できる。すなわち、漏れ磁束の可変磁束幅を増大させることができる。とくに、無通電時を含め、d軸電流がゼロの場合、又は小さい場合には、永久磁石122の磁束の大部分が漏れ磁束路124への漏れ磁束となる。このため、鎖交磁束の強度を極めて小さくすることができる。また、永久磁石122の磁束を強める方向のd軸電流を流すことにより、漏れ磁束路124への漏れ磁束に対する鎖交磁束の強度の割合を極めて大きくすることができる。 As described above, even in the permanent magnet synchronous motor shown in FIG. 6, the leakage flux to the leakage flux path 124 can be controlled in a wide range by the d-axis current. That is, the variable magnetic flux width of the leakage flux can be increased. In particular, when the d-axis current is zero or small, including when no power is applied, most of the magnetic flux of the permanent magnet 122 becomes the leakage flux to the leakage flux path 124. Therefore, the strength of the interlinkage magnetic flux can be made extremely small. Further, by passing a d-axis current in the direction of strengthening the magnetic flux of the permanent magnet 122, the ratio of the intensity of the interlinkage magnetic flux to the leakage flux to the leakage flux path 124 can be made extremely large.
 なお、以上の本発明の実施例に関し、更に以下の付記を開示する。 The following additional notes will be further disclosed with respect to the above embodiments of the present invention.
(付記1)
 ロータ(20、120)に複数の永久磁石(22、122)を備える永久磁石同期モータであって、
 前記複数の永久磁石のそれぞれは周方向に着磁されるとともに、着磁方向が交互に反転するように配置され、
 前記ロータを構成するロータコア(23、123)は、
 前記複数の永久磁石のそれぞれに対応して設けられた複数の非磁性領域(25、125)を備え、
 前記複数の非磁性領域のそれぞれは、前記複数の永久磁石のそれぞれよりもステータ(10)から離れた側において前記複数の永久磁石のそれぞれと隣接して周方向に延設されている、永久磁石同期モータ。
(Appendix 1)
A permanent magnet synchronous motor in which the rotors (20, 120) are provided with a plurality of permanent magnets (22, 122).
Each of the plurality of permanent magnets is magnetized in the circumferential direction and arranged so that the magnetizing directions are alternately reversed.
The rotor cores (23, 123) constituting the rotor are
A plurality of non-magnetic regions (25, 125) provided corresponding to each of the plurality of permanent magnets are provided.
Each of the plurality of non-magnetic regions is a permanent magnet extending in the circumferential direction adjacent to each of the plurality of permanent magnets on a side farther from the stator (10) than each of the plurality of permanent magnets. Synchronous motor.
 付記1の構成によれば、永久磁石のそれぞれの磁束を永久磁石のそれぞれよりもステータから離れた側において短絡する経路となる漏れ磁束路が形成されるので、磁束を漏れ磁束路に導く磁束の強度を制御することによって、ステータに鎖交する磁束の強度を変化させることができる。 According to the configuration of Appendix 1, a leakage flux path is formed which is a path for short-circuiting each magnetic flux of the permanent magnet on the side farther from the stator than each of the permanent magnets. By controlling the intensity, the intensity of the magnetic flux interlinking with the stator can be changed.
(付記2)
 付記1に記載の永久磁石同期モータにおいて、
 前記非磁性領域は、非磁性材料又は前記ロータコアに形成された空隙により構成される、永久磁石同期モータ。
(Appendix 2)
In the permanent magnet synchronous motor described in Appendix 1,
The non-magnetic region is a permanent magnet synchronous motor composed of a non-magnetic material or voids formed in the rotor core.
 付記2の構成によれば、非磁性材料又はロータコアに形成された空隙により構成される非磁性領域の範囲に応じて、漏れ磁束路を規定することができる。非磁性領域を非磁性材料により構成した場合には、ロータの堅牢性などを獲得することができる。 According to the configuration of Appendix 2, the leakage flux path can be defined according to the range of the non-magnetic region composed of the non-magnetic material or the voids formed in the rotor core. When the non-magnetic region is made of a non-magnetic material, the robustness of the rotor can be obtained.
(付記3)
 付記1又は付記2に記載の永久磁石同期モータにおいて、
 前記非磁性領域のそれぞれ、および、前記永久磁石のそれぞれは、径方向に延びる共通の対称軸について線対称とされている、永久磁石同期モータ。
(Appendix 3)
In the permanent magnet synchronous motor described in Appendix 1 or Appendix 2,
A permanent magnet synchronous motor in which each of the non-magnetic regions and each of the permanent magnets are line-symmetrical with respect to a common axis of symmetry extending in the radial direction.
 付記3の構成によれば、非磁性領域が永久磁石に対して、周方向両側で対称に設けられているので、ロータの回転方向に依らず、ステータに鎖交する磁束の制御に関して同様の効果を得ることができる。 According to the configuration of Appendix 3, since the non-magnetic region is provided symmetrically on both sides in the circumferential direction with respect to the permanent magnet, the same effect is obtained with respect to the control of the magnetic flux interlinking with the stator regardless of the rotation direction of the rotor. Can be obtained.
(付記4)
 付記1から付記3のいずれか1項に記載の永久磁石同期モータにおいて、
 前記非磁性領域の周方向における長さは、前記永久磁石のそれぞれの周方向における長さよりも大きい、永久磁石同期モータ。
(Appendix 4)
In the permanent magnet synchronous motor according to any one of Appendix 1 to Appendix 3,
A permanent magnet synchronous motor in which the length of the non-magnetic region in the circumferential direction is larger than the length of each of the permanent magnets in the circumferential direction.
 付記4の構成によれば、非磁性領域の周方向における長さは、永久磁石の周方向における長さよりも大きいので、漏れ磁束路が形成される位置を適切に規定することができる。 According to the configuration of Appendix 4, since the length of the non-magnetic region in the circumferential direction is larger than the length of the permanent magnet in the circumferential direction, the position where the leakage flux path is formed can be appropriately defined.
(付記5)
 付記1から付記4のいずれか1項に記載の永久磁石同期モータにおいて、
 前記ロータコアは、
 回転軸線(21)まわりの内周部位(23a)と、
 前記内周部位から径方向に延設される複数の径方向部位(26)と、
 複数の径方向部位のそれぞれの径方向外側端部から周方向両側に延設される周方向部位(23b)とを含み、
 前記永久磁石は、周方向で隣り合う前記周方向部位の間に配置され、
 前記非磁性領域は、周方向で隣り合う前記径方向部位の間に配置される、永久磁石同期モータ。
(Appendix 5)
In the permanent magnet synchronous motor according to any one of Supplementary notes 1 to 4.
The rotor core
The inner peripheral part (23a) around the rotation axis (21) and
A plurality of radial portions (26) extending in the radial direction from the inner peripheral portion, and
Includes a circumferential portion (23b) extending from each radial outer end of each of the plurality of radial portions to both sides in the circumferential direction.
The permanent magnets are arranged between the circumferential portions adjacent to each other in the circumferential direction.
The non-magnetic region is a permanent magnet synchronous motor arranged between the radial portions adjacent to each other in the circumferential direction.
 付記5の構成によれば、周方向部位と径方向部位とを通るように漏れ磁束路が形成される。 According to the configuration of Appendix 5, the leakage flux path is formed so as to pass through the circumferential portion and the radial portion.
(付記5A)
 付記1から付記4のいずれか1項に記載の永久磁石同期モータにおいて、
 前記ロータコアは、
 回転軸線(21)まわりの外周部位(123a)と、
 前記外周部位から径方向に延設される複数の径方向部位(126)と、
 複数の径方向部位のそれぞれの径方向内側端部から周方向両側に延設される周方向部位(123b)とを含み、
 前記永久磁石は、周方向で隣り合う前記周方向部位の間に配置され、
 前記非磁性領域は、周方向で隣り合う前記径方向部位の間に配置される、永久磁石同期モータ。
(Appendix 5A)
In the permanent magnet synchronous motor according to any one of Supplementary notes 1 to 4.
The rotor core
The outer peripheral portion (123a) around the rotation axis (21) and
A plurality of radial portions (126) extending in the radial direction from the outer peripheral portion, and
Includes a circumferential portion (123b) extending from each radial inner end of each of the plurality of radial portions to both sides in the circumferential direction.
The permanent magnets are arranged between the circumferential portions adjacent to each other in the circumferential direction.
The non-magnetic region is a permanent magnet synchronous motor arranged between the radial portions adjacent to each other in the circumferential direction.
 付記5Aの構成によれば、アウターロータ型の永久磁石同期モータにおいて、周方向部位と径方向部位とを通るように漏れ磁束路が形成される。なお、付記5Aの構成において、周方向に互いに隣接する非磁性領域に挟まれた径方向部位の周方向の幅を、永久磁石の径方向の幅の1倍~1.2倍の範囲とすることができる。この場合、漏れ磁束路への漏れ磁束の強度を広い範囲で制御しやすくなる。 According to the configuration of Appendix 5A, in the outer rotor type permanent magnet synchronous motor, a leakage flux path is formed so as to pass through the circumferential portion and the radial portion. In the configuration of Appendix 5A, the circumferential width of the radial portion sandwiched between the non-magnetic regions adjacent to each other in the circumferential direction is in the range of 1 to 1.2 times the radial width of the permanent magnet. be able to. In this case, it becomes easy to control the strength of the leakage flux to the leakage flux path in a wide range.
(付記6)
 付記5に記載の永久磁石同期モータにおいて、
 周方向に互いに隣接する前記非磁性領域に挟まれた前記径方向部位の周方向の幅は、前記永久磁石の径方向の幅の1倍~1.2倍の範囲とされている、永久磁石同期モータ。
(Appendix 6)
In the permanent magnet synchronous motor described in Appendix 5,
The circumferential width of the radial portion sandwiched between the non-magnetic regions adjacent to each other in the circumferential direction is in the range of 1 to 1.2 times the radial width of the permanent magnet. Synchronous motor.
 付記6の構成によれば、径方向部位の周方向の幅は、永久磁石の径方向の幅の1倍~1.2倍の範囲とされているので、漏れ磁束路が形成される径方向部位の周方向の幅を適切に規定することができ、漏れ磁束路への漏れ磁束の強度を広い範囲で制御しやすくなる。 According to the configuration of Appendix 6, the circumferential width of the radial portion is in the range of 1 to 1.2 times the radial width of the permanent magnet, so that the radial width in which the leakage flux path is formed is formed. The width of the part in the circumferential direction can be appropriately defined, and the strength of the leakage flux to the leakage flux path can be easily controlled in a wide range.
(付記7)
 付記1から付記6のいずれか1項に記載の永久磁石同期モータにおいて、
 前記ロータは、前記ステータよりも内側に配置され、
 前記ロータは、前記永久磁石を外側から覆うカバー部を備える、永久磁石同期モータ。
(Appendix 7)
In the permanent magnet synchronous motor according to any one of Appendix 1 to Appendix 6,
The rotor is arranged inside the stator and
The rotor is a permanent magnet synchronous motor including a cover portion that covers the permanent magnet from the outside.
 付記7の構成によれば、カバー部によってロータが外側に脱落することを防止できる。 According to the configuration of Appendix 7, the cover portion can prevent the rotor from falling off to the outside.
(付記8)
 請求項1から請求項6のいずれか1項に記載の永久磁石同期モータにおいて、
 前記ロータコアには、前記永久磁石のそれぞれの磁束を短絡する漏れ磁束路(24、124)が形成され、
 前記漏れ磁束路は、前記永久磁石のそれぞれよりもステータから離れた側において非磁性領域を取り囲むように形成され、
 前記永久磁石同期モータは、
 d軸電流が流されないときに前記永久磁石の磁束が前記漏れ磁束路に向かう第1の状態と、
 前記d軸電流が流されたときに前記漏れ磁束路の少なくとも一部が磁気的に飽和する第2の状態と、
をとる、永久磁石同期モータ。
(Appendix 8)
The permanent magnet synchronous motor according to any one of claims 1 to 6.
Leakage flux paths (24, 124) that short-circuit the magnetic fluxes of the permanent magnets are formed in the rotor core.
The leakage flux paths are formed so as to surround a non-magnetic region on a side away from each of the permanent magnets.
The permanent magnet synchronous motor is
The first state in which the magnetic flux of the permanent magnet goes toward the leakage flux path when the d-axis current is not passed,
A second state in which at least a part of the leakage flux path is magnetically saturated when the d-axis current is passed.
Take, permanent magnet synchronous motor.
 付記8の構成によれば、永久磁石同期モータは、永久磁石の磁束が漏れ磁束路に向かう第1の状態と、漏れ磁束路の少なくとも一部が磁気的に飽和する第2の状態とをとるので、ステータに鎖交する磁束の強度を広い範囲で制御できる。 According to the configuration of Appendix 8, the permanent magnet synchronous motor takes a first state in which the magnetic flux of the permanent magnet goes toward the leakage flux path and a second state in which at least a part of the leakage flux path is magnetically saturated. Therefore, the strength of the magnetic flux interlinking with the stator can be controlled in a wide range.
10、110   ステータ
20、120   ロータ
21       回転軸線
22、122   永久磁石
23、123   ロータコア
24、124   漏れ磁束路
25、125   非磁性領域
26、126   径方向部位
30       カバー部 
 
 
10, 110 Stator 20, 120 Rotor 21 Rotating axis 22, 122 Permanent magnet 23, 123 Rotor core 24, 124 Leakage flux path 25, 125 Non-magnetic region 26, 126 Radial part 30 Cover

Claims (8)

  1.  ロータに複数の永久磁石を備える永久磁石同期モータであって、
     前記複数の永久磁石のそれぞれは周方向に着磁されるとともに、着磁方向が交互に反転するように配置され、
     前記ロータを構成するロータコアは、
     前記複数の永久磁石のそれぞれに対応して設けられた複数の非磁性領域を備え、
     前記複数の非磁性領域のそれぞれは、前記複数の永久磁石のそれぞれよりもステータから離れた側において前記複数の永久磁石のそれぞれと隣接して周方向に延設されている、永久磁石同期モータ。
    A permanent magnet synchronous motor equipped with multiple permanent magnets in the rotor.
    Each of the plurality of permanent magnets is magnetized in the circumferential direction and arranged so that the magnetizing directions are alternately reversed.
    The rotor core constituting the rotor is
    It is provided with a plurality of non-magnetic regions provided corresponding to each of the plurality of permanent magnets.
    A permanent magnet synchronous motor in which each of the plurality of non-magnetic regions extends in the circumferential direction adjacent to each of the plurality of permanent magnets on a side farther from the stator than each of the plurality of permanent magnets.
  2.  請求項1に記載の永久磁石同期モータにおいて、
     前記非磁性領域は、非磁性材料又は前記ロータコアに形成された空隙により構成されている、永久磁石同期モータ。
    In the permanent magnet synchronous motor according to claim 1.
    A permanent magnet synchronous motor in which the non-magnetic region is composed of a non-magnetic material or voids formed in the rotor core.
  3.  請求項1又は請求項2に記載の永久磁石同期モータにおいて、
     前記非磁性領域のそれぞれ、および、前記永久磁石のそれぞれは、径方向に延びる共通の対称軸について線対称とされている、永久磁石同期モータ。
    In the permanent magnet synchronous motor according to claim 1 or 2.
    A permanent magnet synchronous motor in which each of the non-magnetic regions and each of the permanent magnets are line-symmetrical with respect to a common axis of symmetry extending in the radial direction.
  4.  請求項1から請求項3のいずれか1項に記載の永久磁石同期モータにおいて、
     前記非磁性領域の周方向における長さは、前記永久磁石のそれぞれの周方向における長さよりも大きい、永久磁石同期モータ。
    In the permanent magnet synchronous motor according to any one of claims 1 to 3.
    A permanent magnet synchronous motor in which the length of the non-magnetic region in the circumferential direction is larger than the length of each of the permanent magnets in the circumferential direction.
  5.  請求項1から請求項4のいずれか1項に記載の永久磁石同期モータにおいて、
     前記ロータコアは、
     回転軸線まわりの内周部位と、
     前記内周部位から径方向に延設される複数の径方向部位と、
     複数の径方向部位のそれぞれの径方向外側端部から周方向両側に延設される周方向部位とを含み、
     前記永久磁石は、周方向で隣り合う前記周方向部位の間に配置され、
     前記非磁性領域は、周方向で隣り合う前記径方向部位の間に配置される、永久磁石同期モータ。
    In the permanent magnet synchronous motor according to any one of claims 1 to 4.
    The rotor core
    The inner circumference around the axis of rotation and
    A plurality of radial parts extending in the radial direction from the inner peripheral part,
    Includes a circumferential portion extending from each radial outer end of each of the plurality of radial portions to both sides in the circumferential direction.
    The permanent magnets are arranged between the circumferential portions adjacent to each other in the circumferential direction.
    The non-magnetic region is a permanent magnet synchronous motor arranged between the radial portions adjacent to each other in the circumferential direction.
  6.  請求項5に記載の永久磁石同期モータにおいて、
     周方向に互いに隣接する前記非磁性領域に挟まれた前記径方向部位の周方向の幅は、前記永久磁石の径方向の幅の1倍~1.2倍の範囲とされている、永久磁石同期モータ。
    In the permanent magnet synchronous motor according to claim 5.
    The circumferential width of the radial portion sandwiched between the non-magnetic regions adjacent to each other in the circumferential direction is in the range of 1 to 1.2 times the radial width of the permanent magnet. Synchronous motor.
  7.  請求項1から請求項6のいずれか1項に記載の永久磁石同期モータにおいて、
     前記ロータは、前記ステータよりも内側に配置され、
     前記ロータは、前記永久磁石を外側から覆うカバー部を備える、永久磁石同期モータ。
    The permanent magnet synchronous motor according to any one of claims 1 to 6.
    The rotor is arranged inside the stator and
    The rotor is a permanent magnet synchronous motor including a cover portion that covers the permanent magnet from the outside.
  8.  請求項1から請求項6のいずれか1項に記載の永久磁石同期モータにおいて、
     前記ロータコアには、前記永久磁石のそれぞれの磁束を短絡する漏れ磁束路が形成され、
     前記漏れ磁束路は、前記永久磁石のそれぞれよりもステータから離れた側において前記非磁性領域を取り囲むように形成され、
     前記永久磁石同期モータは、
     d軸電流が流されないときに前記永久磁石の磁束が前記漏れ磁束路に向かう第1の状態と、
     前記d軸電流が流されたときに前記漏れ磁束路の少なくとも一部が磁気的に飽和する第2の状態と、
    をとる、永久磁石同期モータ。 
     
     
    The permanent magnet synchronous motor according to any one of claims 1 to 6.
    A leakage flux path for short-circuiting the magnetic fluxes of the permanent magnets is formed in the rotor core.
    The leakage flux path is formed so as to surround the non-magnetic region on a side away from each of the permanent magnets.
    The permanent magnet synchronous motor is
    The first state in which the magnetic flux of the permanent magnet goes toward the leakage flux path when the d-axis current is not passed,
    A second state in which at least a part of the leakage flux path is magnetically saturated when the d-axis current is passed.
    Take, permanent magnet synchronous motor.

PCT/JP2021/006565 2020-03-10 2021-02-22 Permanent magnet synchronous motor WO2021182088A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-041287 2020-03-10
JP2020041287A JP2021145420A (en) 2020-03-10 2020-03-10 Permanent magnet synchronous motor

Publications (1)

Publication Number Publication Date
WO2021182088A1 true WO2021182088A1 (en) 2021-09-16

Family

ID=77670544

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/006565 WO2021182088A1 (en) 2020-03-10 2021-02-22 Permanent magnet synchronous motor

Country Status (2)

Country Link
JP (1) JP2021145420A (en)
WO (1) WO2021182088A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60144133A (en) * 1984-08-15 1985-07-30 Hitachi Ltd Field of rotary electric machine
JPH027844A (en) * 1987-11-26 1990-01-11 Advance Koojienereeshiyon Syst Gijutsu Kenkyu Kumiai Rotor provided with permanent magnet
JP2007143331A (en) * 2005-11-21 2007-06-07 Matsushita Electric Ind Co Ltd Permanent-magnet-embedded rotor
JP2015130793A (en) * 2015-02-04 2015-07-16 三菱電機株式会社 permanent magnet type motor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60144133A (en) * 1984-08-15 1985-07-30 Hitachi Ltd Field of rotary electric machine
JPH027844A (en) * 1987-11-26 1990-01-11 Advance Koojienereeshiyon Syst Gijutsu Kenkyu Kumiai Rotor provided with permanent magnet
JP2007143331A (en) * 2005-11-21 2007-06-07 Matsushita Electric Ind Co Ltd Permanent-magnet-embedded rotor
JP2015130793A (en) * 2015-02-04 2015-07-16 三菱電機株式会社 permanent magnet type motor

Also Published As

Publication number Publication date
JP2021145420A (en) 2021-09-24

Similar Documents

Publication Publication Date Title
CN112838693B (en) Rotary electric machine
JP5502571B2 (en) Permanent magnet rotating electric machine
JP6992368B2 (en) Variable magnetic flux type permanent magnet type rotary electric machine
JP4900132B2 (en) Rotor and rotating electric machine
US20070057589A1 (en) Interior permanent magnet rotor and interior permanent magnet motor
JP2011223836A (en) Permanent magnet type revolving armature
WO1993026076A1 (en) Rotor for synchronous motor
JP6589624B2 (en) motor
JP6048191B2 (en) Multi-gap rotating electric machine
JP7076188B2 (en) Variable magnetic force motor
JP4580683B2 (en) Permanent magnet type reluctance type rotating electrical machine
JP3772819B2 (en) Coaxial motor rotor structure
US20080290754A1 (en) AC Motor
WO2017171037A1 (en) Rotor and method for designing rotor
JP2000253608A (en) Brushlfss motor
JP2018085877A (en) Rotary electric machine
JP5802487B2 (en) Permanent magnet rotating electric machine
WO2021182088A1 (en) Permanent magnet synchronous motor
JP6191375B2 (en) Motor generator and engine unit including the same
JP2018061379A (en) Dynamo-electric machine
WO2021106153A1 (en) Rotary electric machine
WO2021261022A1 (en) Rotor and rotating electrical machine using same
JP7284503B2 (en) Variable magnetic force motor
US20240063671A1 (en) Rotor
WO2022114176A1 (en) Electric motor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21766990

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21766990

Country of ref document: EP

Kind code of ref document: A1