JP2550085B2 - Absolute position detector - Google Patents

Absolute position detector

Info

Publication number
JP2550085B2
JP2550085B2 JP62187563A JP18756387A JP2550085B2 JP 2550085 B2 JP2550085 B2 JP 2550085B2 JP 62187563 A JP62187563 A JP 62187563A JP 18756387 A JP18756387 A JP 18756387A JP 2550085 B2 JP2550085 B2 JP 2550085B2
Authority
JP
Japan
Prior art keywords
magnetic
small
absolute position
output
width
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62187563A
Other languages
Japanese (ja)
Other versions
JPS6432117A (en
Inventor
正 ▲高▼橋
邦夫 宮下
昭一 川又
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP62187563A priority Critical patent/JP2550085B2/en
Publication of JPS6432117A publication Critical patent/JPS6432117A/en
Application granted granted Critical
Publication of JP2550085B2 publication Critical patent/JP2550085B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は位置検出装置に関し、特に磁気センサのアナ
ログ出力によって磁気的に絶対位置を検出する装置に関
するものである。
Description: TECHNICAL FIELD The present invention relates to a position detecting device, and more particularly to a device for magnetically detecting an absolute position by analog output of a magnetic sensor.

〔従来の技術〕[Conventional technology]

従来知られている磁気的に位置を検出する装置として
は、我々が先に開発した特開昭61−22205号公報に記載
したものがある。
As a conventionally known apparatus for magnetically detecting a position, there is one described in Japanese Patent Application Laid-Open No. 61-22205 previously developed by us.

この公報記載のものは、磁化トラックに着磁した磁気
信号を磁気抵抗効果素子で検出するものである。
The one described in this publication detects a magnetic signal magnetized on a magnetized track by a magnetoresistive effect element.

又、実開昭58−41448号公報にもこれと同等の技術が
記載されている。
A technique equivalent to this is also described in Japanese Utility Model Laid-Open No. 58-41448.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

前記従来の技術では、磁化トラックに着磁した磁気信
号の着磁ピッチで分解能が決まり、この着磁ピッチより
も小さな微細位置を検出することはその原理上不可能で
ある。
In the above-mentioned conventional technique, the resolution is determined by the magnetizing pitch of the magnetic signal magnetized on the magnetized track, and it is impossible in principle to detect a fine position smaller than this magnetizing pitch.

又、前記公開特許公報においては、分解能に応じて2n
ビットのトラックが必要で装置が大形になるという問題
を有している。
Further, in the above-mentioned published patent publication, 2 n
There is a problem that a bit track is required and the device becomes large.

更に、各トラック毎に磁気抵抗効果素子を必要とする
ので、出力信号線が多数必要であり、構成が複雑にな
り、配線処理も難しくなるものである。
Furthermore, since a magnetoresistive effect element is required for each track, a large number of output signal lines are required, the structure becomes complicated, and the wiring process becomes difficult.

本発明は小形で分解能の高い磁気的な絶対位置検出装
置を提供することを目的とするものである。
An object of the present invention is to provide a small-sized magnetic absolute position detection device having high resolution.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、相対移動する第1および第2の部材と、前
記第1の部材に設けられ、かつ相対移動方向に沿って並
ぶように記録された多数の小さな小発磁体を有する磁気
記録媒体と、前記発磁体の磁界に感応するように前記磁
気記録媒体に近接させて前記第2の部材に設けられる磁
気抵抗効果素子とを備え、前記第1および前記第1の部
材の相対移動によって変化する前記磁気抵抗効果素子の
抵抗変化に基づいて前記両部材間の絶対位置を検出する
絶対位置検出装置において、前記小発磁体に形成される
一対のS磁極およびN磁極を各小発磁体の並び方向に沿
うようにするとともに、隣接する小発磁体の磁極が互い
に同じ極性になるように各小発磁体を配置し、 小発磁体の並び方向に対する直角方向の幅長が前記相
対移動方向の位置により変わるように小発磁体を形成す
るとともに、前記磁気抵抗効果素子の長手方向が前記小
発磁体の並び方向と直交するように配置したことを特徴
とする絶対位置検出装置にある。
The present invention relates to a first and a second member that move relative to each other, and a magnetic recording medium having a large number of small magnetism-producing bodies provided on the first member and recorded so as to be aligned along the relative movement direction. A magnetoresistive effect element provided on the second member so as to be close to the magnetic recording medium so as to be sensitive to the magnetic field of the magnetic body, and is changed by relative movement of the first and first members. In an absolute position detecting device for detecting an absolute position between the two members based on a resistance change of the magnetoresistive element, a pair of S magnetic poles and N magnetic poles formed on the small magnetic body are arranged in a direction in which the small magnetic bodies are arranged. The small magnets are arranged so that the magnetic poles of the adjacent small magnets have the same polarity as each other, and the width length in the direction perpendicular to the arrangement direction of the small magnets depends on the position in the relative movement direction. change Thus, the absolute position detecting device is characterized in that the small magnetic body is formed and the longitudinal direction of the magnetoresistive effect element is arranged so as to be orthogonal to the arrangement direction of the small magnetic body.

〔作用〕[Action]

このように隣接する小発磁体の磁極が互いに同じ極性
になるように各小発磁体を配置しているので、異なる極
性の磁極が隣接するものに比べ、磁気抵抗効果素子が感
応する磁束が多くなり、磁気抵抗効果素子の検知出力が
増加する。
Since the small magnets are arranged so that the magnetic poles of the adjacent small magnets have the same polarity as each other, there is more magnetic flux that the magnetoresistive effect element is sensitive to, as compared with the case where the magnetic poles of different polarities are adjacent to each other. Therefore, the detection output of the magnetoresistive effect element increases.

また小発磁体の並び方向に対する直角方向の幅長が相
対移動方向の位置により変わるように小発磁体を形成す
るとともに、磁気抵抗効果素子の長手方向が小発磁体の
並び方向と直交するように配置したので、小発磁体の幅
長の違いにより、磁気抵抗効果素子の検知出力は変化す
る。この検知出力の変化により第1の部材と第2の部材
との位置を検出できるものである。
Further, the small magnetic body is formed so that the width length in the direction perpendicular to the arrangement direction of the small magnetic body changes depending on the position in the relative movement direction, and the longitudinal direction of the magnetoresistive element is orthogonal to the arrangement direction of the small magnetic body. Since they are arranged, the detection output of the magnetoresistive effect element changes depending on the difference in the width of the small magnet. The positions of the first member and the second member can be detected by the change in the detection output.

〔実施例〕〔Example〕

以下本発明の一実施例の構成を第1図ないし第5図に
基づいて説明する。第1図は本発明の実施形態を示す斜
視図である。図において1は回転軸でこの回転軸1には
アルミ等の担持体(第1の部材)2が設けられている。
The configuration of an embodiment of the present invention will be described below with reference to FIGS. FIG. 1 is a perspective view showing an embodiment of the present invention. In the figure, reference numeral 1 denotes a rotary shaft, and a carrier (first member) 2 such as aluminum is provided on the rotary shaft 1.

この担持体2の外周表面には、磁性粉末を混入した樹
脂からなる厚さ80(μm)程度の磁気媒体2Aを塗布して
いる。
On the outer peripheral surface of the carrier 2, a magnetic medium 2A made of a resin mixed with magnetic powder and having a thickness of about 80 (μm) is applied.

磁気媒体2Aには磁気信号N,Sで示したように回転方向
にピッチλで発磁体を磁気記録方式で設けている。
On the magnetic medium 2A, as shown by the magnetic signals N and S, magnetic generators are provided with a pitch λ in the rotational direction by a magnetic recording method.

又、N磁極とS磁極の有する小さな小発磁体は回転方
向にその幅がこの例では直線的に減少するように記録さ
れている。
Further, the small small magnetized body having the N magnetic pole and the S magnetic pole is recorded such that the width thereof linearly decreases in this example in the rotating direction.

尚、発磁体は磁石と読みかえられる。3は磁気センサ
で担持体2に対向して固定してある。磁気センサ(第2
の部材)3は磁気抵抗効果素子(以下MR素子と略す)Ra
及びRbを具備している。担持体2と磁気センサ3を展開
して詳しく示したのが第2図(A),(B)である。担
持体2は磁気信号記録部21と磁気信号非記録部20に分け
た1つのトラックAとなっており、トラックの幅をl2
すると磁気信号の幅長は最大l1で担持体2の位置によっ
てその幅l1が変わるように記録してある。また磁気セン
サ3は2個のMR素子Ra,Rbで構成されており、その間隔
はλ/2で配置されている。MR素子Ra,Rbの長さl0はトラ
ックの幅l2とほぼ同じであるが、少なくとも前記幅l1
りも長くしてあるMR素子Ra,Rbは長さ方向に対して直角
方向の磁界に対して第3図に示すような特性をもってい
る。磁界に対して電気抵抗が変化し、正負両磁界に対し
て同じように抵抗が変わる。なお強磁性体磁気抵抗効果
素子で磁界零の時の抵抗が最大で磁界が加わると抵抗が
下る。第4図は磁気センサの接続図を示す。MR素子Ra,R
bは図示のように直列に接続し、さらに固定抵抗又は磁
界の影響を受けないように配置したMR素子Rと直列接続
し、その両端に直流電源Vを印加して中点より出力eを
取り出す回路構成にしてある。
The magnetized body can be read as a magnet. A magnetic sensor 3 is fixed to face the carrier 2. Magnetic sensor (second
Member 3) is a magnetoresistive effect element (hereinafter abbreviated as MR element) Ra
And R b . The carrier 2 and the magnetic sensor 3 are expanded and shown in detail in FIGS. 2 (A) and 2 (B). The carrier 2 has one track A divided into a magnetic signal recording part 21 and a magnetic signal non-recording part 20. If the track width is l 2 , the maximum width of the magnetic signal is l 1 and the carrier 2 It is recorded that the width l 1 changes depending on the position. The magnetic sensor 3 is composed of two MR elements R a and R b , and the distance between them is λ / 2. The length l 0 of the MR elements R a and R b is almost the same as the track width l 2 , but the MR elements R a and R b which are at least longer than the width l 1 are arranged in the longitudinal direction. It has the characteristics shown in FIG. 3 for the magnetic field in the perpendicular direction. The electric resistance changes with respect to the magnetic field, and the resistance changes similarly with respect to both positive and negative magnetic fields. In the ferromagnetic magnetoresistive effect element, the resistance is maximum when the magnetic field is zero, and the resistance decreases when a magnetic field is applied. FIG. 4 shows a connection diagram of the magnetic sensor. MR element R a , R
b is connected in series as shown, and is further connected in series with an MR element R arranged so as not to be influenced by a fixed resistance or a magnetic field, and a DC power supply V is applied to both ends of the MR element R to take out an output e from the midpoint. It has a circuit configuration.

今担持体2が矢印の方向に回転したとすると各MR素子
Ra,Rbは磁気信号の磁界を受け抵抗が第5図のように変
化する。始め磁気信号の幅l1が小さくMR素子RaとRbとの
長さl0の一部分は磁界が加わらず抵抗も磁界0の値R0
対して小さい変化であるが、磁気ドラムが回転し、角度
θが増加すると磁気信号の幅l1が大きくなるので、MR素
子RaとRbと長さl0の大部分が磁界の影響を受けるように
なって抵抗変化も大きくなる。MR素子RaとRbの抵抗変化
の位相が180゜ずれているので正弦波状に変化する抵抗
が両者を加えると脈動分が打消され図示のようにRa+Rb
の直線となる。このため第4図の出力端分には第5図の
電圧eが得られる。この電圧は担持体2の回転角θに比
例して変化するのでこの出力からの大きさを測定するこ
とにより角度θが検出できる。以上のように本発明では
MR素子RaとRbの長さl0に対する磁気信号の幅長l1比でそ
の出力が決定されるので、単純にλで決まる分解能を越
える高い分解能が得られ、又λを短くすれば精度及び分
解能を更に高くすることが可能である。また、出力端子
は2本のみであり、信号伝送が容易である。さらに担持
体もトラック1個のみであり、磁気センサも簡単であ
り、小形にできる。
Now, assuming that the carrier 2 rotates in the direction of the arrow, each MR element
R a and R b receive the magnetic field of the magnetic signal and the resistance changes as shown in FIG. At the beginning, the width l 1 of the magnetic signal is small and a part of the length l 0 of the MR elements R a and R b does not receive the magnetic field and the resistance changes little with respect to the value R 0 of the magnetic field 0, but the magnetic drum rotates. However, since the width l 1 of the magnetic signal increases as the angle θ increases, most of the MR elements R a and R b and the length l 0 are affected by the magnetic field, and the resistance change also increases. Since the phases of the resistance changes of MR elements R a and R b are 180 ° out of phase, adding a resistance that changes in a sinusoidal manner cancels the pulsating component, and as shown in the figure, R a + R b
Will be a straight line. Therefore, the voltage e of FIG. 5 is obtained at the output end of FIG. Since this voltage changes in proportion to the rotation angle θ of the carrier 2, the angle θ can be detected by measuring the magnitude from this output. As described above, in the present invention
Since the output is determined by the ratio of the width l 1 of the magnetic signal to the length l 0 of the MR elements R a and R b, a high resolution exceeding the resolution simply determined by λ can be obtained, and if λ is shortened It is possible to further increase the accuracy and resolution. Further, since there are only two output terminals, signal transmission is easy. Further, the carrier is only one track, and the magnetic sensor is simple and can be made small.

第6図(A),(B)と第7図に他の実施例を示す。
第6図(A)は担持体2の磁気信号の幅をlmとして図示
のように記録した例である。担持体2が回転するとMR素
子RaとRbは先の実施例と同じ原理で中心部近で最大に磁
界の影響を受け両端では磁界がほとんどMR素子に加えら
れないので、第4図のように接続すれば出力電圧eは第
7図のように角度180゜で最大で0゜,360゜で最小にな
る。
Another embodiment is shown in FIGS. 6 (A) and (B) and FIG.
FIG. 6 (A) is an example in which the width of the magnetic signal of the carrier 2 is recorded as l m as shown in the figure. When the carrier 2 rotates, the MR elements R a and R b are affected by the maximum magnetic field in the vicinity of the central portion and almost no magnetic field is applied to the MR elements at both ends according to the same principle as in the previous embodiment. If connected in this way, the output voltage e becomes maximum at 0 ° and 360 ° at an angle of 180 ° as shown in FIG.

第8図(A),(B)、第9図は他の実施例で、回転
角に対して正弦波状の出力を得る構成である。第8図
(A)のように磁気ドラム2に磁気信号の幅が正弦波状
になるような磁気信号を記録すれば、第4図の接続で得
られる出力eは第9図のように角度θに対して正弦波状
の出力eとなる。
FIGS. 8 (A), (B) and FIG. 9 show another embodiment, which is a configuration for obtaining a sinusoidal output with respect to the rotation angle. If a magnetic signal having a sinusoidal magnetic signal width is recorded on the magnetic drum 2 as shown in FIG. 8 (A), the output e obtained by the connection shown in FIG. The output e is a sine wave.

第10図(A),(B)は更に他の実施例を示す。これ
は磁気媒体2Aを2トラックA,Bに分けて両トラックA,B2
には図示にように同じような幅の磁気信号を記録する。
また両トラックの磁気信号はλ/2ピッチをずらして記録
し、これに対向する磁気センサ3のMR素子RaとRbは縦方
向に一直線上に並ぶように配置する。磁気トラック2と
MR素子RaとRbの関係は第2図と相対的には同じとなるの
で、第4図のように接続することにより、その出力eは
同様に第11図のようになる。
10 (A) and (B) show still another embodiment. This is a magnetic medium 2A divided into two tracks A, B and both tracks A, B2.
A magnetic signal having a similar width is recorded on the disk as shown in the figure.
The magnetic signals of both tracks are recorded with a λ / 2 pitch offset, and the MR elements R a and R b of the magnetic sensor 3 facing them are arranged so as to be aligned in the vertical direction. With magnetic track 2
Since the relationship between the MR elements R a and R b is relatively the same as that of FIG. 2, the output e becomes like that of FIG. 11 by connecting them as shown in FIG.

次に出力電圧を増加させる例を第12図(A)ないし第
16図に示す。第12図(A),(B)は担持体2と磁気セ
ンサ3の関係を示すもので、担持体2を第1のトラック
Aと第2のトラックBに分け各トラックA,Bには図示の
ように磁気信号の幅が大きい所では他のトラックは小さ
くなるように相補的に記録する。これに対向する磁気セ
ンサ3は図示のように第1のトラックAに対向する位置
にMR素子RaとRb、第2のトラックBに対向する位置にMR
素子RcとRdを配置する。MR素子RaとRb及びRcとRdの間隔
はλ/2とする。このMR素子を第13図又は第14図のように
接続する。第13図では第1のトラックにAに対するMR素
子RaとRbを直列に接続し、同様に第2のトラックBに対
向するMR素子RcとRdを直列接続し、これらをさらに直列
接続して3端接続にして両端に直流電圧Vを加え中点よ
り出力eを得る。第14図は図示のように4個のMR素子Ra
〜Rdをブリッジ接続し、給電端に電圧を加え検出端より
出力e0を得る。担持体が回転するとこれに対応して各MR
素子Ra,Rb及びRcとRdは第15図のように抵抗が変化す
る。すなわち、第1トラックAで磁気信号の幅の長い右
の部分では第2トラックBでは磁気信号の幅が短いの
で、Ra,Rbは右側で振幅が大きく変化し、左側では小さ
な振幅となり、MR素子RcとRdは逆になる。このため、第
13図の場合はMR素子Ra,Rb及びRc,Rdの合成抵抗はそれぞ
れ第16図のように直線的に変化する。したがって出力電
圧eも第16図のように角度θの小さい所では出力eも小
さく、角度θが大きい所では出力も大きい。
Next, an example of increasing the output voltage is shown in FIG.
Shown in Figure 16. FIGS. 12 (A) and 12 (B) show the relationship between the carrier 2 and the magnetic sensor 3. The carrier 2 is divided into a first track A and a second track B, and the tracks A and B are shown in FIG. When the width of the magnetic signal is large, the other tracks are complementarily recorded so that the other tracks become smaller. The magnetic sensor 3 facing this is MR elements R a and R b at the position facing the first track A and the MR sensor at the position facing the second track B as shown.
Arrange the elements R c and R d . The intervals between the MR elements R a and R b and between R c and R d are λ / 2. This MR element is connected as shown in FIG. 13 or FIG. In FIG. 13, the MR elements R a and R b for A are connected in series to the first track, and the MR elements R c and R d facing the second track B are connected in series, and these are further connected in series. The connection is made to have three ends and a DC voltage V is applied to both ends to obtain an output e from the midpoint. Figure 14 shows four MR elements R a as shown.
~ R d is bridge-connected, voltage is applied to the feeding end and output e 0 is obtained from the detection end. When the carrier rotates, each MR responds to this.
The resistances of the elements R a , R b and R c and R d change as shown in FIG. That is, in the width long right part of the magnetic signal in the first track A the width of the magnetic signal in the second track B is short, R a, R b is the amplitude varies greatly on the right side becomes a small amplitude on the left, The MR elements R c and R d are reversed. For this reason,
In the case of FIG. 13, the combined resistance of the MR elements R a and R b and R c and R d changes linearly as shown in FIG. Therefore, as shown in FIG. 16, the output voltage e is small when the angle θ is small, and is large when the angle θ is large.

第14図の接続の場合はMR素子RaとRc及びRdとRbの直列
回路になり、その抵抗変化は第15図のようになるのでそ
の中点の出力e1,e2は第17図のように脈動を含んだ電圧
となる。しかし、ブリッジ出力e0はe1−e2となるので、
同相の脈動分はなくなり、担持体2の角度が180゜で両
出力が一致して零となり、第16図のように右側ではe2
大きいので負電圧,右側では正電圧となる。
In the case of the connection shown in FIG. 14, a series circuit of MR elements R a and R c and R d and R b is provided, and the resistance change is as shown in FIG. 15, so the outputs e 1 and e 2 at the midpoint are As shown in Fig. 17, the voltage includes pulsation. However, the bridge output e 0 becomes e 1 −e 2 , so
The pulsating component in the same phase disappears, both outputs are equal to zero when the angle of the carrier 2 is 180 °, and as shown in FIG. 16, e 2 is large on the right side, so that it is a negative voltage, and on the right side, it is a positive voltage.

第18図(A),(B)は第12図の変化で磁気信号は図
示のようになるが、動作は全く第12図と同じである。
18 (A) and 18 (B) show the magnetic signals as shown in FIG. 12 due to the changes in FIG. 12, but the operation is exactly the same as in FIG.

また第19図(A),(B)は正弦波状の出力を得る方
法で動作は第12図と同じであり、第20図に示すように磁
気信号の幅に応じた正弦波状の出力e0が得られる。さら
に磁気ドラム2の磁気信号に応じて2サイクル幅の変化
を与えると2サイクルの出力電圧が、4サイクルの幅の
変化を与えると4サイクルの出力が得られる。
19 (A) and 19 (B) are methods for obtaining a sinusoidal output, and the operation is the same as in FIG. 12, and as shown in FIG. 20, a sinusoidal output e 0 according to the width of the magnetic signal e 0 Is obtained. Further, when a 2-cycle width is changed in accordance with the magnetic signal of the magnetic drum 2, an output voltage of 2 cycles is obtained, and when a width of 4 cycles is changed, an output of 4 cycles is obtained.

第21図は磁気センサ3をMR素子R1,R2,R3の3個で構成
した例である。磁気信号のピッチλに対して各MR素子
R1,R2,R3をλ/3離して配置している。これを第22図のよ
うに直列に接続したものと、固定抵抗Rを直列に接続
し、図示のように中点から出力を取り出す。第23図はMR
素子の抵抗変化を示したもので、R1,R2,R3は120゜位相
のずれた3相となるので、その波形が正弦波とするとそ
の合成抵抗R1+R2+R3は脈動成分がなくなり、直線的に
変化する。したがってこれによる出力電圧eも第23図の
ように角度に対して直線となる。
FIG. 21 shows an example in which the magnetic sensor 3 is composed of three MR elements R 1 , R 2 and R 3 . Each MR element with respect to the magnetic signal pitch λ
R 1 , R 2 and R 3 are arranged λ / 3 apart. This is connected in series as shown in FIG. 22, and a fixed resistor R is connected in series, and an output is taken out from the midpoint as shown. Figure 23 shows MR
It shows the resistance change of the element. Since R 1 , R 2 and R 3 are three phases with a phase difference of 120 °, if the waveform is a sine wave, the combined resistance R 1 + R 2 + R 3 is a pulsating component. Disappears and changes linearly. Therefore, the output voltage e resulting from this also becomes a straight line with respect to the angle as shown in FIG.

第24図は直線運動を行う場合の例で、磁気信号N,Sを
記録した磁気媒体2Aと磁気センサ3が図示のように対向
しており、先の回転の場合と全く同様に動作する。
FIG. 24 shows an example in which a linear motion is performed, and the magnetic medium 2A recording the magnetic signals N and S and the magnetic sensor 3 are opposed to each other as shown in the figure, and operates exactly as in the case of the previous rotation.

なお、上記説明では各抵抗Ra,Rbは直列接続した例を
示しているが各々電気信号に変換後回路的に加え合わせ
ても同様な効果が得られる。
In the above description, the resistors R a and R b are connected in series, but the same effect can be obtained by adding the respective signals to the electric signals after conversion.

尚、前記実施例では担持体2が移動し、磁気センサ3
が固定のものであるが、これらは相対的に動くものであ
ればよいものである。すなわち移動体に磁気センサ3
を、固定体に磁気媒体を設けるものでもよい。
In the above-mentioned embodiment, the carrier 2 moves and the magnetic sensor 3
Are fixed, but these need only be movable. That is, the magnetic sensor 3
Alternatively, the fixed body may be provided with a magnetic medium.

〔発明の効果〕〔The invention's effect〕

以上述べたように、本発明は、相対移動する第1およ
び第2の部材と、前記第1の部材に設けられ、かつ相対
移動方向に沿って並ぶように記録された多数の小さな小
発磁体を有する磁気記録媒体と、前記発磁体の磁界に感
応するように前記磁気記録媒体に近接させて前記第2の
部材に設けられる磁気抵抗効果素子とを備え、前記第1
および前記第1の部材の相対移動によって変化する前記
磁気抵抗効果素子の抵抗変化に基づいて前記両部材間の
絶対位置を検出する絶対位置検出装置において、 前記小発磁体に形成される一対のS磁極およびN磁極を
各小発磁体の並び方向に沿うようにするとともに、隣接
する小発磁体の磁極が互いに同じ極性になるように各小
発磁体を配置し、 小発磁体の並び方向に対する直角方向の幅長が前記相
対移動方向の位置により変わるように小発磁体を形成す
るとともに、前記磁気抵抗効果素子の長手方向が前記小
発磁体の並び方向と直交するように配置したことを特徴
とする絶対位置検出装置にある。
As described above, according to the present invention, the first and second members that move relative to each other, and a large number of small small magnetism bodies provided on the first member and recorded so as to be aligned along the relative movement direction. And a magnetoresistive effect element provided on the second member in close proximity to the magnetic recording medium so as to be sensitive to the magnetic field of the magnetic body.
And an absolute position detecting device for detecting an absolute position between the two members based on a resistance change of the magnetoresistive effect element that changes due to a relative movement of the first member. The magnetic poles and the N magnetic poles are arranged along the arranging direction of the small magnetic bodies, and the small magnetic bodies are arranged so that the magnetic poles of the adjacent small magnetic bodies have the same polarity. A small magnet is formed so that the width in the direction changes depending on the position in the relative movement direction, and the longitudinal direction of the magnetoresistive effect element is arranged so as to be orthogonal to the arrangement direction of the small magnets. There is an absolute position detector.

この構成によれば、次のような良さがある。 This configuration has the following advantages.

(1).隣接する小発磁体の磁極が互いに同じ極性にな
るように各小発磁体を配置しているので、異なる極性の
磁極が隣接するものに比べ、磁気抵抗効果素子が感応す
る磁束が多くなり、磁気抵抗効果素子の検知出力が増加
する。
(1). Since the small magnets are arranged so that the magnetic poles of adjacent small magnets have the same polarity as each other, the magnetic flux that the magnetoresistive effect element is sensitive to becomes larger than that of the adjacent magnetic poles of different polarities. The detection output of the resistance effect element increases.

(2).小発磁体の並び方向に対する直角方向の幅長が
相対移動方向の位置により変わるように小発磁体を形成
するとともに、磁気抵抗効果素子の長手方向が小発磁体
の並び方向と直交するように配置したので、小発磁体の
幅長の違いにより、磁気抵抗効果素子の検知出力は変化
する。この検知出力の変化により第1の部材と第2の部
材との位置を検出できるのである。
(2). The small magnetic body is formed so that the width length in the direction perpendicular to the arrangement direction of the small magnetic body changes depending on the position in the relative movement direction, and the longitudinal direction of the magnetoresistive effect element is arranged so as to be orthogonal to the arrangement direction of the small magnetic body. Therefore, the detection output of the magnetoresistive effect element changes due to the difference in the width of the small magnet. The position of the first member and the second member can be detected by the change in the detection output.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明を実施した装置の斜視図、第2図
(A),(B)は本発明の磁気センサと磁気媒体の関係
を示す図、第3図は本発明に用いるMR素子の特性図、第
4図は接続図、第5図は本発明の動作説明波形図、第6
図(A),(B)は他の実施例の磁気媒体と磁気センサ
との関係を示す図、第7図は第6図の出力波形図、第8
図(A),(B)は同じく他の実施例を示す磁気媒体と
磁気センサの関係を示す図、第9図はその出力波形図、
第10図(A),(B)は同じく他の実施例を示す磁気媒
体と磁気センサの関係を示す図、第11図はその出力波形
図、第12図(A),(B)は同じく他の実施例を示す磁
気媒体と磁気センサの関係を示す図、第13図,第14図は
その接続図、第15図は第12図の説明用波形図、第16図は
第13図の出力波形図、第17図は第14図の出力波形図、第
18図(A),(B)、第19図(A),(B)は更に第12
図の変形例を示すもので磁気媒体と磁気センサの関係を
示す図、第20図は第19図の出力波形図、第21図は本発明
の更に他の実施例を示すもので磁気媒体と磁気センサの
関係図、第22図は第21図の接続図、第23図は第21図の説
明用波形図、第24図は本発明を直線運動する実施例に適
用した場合の斜視図である。 1……回転軸、2……担持体、2A……磁気媒体、N,S…
…小発磁体の磁極、3……磁気センサ、λ……磁気信号
ピッチ、Ra,Rb,Rc,Rd,R1,R2,R3……MR素子、R……固定
抵抗又は磁界を受けないMR素子、V電源、20……磁気信
号非記録部、21……磁気信号記録部。
FIG. 1 is a perspective view of an apparatus implementing the present invention, FIGS. 2 (A) and 2 (B) are views showing the relationship between the magnetic sensor of the present invention and a magnetic medium, and FIG. 3 is an MR element used in the present invention. FIG. 4 is a characteristic diagram, FIG. 4 is a connection diagram, FIG. 5 is a waveform diagram for explaining the operation of the present invention, and FIG.
7A and 7B are diagrams showing the relationship between the magnetic medium and the magnetic sensor of another embodiment, FIG. 7 is the output waveform diagram of FIG. 6, and FIG.
FIGS. 9A and 9B are views showing a relationship between a magnetic medium and a magnetic sensor according to another embodiment, and FIG. 9 is an output waveform diagram thereof.
10 (A) and 10 (B) are views showing the relationship between the magnetic medium and the magnetic sensor according to another embodiment, FIG. 11 is its output waveform diagram, and FIGS. 12 (A) and 12 (B) are the same. FIG. 13 is a diagram showing the relationship between a magnetic medium and a magnetic sensor according to another embodiment, FIGS. 13 and 14 are connection diagrams thereof, FIG. 15 is an explanatory waveform diagram of FIG. 12, and FIG. 16 is a diagram of FIG. Output waveform diagram, Fig. 17 is the output waveform diagram of Fig. 14, Fig.
Figures 18 (A) and (B), and Figures 19 (A) and (B) are shown in Figure 12.
FIG. 20 is a diagram showing a modified example of the diagram showing the relationship between the magnetic medium and the magnetic sensor, FIG. 20 is an output waveform diagram of FIG. 19, and FIG. 21 is a still further embodiment of the present invention showing the magnetic medium. FIG. 22 is a connection diagram of the magnetic sensor, FIG. 22 is a connection diagram of FIG. 21, FIG. 23 is an explanatory waveform diagram of FIG. 21, and FIG. 24 is a perspective view when the present invention is applied to a linearly moving embodiment. is there. 1 ... Rotary axis, 2 ... Carrier, 2A ... Magnetic medium, N, S ...
... Small magnetic body magnetic pole, 3 ... Magnetic sensor, λ ... Magnetic signal pitch, R a , R b , R c , R d , R 1 , R 2 , R 3 ...... MR element, R ...... Fixed resistance Or MR element that does not receive magnetic field, V power supply, 20 ... Magnetic signal non-recording section, 21 ... Magnetic signal recording section.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭62−47501(JP,A) 特開 昭62−24110(JP,A) 特開 昭51−2446(JP,A) 特開 昭63−206613(JP,A) ─────────────────────────────────────────────────── ─── Continuation of front page (56) References JP 62-47501 (JP, A) JP 62-24110 (JP, A) JP 51-2446 (JP, A) JP 63- 206613 (JP, A)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】相対移動する第1および第2の部材と、前
記第1の部材に設けられ、かつ相対移動方向に沿って並
ぶように記録された多数の小さな小発磁体を有する磁気
記録媒体と、前記発磁体の磁界に感応するように前記磁
気記録媒体に近接させて前記第2の部材に設けられる磁
気抵抗効果素子とを備え、前記第1および前記第1の部
材の相対移動によって変化する前記磁気抵抗効果素子の
抵抗変化に基づいて前記両部材間の絶対位置を検出する
絶対位置検出装置において、 前記小発磁体に形成される一対のS磁極およびN磁極を
各小発磁体の並び方向に沿うようにするとともに、隣接
する小発磁体の磁極が互いに同じ極性になるように各小
発磁体を配置し、 小発磁体の並び方向に対する直角方向の幅長が前記相対
移動方向の位置により変わるように小発磁体を形成する
とともに、前記磁気抵抗効果素子の長手方向が前記小発
磁体の並び方向と直交するように配置したことを特徴と
する絶対位置検出装置。
1. A magnetic recording medium having first and second members that move relative to each other, and a large number of small magnetic particles provided on the first member and recorded so as to be aligned along the relative movement direction. And a magnetoresistive effect element provided on the second member so as to be close to the magnetic recording medium so as to be sensitive to the magnetic field of the magnetic body, and change by relative movement of the first member and the first member. In the absolute position detection device for detecting the absolute position between the two members based on the resistance change of the magnetoresistive element, a pair of S magnetic poles and N magnetic poles formed on the small magnetic body are arranged in the small magnetic body. The small magnets are arranged so that the magnetic poles of the adjacent small magnets have the same polarity as each other, and the width length in the direction perpendicular to the arrangement direction of the small magnets is the position in the relative movement direction. Changed by To form a small magnetism generation body in so that the absolute position detecting device characterized by longitudinal direction is arranged so as to be perpendicular to the arrangement direction of the small onset magnetized body of the magnetoresistive element.
JP62187563A 1987-07-29 1987-07-29 Absolute position detector Expired - Lifetime JP2550085B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62187563A JP2550085B2 (en) 1987-07-29 1987-07-29 Absolute position detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62187563A JP2550085B2 (en) 1987-07-29 1987-07-29 Absolute position detector

Publications (2)

Publication Number Publication Date
JPS6432117A JPS6432117A (en) 1989-02-02
JP2550085B2 true JP2550085B2 (en) 1996-10-30

Family

ID=16208273

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62187563A Expired - Lifetime JP2550085B2 (en) 1987-07-29 1987-07-29 Absolute position detector

Country Status (1)

Country Link
JP (1) JP2550085B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04174302A (en) * 1990-11-07 1992-06-22 Toyota Motor Corp Detection of displacement of moving member
JPH0835854A (en) * 1991-01-22 1996-02-06 Toyota Motor Corp Method for detecting displacement of moving member
JP2006113039A (en) * 2004-09-15 2006-04-27 Tokai Rika Co Ltd Magnetism detection device
JP4912595B2 (en) * 2005-02-03 2012-04-11 三菱電機株式会社 Position detection device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2423500C3 (en) * 1974-05-15 1980-05-29 Siemens Ag, 1000 Berlin Und 8000 Muenchen Arrangement for generating electrical signals with field plates
JPS6224110A (en) * 1985-07-24 1987-02-02 Agency Of Ind Science & Technol Non-contact full circumference type potentiometer
JPH0665967B2 (en) * 1985-08-27 1994-08-24 株式会社エスジー Absolute rotational position detector

Also Published As

Publication number Publication date
JPS6432117A (en) 1989-02-02

Similar Documents

Publication Publication Date Title
CA1136240A (en) Magnetic rotary encoder for detection of absolute values of angular displacement
US5019776A (en) Magnetic position detection apparatus having two magnetic recording medium tracks with magnetoresistors arranged in a bridge circuit so as to eliminate even order harmonic distortion
WO1999013296A1 (en) Magnetic encoder
CN1260871A (en) Magnetic encoder
JP4352189B2 (en) Magnetic encoder and motor with magnetic encoder
JP2000065596A5 (en) Magnetic encoder and motor with magnetic encoder
JP2550085B2 (en) Absolute position detector
JPH0350965B2 (en)
JPS59147213A (en) Magnetic rotary sensor
JP3064293B2 (en) Rotation sensor
JP2722605B2 (en) Magnetic encoder
JPH074986A (en) Reference position detector
JPS6038615A (en) Magnetic rotary encoder
JP2550049B2 (en) Device that magnetically detects position and speed
JPH0347690B2 (en)
JP3233317B2 (en) Magnetic encoder
JP2546282B2 (en) Origin detection part of magnetic head for magnetic encoder
JPS6139592A (en) Magnetic encoder
JPH044179Y2 (en)
JP2539470B2 (en) Device that magnetically detects position and speed
JP2546233B2 (en) Origin detection unit of magnetic head for magnetic encoder
JPS61161416A (en) Index signal detector
JPS62180216A (en) Origin detecting device for magnetic encoder
JPH0241869Y2 (en)
JPS60162919A (en) Magnetic scale signal detector