JPS6139592A - Magnetic encoder - Google Patents

Magnetic encoder

Info

Publication number
JPS6139592A
JPS6139592A JP15934984A JP15934984A JPS6139592A JP S6139592 A JPS6139592 A JP S6139592A JP 15934984 A JP15934984 A JP 15934984A JP 15934984 A JP15934984 A JP 15934984A JP S6139592 A JPS6139592 A JP S6139592A
Authority
JP
Japan
Prior art keywords
pitch
permanent magnet
sensor
output
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15934984A
Other languages
Japanese (ja)
Other versions
JPH0430756B2 (en
Inventor
Hitoshi Ishii
仁 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nidec Advanced Motor Corp
Original Assignee
Japan Servo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Servo Corp filed Critical Japan Servo Corp
Priority to JP15934984A priority Critical patent/JPS6139592A/en
Publication of JPS6139592A publication Critical patent/JPS6139592A/en
Publication of JPH0430756B2 publication Critical patent/JPH0430756B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/10Magnetoresistive devices

Landscapes

  • Hall/Mr Elements (AREA)

Abstract

PURPOSE:To improve the resolution by specifying the relation between the magnetizing pitch lambdaP of permanent magnets and the arranging pitch lambdaMP of magnetic resistance elements. CONSTITUTION:When permanent magnets are provided on a permanent magnet rotating body 3 at a pitch of lambdaP, and magnetic resistance elements A1, A2, B1 and B2 forming an MR sensor 4 are arranged at a pitch of lambdaMP, the magnetizing pitch lambdaP and the arranging pitch lambdaMP are related such that lambdaP=(4/n).lambdaMP in which n is a natural number of three or more except for multiples of four. When n=3, for example, the output A of the MR sensor or the waveform B is an output one cycle of which corresponds to a half of the magnetizing pitch lambdaP of the permanent magnets, and therefore the number of cycles in the output waveform becomes twice as many as that of a prior art in which n=2. Further, the magnetizing pitch of the permanent magnets becomes 1/1.5, whereby the number of poles are increased. Thus, a magnetic encoder having a resolution 1.5X2=3 times as high as that of a prior art can be constructed with the use of the same MR sensor and permanent magnets having the same diameter as the prior art.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、移動体の移動量を磁気的に検出して電気信号
出力を得る磁気エンコーダ、さらに詳述すれば、電気抵
抗が磁界強度に応じて変化する磁気抵抗素子の4個Aい
A1、BいB2をA1、A2間及びB1.82間のピッ
チが夫々λHRで、かつB工がAiとA2の中央位置と
なるように配設し、AiとA、の直列接続回路と81と
82の直列接続回路とを並列接続した回路に一定電圧V
cを印加し、A1とA2の中間接続点A及びB工とB2
の中間接続点Bを電圧検出端子とする磁気抵抗センサを
、λPのピッチでN極、S極が交互に着磁された永久磁
石に対して空隙を介して対向配置することで上記永久磁
石の移動量に応じた電圧信号を上記電圧検出端子A、B
より得る磁気エンコーダに関するもので、例えば、電動
機の速度制御の回転子の位置検出用として、あるいは、
ロボットやVTR(ビデオ・テープ・レコーダ)等の制
御用検出部に利用される。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a magnetic encoder that magnetically detects the amount of movement of a moving body and outputs an electrical signal, and more specifically, a magnetic encoder that magnetically detects the amount of movement of a moving body and outputs an electrical signal. Four magnetoresistive elements, A1 and B2, which vary with each other, are arranged so that the pitch between A1 and A2 and between B1.82 is λHR, respectively, and B is at the center position between Ai and A2. , a constant voltage V is applied to a circuit in which the series connection circuit of Ai and A and the series connection circuit of 81 and 82 are connected in parallel.
c is applied, and the intermediate connection point A and B between A1 and A2 and B2
By arranging a magnetoresistive sensor whose voltage detection terminal is the intermediate connection point B of the permanent magnet, facing the permanent magnet whose N pole and S pole are alternately magnetized with a pitch of λP, through an air gap, A voltage signal corresponding to the amount of movement is sent to the voltage detection terminals A and B.
This relates to a magnetic encoder obtained from the
It is used in the control detection section of robots, VTRs (video tape recorders), etc.

〔発明の背景〕[Background of the invention]

鉄あるいはニッケル等の磁性材料及びその合金の簿膜で
形成した導電体にその電流通過方向と直角に磁界を加え
ると、第4図実線曲線に示すように、導電体の電気抵抗
値が減少することが知られており、磁気抵抗効果と呼ば
れ、磁界の測定、位置の検出装置等に利用されている。
When a magnetic field is applied perpendicular to the current passing direction to a conductor made of a film made of magnetic materials such as iron or nickel and their alloys, the electrical resistance of the conductor decreases, as shown by the solid curve in Figure 4. This is known as the magnetoresistive effect, and is used in magnetic field measurement, position detection devices, etc.

なお、破線曲線は導電体にバイアス用磁石を並置した場
合の関係曲線である。
Note that the broken line curve is a relationship curve when a bias magnet is placed side by side with a conductor.

この磁気抵抗効果を利用して回転体の位置検出を行なう
磁気エンコーダが実用されており、その従来例を第5図
に示す、これは、電動機の回転子の回転移動量に応じた
電気信号を得ようとする例で、第5図(、)は磁気エン
コーダとその周辺部分の側面図とそのX−X断面図を示
し、1は電動機、2は回転子軸、3はその外周に多数の
N極。
A magnetic encoder that detects the position of a rotating body using this magnetoresistive effect is in practical use, and a conventional example is shown in Figure 5. In the example to be obtained, Fig. 5 (,) shows a side view of the magnetic encoder and its surrounding parts, and its XX cross-sectional view, where 1 is an electric motor, 2 is a rotor shaft, and 3 is a large number of North pole.

S極に着磁された永久磁石を備えて回転子軸2と一体的
に回転する永久磁石回転体、4が磁気抵抗効果素子(以
下、磁気抵抗素子と称す)で構成した磁気抵抗センサ(
以下、MRセンサと称す)、5はカバーである。永久磁
石回転体3の永久磁石とMRセンサ4とが空隙を介して
対向配設され、回転子軸2の回転位置をMRセンサ4に
より検出する構成となっている。
A permanent magnet rotating body equipped with a permanent magnet magnetized to the S pole and rotating integrally with the rotor shaft 2, and a magnetoresistive sensor (4) composed of a magnetoresistive effect element (hereinafter referred to as a magnetoresistive element).
(hereinafter referred to as an MR sensor), and 5 is a cover. The permanent magnets of the permanent magnet rotating body 3 and the MR sensor 4 are disposed opposite to each other with an air gap interposed therebetween, and the rotational position of the rotor shaft 2 is detected by the MR sensor 4.

MRセンサ4と永久磁石回転体3の永久磁石との関係は
、第5図(b)に示すように1MRセンサ4には4個の
磁気抵抗素子A1、A2、BいB2が、A1とA2間の
ピッチがλHR,Biと82間のピッチもλ■、かつB
工がA1とA2間の中央位置となるように配設され、各
素子は第5図(d)に示す電気回路を形成している。即
ち、A工とA2の直列接続回路と、B1とB2の直列接
続回路とを並列接続した回路に一定電圧Vcを印加し、
A□とA2の中間接続点A及びB1と82の中間接続点
B&ffi圧検出端子とするものである。また、MRセ
ンサ4の永久磁石回転体3と対向しない面にはバイアス
用磁石6が配置されている。バイアス用磁石6はMRセ
ンサ4に固着されており、磁性が一定(図示例ではN極
)の磁界を常にMR,センサ4に作用させるようになっ
ているので、MRセンサ4には、永久磁石回転体3の磁
界と、バイアス用磁石6の磁界との合成磁界が作用し、
永久磁石回転体3の永久磁石による磁界は電動機の回転
に伴ってその大きさと磁性とが変化するので、MRセン
サ4の検出端子A、Bより、電動機の回転子軸2の位置
及び回転方向が検出できる。
The relationship between the MR sensor 4 and the permanent magnets of the permanent magnet rotating body 3 is as shown in FIG. The pitch between is λHR, the pitch between Bi and 82 is also λ■, and B
The element is arranged so that it is located in the center between A1 and A2, and each element forms an electric circuit as shown in FIG. 5(d). That is, a constant voltage Vc is applied to a circuit in which a series connection circuit of A and A2 and a series connection circuit of B1 and B2 are connected in parallel,
The intermediate connection point A between A□ and A2 and the intermediate connection point B between B1 and 82 are used as pressure detection terminals. Further, a bias magnet 6 is arranged on the surface of the MR sensor 4 that does not face the permanent magnet rotating body 3. The bias magnet 6 is fixed to the MR sensor 4 so that a magnetic field with constant magnetism (N pole in the illustrated example) is always applied to the MR sensor 4. Therefore, the MR sensor 4 is equipped with a permanent magnet. A composite magnetic field of the magnetic field of the rotating body 3 and the magnetic field of the bias magnet 6 acts,
Since the magnetic field generated by the permanent magnet of the permanent magnet rotating body 3 changes in magnitude and magnetism as the motor rotates, the position and rotation direction of the rotor shaft 2 of the motor can be determined from the detection terminals A and B of the MR sensor 4. Can be detected.

第5図(c)は、検出端子A、Bの接地電位に対する電
圧を1回転体が永久磁石の着磁ピッチλPの間移動した
場合の変化を示すもので、バイアス用磁石6の磁界の大
きさを調整することで、回転体の移動角に対してほぼ正
弦波状の変化をし、また検出端子AとBに現われる電圧
信号の位相角は(1/4)  ・λPとなっており、1
を気角で90度の位相角となり電動機制御に必要な特性
を備えている。
FIG. 5(c) shows the change in the voltage of the detection terminals A and B with respect to the ground potential when the rotating body moves through the magnetization pitch λP of the permanent magnet, and the magnitude of the magnetic field of the bias magnet 6. By adjusting the angle, it changes almost sinusoidally with respect to the moving angle of the rotating body, and the phase angle of the voltage signal appearing at detection terminals A and B is (1/4) λP, which is 1
It has a phase angle of 90 degrees and has the characteristics necessary for motor control.

しかしながら、上記した従来技術には次のような問題点
があった。即ち、電動機制御の精度を高くするには、永
久磁石回転体3に設ける永久磁石の数を増加する必要が
あるが、MRセンサ4の素子の配設ピッチλ■を一定と
すると永久磁石の着磁ピッチλPも定まるので、永久磁
石の数を増加するには永久磁石回転体3の直径を大きく
する必要があることになり、制御精度を高くするには大
径の回転体が必要となり磁気エンコーダが大形になると
いう問題があった。
However, the above-mentioned conventional technology has the following problems. That is, in order to improve the accuracy of motor control, it is necessary to increase the number of permanent magnets provided on the permanent magnet rotating body 3, but if the arrangement pitch λ■ of the elements of the MR sensor 4 is constant, the attachment of the permanent magnets will increase. Since the magnetic pitch λP is also determined, it is necessary to increase the diameter of the permanent magnet rotating body 3 in order to increase the number of permanent magnets, and a large diameter rotating body is required to increase control accuracy. There was a problem in that it became large.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、従来技術における上記した問題点を解
決し、磁気抵抗素子の配設ピッチλHRと永久磁石回転
体の直径を一定とし、永久磁石の着磁ピッチλPを変化
するだけで、異なった分解度の磁気エンコーダを形成し
、永久磁石回転体の直径を大きくすることなく、より韮
い分解度とすることのできる磁気エンコーダを提供する
ことにある。
An object of the present invention is to solve the above-mentioned problems in the prior art, and to fix the arrangement pitch λHR of the magnetoresistive elements and the diameter of the permanent magnet rotating body to be constant, and to change the magnetization pitch λP of the permanent magnets by simply changing the An object of the present invention is to provide a magnetic encoder that can have a finer resolution without increasing the diameter of a permanent magnet rotating body.

〔発明の概要〕[Summary of the invention]

本発明の特徴は、永久磁石回転体に設ける永久磁石の着
磁ピッチλPと、MRセンサを形成する磁気抵抗素子の
配設ピッチλ■との関係を、nを4の倍数を除く3以上
の自然数としてλp=(4/n)・λHRとする構成を
採用することにある。
The feature of the present invention is that the relationship between the magnetization pitch λP of the permanent magnets provided on the permanent magnet rotating body and the arrangement pitch λ The purpose is to adopt a configuration in which λp=(4/n)·λHR as a natural number.

〔発明の実施例〕[Embodiments of the invention]

前述した関係式λp=(4/n)・λHRのnを種々の
自然数として、永久磁石の着磁ピッチλPを定める場合
にn=2はすでに従来技術で採用しているものであり、
n=1は従来構成より永久磁石の着磁ピッチλPが大き
くなり1本発明の目的に反する。従って、n=2及びn
=1は共に採用せず、nを3以上の自然数とする場合に
ついて以下に述べる。
When determining the magnetization pitch λP of the permanent magnet by setting n in the above-mentioned relational expression λp=(4/n)・λHR to various natural numbers, n=2 has already been adopted in the prior art,
When n=1, the magnetization pitch λP of the permanent magnet becomes larger than that of the conventional structure, which is contrary to the purpose of the present invention. Therefore, n=2 and n
The following describes the case where neither =1 is adopted and n is a natural number of 3 or more.

n=3の場合のMRセンサ4と永久磁石回転体3との配
置関係を第1図(a)に、電気回路図を(c)に、検出
端子A、Hに現われる電圧信号の位相関係を(b)に示
す、MRセンサの素子の配設ピッチλHRと、永久磁石
の着磁ピッチλPとの間にはλP=(4/3)・λ■の
関係式が成立しており、かつ、第5図(b)の従来構成
と異なり、バイアス用磁石を備えていない。
Figure 1(a) shows the arrangement relationship between the MR sensor 4 and the permanent magnet rotating body 3 in the case of n=3, the electric circuit diagram (c) shows the phase relationship of the voltage signals appearing at the detection terminals A and H. As shown in (b), the relational expression λP=(4/3)·λ■ holds between the arrangement pitch λHR of the elements of the MR sensor and the magnetization pitch λP of the permanent magnet, and Unlike the conventional configuration shown in FIG. 5(b), no bias magnet is provided.

第1図実施例は次のように動作する。第1図(a)の図
示状態では素子A1は対向磁束が零で抵抗値は最大であ
り、素子A、はS極の最大磁束を受は抵抗値が最低であ
るから出力Aのレベルは、Vc/2を零ラインとして示
すと、(b)図におけるa工の位置となる0次に永久磁
石が矢印方向に(1/8)・λPたけ回転すると素子A
2とA2とはほぼ同じ磁束を受けるために抵抗値は同じ
となり、従って出力AのレベルはVc/2=Oでa2の
位置となる。永久磁石がさらに(1/8)・λP回転す
ると素子A1の受ける磁束が最大となり抵抗値は最小、
A、(7)受ける磁束は零、抵抗値は最大となって出力
Aのレベルはa3の位置となる。以下永久磁石が(1/
8)・・λPだけ回転するに従って出力Aのレベルはa
いaい・・・と位置するようになり、回転体の回転移動
量の変化(1/2)・λPに対して1サイクルのレベル
変化をする。
The embodiment of FIG. 1 operates as follows. In the state shown in FIG. 1(a), element A1 has zero opposing magnetic flux and has the maximum resistance value, and element A receives the maximum magnetic flux of the S pole and has the lowest resistance value, so the level of output A is as follows. If Vc/2 is shown as a zero line, when the zero-order permanent magnet, which is at the position a in figure (b), rotates by (1/8)·λP in the direction of the arrow, element A
2 and A2 receive almost the same magnetic flux, so their resistance values are the same, and therefore the level of output A is Vc/2=O, which is at the position a2. When the permanent magnet further rotates by (1/8)·λP, the magnetic flux received by element A1 becomes maximum, and the resistance value becomes minimum.
A, (7) The received magnetic flux is zero, the resistance value is maximum, and the level of output A is at position a3. Below, the permanent magnet is (1/
8)...As it rotates by λP, the level of output A becomes a
The level changes by one cycle with respect to the change (1/2)·λP in the amount of rotational movement of the rotating body.

一方、素子B1とB2の方は、素子A1、 A、に対し
く1/2)・λHRだけ位置をずらして配設しであるの
で、その出力Bの波形は(b)図に示すようにAの波形
に対しく1/8)・λPだけ位相がずれた形で同じ波形
b8〜b、・・・を出力する。
On the other hand, elements B1 and B2 are arranged with their positions shifted by 1/2)·λHR from elements A1 and A, so the waveform of output B is as shown in figure (b). The same waveforms b8 to b, . . . are output with a phase shift of 1/8)·λP with respect to the waveform of A.

このように、第1図に示したn=3の実施例においては
、(1)バイアス用磁石が不要である。
In this way, in the embodiment of n=3 shown in FIG. 1, (1) no bias magnet is required;

(2)MRセンサの出力AあるいはBの波形は永久磁石
の着磁ピッチλPの1/2のピッチを1周期とした出力
となるので出力波形のサイクル数が従来例のn = 2
の場合の2倍となり、一方、永久磁石の着磁ピッチが1
/1.5となり極数が増加することと相まって、同一の
MRセンサと同一直径の永久磁石によって1.5X2=
3倍の分解度の磁気エンコーダを構成することができる
(2) The waveform of the output A or B of the MR sensor is an output with one period having a pitch of 1/2 of the magnetization pitch λP of the permanent magnet, so the number of cycles of the output waveform is n = 2 of the conventional example.
On the other hand, if the magnetization pitch of the permanent magnet is 1
/1.5, and the number of poles increases, and with the same MR sensor and permanent magnet of the same diameter, 1.5X2=
A magnetic encoder with three times the resolution can be constructed.

次に他の実施例としてn=6.即ちλP=(476)・
λHR=(2/3)・λ■の場合について説明する。M
Rセンサ4と永久磁石回転体3との関係を第2図(a)
に、出力電圧の波形を(b)に示j、MRセンサの電気
回路は第1図(c)の場合と同一であるが、第2図実施
例ではバイアス用磁石6を設けることが必要となる。
Next, as another example, n=6. That is, λP=(476)・
The case of λHR=(2/3)·λ■ will be explained. M
The relationship between the R sensor 4 and the permanent magnet rotating body 3 is shown in Figure 2(a).
The waveform of the output voltage is shown in (b). The electric circuit of the MR sensor is the same as that in Fig. 1 (c), but in the embodiment shown in Fig. 2, it is necessary to provide a bias magnet 6. Become.

第2図実施例は次のように動作する0図示位置では素子
A1とA2は共に永久磁石から受ける磁束は零テアリ、
さらに、バイアス用磁石のN極の同一磁束を受けるから
抵抗値は等しく、出力Aのし    レベルはVc/2
で1、(b)図においてa工の位置にある0次に永久磁
石が(1/4)・λPたけ矢印方向に回転すると素子A
1は、永久磁石のN極最大とバイアス用磁石のN極との
合成で大きな磁束を受は抵抗値が最低となり、素子A1
、は、永久磁石のS極の最大とバイアス用磁石のN極と
の差の磁束を受けそ、の抵抗値が最大となるから出力A
のレベルは最も高くなり(b)図のa2の位置となる。
The embodiment shown in FIG. 2 operates as follows. At the zero position shown in the figure, both elements A1 and A2 receive zero magnetic flux from the permanent magnet.
Furthermore, since the N pole of the bias magnet receives the same magnetic flux, the resistance values are the same, and the output A level is Vc/2.
1. When the zero-order permanent magnet at position a in figure (b) rotates by (1/4)·λP in the direction of the arrow, element A
1 receives a large magnetic flux due to the combination of the maximum N pole of the permanent magnet and the N pole of the bias magnet, and the resistance value is the lowest, and element A1
, receives the magnetic flux of the difference between the maximum S pole of the permanent magnet and the N pole of the bias magnet, and the resistance value of is the maximum, so the output A is
The level is the highest, at position a2 in the figure (b).

さらに(1/4)・λPだけ矢印方向に回転が進むと、
素子A□とA2は共に永久磁石より受ける磁束が零とな
り、バイアス用磁石より同じ磁束を受けるから抵抗値は
相等しく、出力AのレベルはVc/2となって(b)図
の83の位置となる。以下永久磁石が(1/4)・λP
回転するごとに素子A1とA2の抵抗値が相対的に増減
し永久磁石がλPだけ回転するとこれを1周期とした波
形の出力Aが得られる。一方、素子B1とB8は素子A
1とA2に対しく1/2)・λHRだけ位置をずらして
配置しであるので、出力Bの波形は出力Aの波形に対し
く1/4)・λPだけ位相がずれた同じ波形となる。
When the rotation further advances in the direction of the arrow by (1/4)・λP,
Elements A□ and A2 both receive zero magnetic flux from the permanent magnet, and receive the same magnetic flux from the bias magnet, so their resistance values are equal, and the level of output A is Vc/2, so they are at position 83 in the diagram (b). becomes. Below, the permanent magnet is (1/4)・λP
Each time the permanent magnet rotates, the resistance values of elements A1 and A2 increase and decrease relative to each other, and when the permanent magnet rotates by λP, a waveform output A having one cycle of this rotation is obtained. On the other hand, elements B1 and B8 are element A
Since the positions are shifted by 1/2)・λHR relative to 1 and A2, the waveform of output B is the same waveform with a phase shift of 1/4)・λP compared to the waveform of output A. .

即ち、第2図に示したn==6の場合の特長は、(1)
バイアス用磁石が必要である、(2)永久磁石の着磁ピ
ッチλPがλp=(2/3)・λ■であるから第5図に
示した従来例に比し、同一直径の永久磁石に対し3倍の
数の磁極を配設したことにより、3倍の分解度の磁気エ
ンコーダを得ることができる。
That is, the features of the case of n==6 shown in FIG. 2 are (1)
A bias magnet is required. (2) Since the magnetization pitch λP of the permanent magnet is λp = (2/3)・λ■, compared to the conventional example shown in Fig. 5, the permanent magnet of the same diameter However, by arranging three times as many magnetic poles, a magnetic encoder with three times the resolution can be obtained.

さらに、n=4の場合を検討すると、第3図(a)に示
すように、λp=(4/4)・λMk=λHRとなり、
バイアス用磁石を使用しても、MRセンサの対となる素
子A1とA2及びB1とB2が夫々同時に同じ方向に抵
抗値が変化するので、磁気エンコーダとして動作しない
Furthermore, when considering the case of n=4, as shown in Figure 3(a), λp = (4/4)・λMk = λHR,
Even if a bias magnet is used, the resistance values of the paired elements A1 and A2 and B1 and B2 of the MR sensor change in the same direction at the same time, so they do not operate as a magnetic encoder.

同じようにn=5.8.1(1,12、・・・とnに順
次、自然数を代入してその動作を第3図(b)、(e)
Similarly, by substituting natural numbers for n = 5.8.1 (1, 12, ...), the operation is shown in Figure 3 (b) and (e).
.

(c)、(d) 、・・・について検証し、上記の結果
と合せてMRセンサ4の素子配設ピッチλHRと、永久
磁石の着磁ピッチλPとの関係式λp=(4/n)・λ
HRにおけるnとして、「4の倍数を除く3以上の自然
数」を用いることにより、本発明の目的が達成されるこ
とが判る。
(c), (d), ... were verified, and in conjunction with the above results, the relational expression λp = (4/n) between the element arrangement pitch λHR of the MR sensor 4 and the magnetization pitch λP of the permanent magnet was determined.・λ
It can be seen that the object of the present invention can be achieved by using "a natural number of 3 or more excluding multiples of 4" as n in HR.

nのうちから4の倍数が除外される理由は、nを4の倍
数とすると、対となる磁気抵抗素子の夫々に作用する永
久磁石の磁性が同じとなり、たとえバイアス用磁石を設
けても、抵抗値の変化が同じとなって、出力電力が発生
せず、磁気エンコーダとして動作しないからである。
The reason why multiples of 4 are excluded from n is that if n is a multiple of 4, the magnetism of the permanent magnets that act on each of the paired magnetoresistive elements will be the same, so even if a bias magnet is provided, This is because the change in resistance value remains the same, no output power is generated, and the device does not operate as a magnetic encoder.

これに対し、nが4の倍数を除く3以上の自然数である
場合は、対となる磁気抵抗素子の夫々に作用する永久磁
石の磁性、又は磁束の大きさの変化の方向が逆の方向と
なり、夫々の抵抗値の変化が逆方向となり、出力電圧が
得られる。又、nが奇数の場合はバイアス用磁石は不要
であり、nが偶数の場合にはバイアス用磁石が必要であ
る。
On the other hand, if n is a natural number of 3 or more excluding multiples of 4, the direction of change in the magnetism or magnetic flux of the permanent magnet acting on each of the paired magnetoresistive elements will be in opposite directions. , the respective resistance values change in opposite directions, and an output voltage is obtained. Further, if n is an odd number, a bias magnet is not required, and if n is an even number, a bias magnet is required.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、MRセンサの素
子の配設ピッチλHRを一定とし対向して設ける永久磁
石の着磁ピッチλPを選定するだけで種々の分解度の磁
気エンコーダを構成することができ、永久磁石の直径を
大きくすることなく、より高い分解度の磁気エンコーダ
を得ることができる。特に、関係式λp=(4/n)・
λHRのnとしてn=3.5、・・・のような3以上の
奇数を採用すれば、(1)バイアス用磁石が不要であり
、(2)MRセンサの出力波形の周期は永久磁石の着磁
ピッチλPの1/2となり、従来構成に比し2倍の分解
度が得られ、また、nとしてn=6.10、・・・のよ
うな4の倍数を除いた偶数を採用すれば(1)バイアス
用磁石を必要とするが、(2)MRセンサの出力波形の
周期は永久磁石の着磁ピッチλPと同じとなり、出力波
形は正弦波に近い形となるので出力波形、の−波長分を
さらに細分化した微少角度の検出に使用することができ
る利点がある。
As explained above, according to the present invention, magnetic encoders with various resolutions can be constructed by simply setting the arrangement pitch λHR of the MR sensor elements constant and selecting the magnetization pitch λP of the permanent magnets provided facing each other. Therefore, a magnetic encoder with higher resolution can be obtained without increasing the diameter of the permanent magnet. In particular, the relational expression λp=(4/n)・
If n of λHR is set to an odd number of 3 or more, such as n = 3.5, etc., (1) a bias magnet is not required, and (2) the period of the output waveform of the MR sensor is equal to that of a permanent magnet. The magnetization pitch is 1/2 of λP, and the resolution is twice as high as that of the conventional configuration.Also, an even number excluding multiples of 4 such as n=6.10, etc. is used as n. (1) A bias magnet is required, but (2) the period of the output waveform of the MR sensor is the same as the magnetization pitch λP of the permanent magnet, and the output waveform is close to a sine wave. - It has the advantage that it can be used to detect minute angles that are further subdivided into wavelengths.

なお、実施例においてはλPのピッチで着磁する永久磁
石を回転体として説明したが、直線状に延在する直動体
の移動方向にN極、S極交互に着磁した直線動作の磁気
エンコーダにも、本発明は適用可能である。
In the embodiment, a permanent magnet magnetized at a pitch of λP was described as a rotating body, but a linear motion magnetic encoder in which a linearly extending linear motion body is alternately magnetized with N poles and S poles in the moving direction. The present invention is also applicable to

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例図で(、)は磁気抵抗センサ
と磁石回転体との配置関係図、(b)は出力信号の位相
関係図、(C)は磁気抵抗センサの電気回路図、第2図
はn = 6とした実施例図で(a)は磁気抵抗センサ
と永久磁石回転体との配置関係図、(b)は出力信号波
形図、第3図はnに種々の自然数を用いた場合の動作検
討図、第4図は磁気抵抗素子の特性説明図、第5図は従
来例の説明図で(a)は側面図とそのx−X断面図。 (b)は磁気抵抗センサと永久磁石回転体との配置関係
図、(c)は出力信号波形図、(d)は磁気抵抗センサ
の電気回路図である。 符号の説明 1・・・電動機      2・・・回転子軸3・・・
永久磁石回転体  4・・・磁気抵抗センサ5・・・カ
バー      6・・・バイアス用磁石A、B・・・
電圧検出端子 A1、A2、BいB2・・・磁気抵抗素子t3図 (Q)  n工4  (NG) (d)  n=+2(NG)   (e) n=s  
(NG)口==コ[二二コ  ロ二二1===コH・・
・川   −?粛 A10  B、ロ        BZOA+[B+ 
          ’口矛4図
Fig. 1 is a diagram showing one embodiment of the present invention, (,) is a diagram of the arrangement relationship between the magnetoresistive sensor and the magnet rotating body, (b) is a diagram of the phase relationship of the output signals, and (C) is the electrical circuit of the magnetoresistive sensor. Figure 2 shows an example in which n = 6, (a) is a diagram of the arrangement relationship between the magnetoresistive sensor and the permanent magnet rotating body, (b) is an output signal waveform diagram, and Figure 3 is a diagram of various values for n. FIG. 4 is an explanatory diagram of characteristics of a magnetoresistive element; FIG. 5 is an explanatory diagram of a conventional example; (a) is a side view and its XX sectional view; (b) is a layout relationship diagram between a magnetoresistive sensor and a permanent magnet rotating body, (c) is an output signal waveform diagram, and (d) is an electric circuit diagram of the magnetoresistive sensor. Explanation of symbols 1...Electric motor 2...Rotor shaft 3...
Permanent magnet rotating body 4... Magnetoresistive sensor 5... Cover 6... Bias magnets A, B...
Voltage detection terminals A1, A2, B2...Magnetic resistance element t3 diagram (Q) n engineering 4 (NG) (d) n=+2 (NG) (e) n=s
(NG) Mouth==ko[22 ro221===koH...
・River −? A10 B, BZOA+[B+
'Picture 4

Claims (1)

【特許請求の範囲】[Claims]  電気抵抗が磁界強度に応じて変化する磁気抵抗素子の
4個A_1、A_2、B_1、B_2をA_1、A_2
間及びB_1、B_2間のピッチが夫々λ_H_Rで、
かつB_1がA_1とA_2の中央位置となるように配
設し、A_1とA_2の直列接続回路とB_1とB_2
の直列接続回路とを並列接続した回路に一定電圧Vcを
印加し、A_1とA_2の中間接続点A及びB_1とB
_2の中間接続点Bを電圧検出端子とする磁気抵抗セン
サを、λ_PのピッチでN極、S極が交互に着磁された
永久磁石に対して空隙を介して対向配置することで上記
永久磁石の移動量に応じた電圧信号を上記電圧検出端子
A、Bより得る磁気エンコーダにおいて、上記永久磁石
の着磁ピッチλ_Pと上記磁気抵抗素子の配設ピッチλ
_H_Rとの関係を、nを4の倍数を除く3以上の自然
数としてλ_P=(4/n)・λ_H_Rとしたことを
特徴とする磁気エンコーダ。
Four magnetoresistive elements A_1, A_2, B_1, and B_2 whose electrical resistance changes depending on the magnetic field strength are A_1 and A_2.
and the pitch between B_1 and B_2 is λ_H_R, respectively.
And B_1 is arranged at the center position of A_1 and A_2, and the series connection circuit of A_1 and A_2 and the series connection circuit of B_1 and B_2
A constant voltage Vc is applied to a circuit that is connected in parallel with a series-connected circuit of
By arranging a magnetoresistive sensor whose voltage detection terminal is the intermediate connection point B of _2, facing the permanent magnet whose N pole and S pole are alternately magnetized at a pitch of λ_P, with an air gap between the above permanent magnets. In the magnetic encoder which obtains a voltage signal from the voltage detection terminals A and B according to the amount of movement of the permanent magnet, the magnetization pitch λ_P of the permanent magnet and the arrangement pitch λ of the magnetic resistance element
A magnetic encoder characterized in that the relationship with _H_R is λ_P=(4/n)·λ_H_R, where n is a natural number of 3 or more excluding multiples of 4.
JP15934984A 1984-07-31 1984-07-31 Magnetic encoder Granted JPS6139592A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15934984A JPS6139592A (en) 1984-07-31 1984-07-31 Magnetic encoder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15934984A JPS6139592A (en) 1984-07-31 1984-07-31 Magnetic encoder

Publications (2)

Publication Number Publication Date
JPS6139592A true JPS6139592A (en) 1986-02-25
JPH0430756B2 JPH0430756B2 (en) 1992-05-22

Family

ID=15691900

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15934984A Granted JPS6139592A (en) 1984-07-31 1984-07-31 Magnetic encoder

Country Status (1)

Country Link
JP (1) JPS6139592A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992011661A1 (en) * 1990-12-20 1992-07-09 Fmc Co., Ltd. Magnetic resistance element and its manufacturing method, and magnetic sensor using the magnetic resistance element
US5297881A (en) * 1991-05-16 1994-03-29 Mitsubishi Steel Mfg. Co., Ltd. Printing machine carriage having a magnetic encoder
WO2005083457A1 (en) * 2004-02-27 2005-09-09 Murata Manufacturing Co., Ltd. Prolonged magnetic sensor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5441335A (en) * 1977-09-03 1979-04-02 Pola Kasei Kogyo Kk Cosmetics
JPS5559314A (en) * 1978-10-27 1980-05-02 Sony Corp Magnetic scale signal detector

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5441335A (en) * 1977-09-03 1979-04-02 Pola Kasei Kogyo Kk Cosmetics
JPS5559314A (en) * 1978-10-27 1980-05-02 Sony Corp Magnetic scale signal detector

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992011661A1 (en) * 1990-12-20 1992-07-09 Fmc Co., Ltd. Magnetic resistance element and its manufacturing method, and magnetic sensor using the magnetic resistance element
US5539372A (en) * 1990-12-20 1996-07-23 Mitsubishi Steel Mfg. Co., Ltd. Magnetic resistance element, method for preparing the same and magnetic sensor using the same
US5297881A (en) * 1991-05-16 1994-03-29 Mitsubishi Steel Mfg. Co., Ltd. Printing machine carriage having a magnetic encoder
WO2005083457A1 (en) * 2004-02-27 2005-09-09 Murata Manufacturing Co., Ltd. Prolonged magnetic sensor
US7157905B1 (en) 2004-02-27 2007-01-02 Murata Manufacturing Co., Ltd. Long magnetic sensor
KR100801853B1 (en) 2004-02-27 2008-02-11 가부시키가이샤 무라타 세이사쿠쇼 Prolonged magnetic sensor

Also Published As

Publication number Publication date
JPH0430756B2 (en) 1992-05-22

Similar Documents

Publication Publication Date Title
US5574364A (en) Position detector including a reference position wherein the sensor is saturating the MR sensor for preventing hysteresis and in a bridge circuit
US5019776A (en) Magnetic position detection apparatus having two magnetic recording medium tracks with magnetoresistors arranged in a bridge circuit so as to eliminate even order harmonic distortion
WO1999013296A1 (en) Magnetic encoder
JP2002228733A (en) Magnetism detecting device
JPS58106462A (en) Rotation detector
JPH04282417A (en) Magnetic sensor
JPS6139592A (en) Magnetic encoder
JP2550085B2 (en) Absolute position detector
JPS6176911A (en) Magnetic encoder
JP3170806B2 (en) Magnetoelectric converter
JPH0330089B2 (en)
JP2613059B2 (en) Magnetic sensor
JPH01301113A (en) Signal processing circuit for magneto-resistance element
JPH075371Y2 (en) Zero-point detection device for incremental magnetic encoder
JPS6032996B2 (en) magnetoresistive device
JPS62137514A (en) Magnetic sensor
JPH0241869Y2 (en)
JPH0236135Y2 (en)
JPS61161418A (en) Magnetic encoder
JPS61189414A (en) Magnetic flux density change detector
JPS6111982Y2 (en)
JPH0750665Y2 (en) Magnetic encoder
JPH04223218A (en) Magnetic sensor
JPS5919810A (en) Detecting device of rotation angle
JPH01185414A (en) Magnetic type rotary encoder