JPH04223218A - Magnetic sensor - Google Patents

Magnetic sensor

Info

Publication number
JPH04223218A
JPH04223218A JP40650190A JP40650190A JPH04223218A JP H04223218 A JPH04223218 A JP H04223218A JP 40650190 A JP40650190 A JP 40650190A JP 40650190 A JP40650190 A JP 40650190A JP H04223218 A JPH04223218 A JP H04223218A
Authority
JP
Japan
Prior art keywords
magnetic
ferromagnetic
tracks
drum
degrees
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP40650190A
Other languages
Japanese (ja)
Inventor
Shoichi Kubo
久保 正一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP40650190A priority Critical patent/JPH04223218A/en
Publication of JPH04223218A publication Critical patent/JPH04223218A/en
Pending legal-status Critical Current

Links

Landscapes

  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

PURPOSE:To eliminate placement of a magnetic track and an MR element even at a saturation region of magnetic resistance in a magnetic sensor using the MR element consisting of a ferromagnetic resistance. CONSTITUTION:An MR element 7 consisting of a ferromagnetic resistance is placed opposing to at least two magnetized tracks 6A, 6B, 6C, and 6D around one periphery of a magnetic drum 1. A magnetization direction of the magnetic tracks 6A, 6B, 6C, and 6D is in axial direction over one periphery of the magnetic drum 1 and a magnetic strength is changed nearly in sinusoidal shape for the MR element 7 along with revolution of the magnetic drum 1. Also, at least two magnetic tracks 6A, 6B, 6C, and 6D are constituted so that the magnetic strength is nearly in 120-degree phase difference mutually.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、ロボット,NC装置等
に広く使用されているアブソリュート型の磁気センサに
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an absolute type magnetic sensor widely used in robots, NC devices, etc.

【0002】0002

【従来の技術】アブソリュート型のエンコーダは円周を
多段のトラックに分けて2,4,8,16,32,……
2n分割してその絶対位置を検出する方式のエンコーダ
である。
[Prior Art] An absolute encoder divides the circumference into multiple tracks of 2, 4, 8, 16, 32,...
This is an encoder that divides the image into 2n and detects its absolute position.

【0003】これを磁気で行なうと多段の着磁トラック
が必要となり、大型化,高価格となる欠点があった。
If this is done magnetically, a multi-stage magnetized track is required, which has the drawback of increasing the size and cost.

【0004】そこで、本発明者は、着磁トラックを減ら
して、例えば2,16,128,1024分割したトラ
ックを用いて、それぞれの磁気トラックに対向する磁気
センサからのsin波,cos波の信号を電気回路処理
による方法で、2,4,8,16,32,64,128
,256,512,1012,2048,4096分割
した正規の信号を得る方法を開発し、2,16等の1回
転1Hz〜数十Hzの低周波数の磁気センサについての
内容を特許出願した。
[0004] Therefore, the present inventor reduced the number of magnetized tracks and used tracks divided into 2, 16, 128, and 1024, for example, to generate sine wave and cosine wave signals from magnetic sensors facing each magnetic track. By the method of electric circuit processing, 2, 4, 8, 16, 32, 64, 128
, 256, 512, 1012, 2048, and 4096 divided signals, and filed a patent application for a low-frequency magnetic sensor such as 2,16, etc., with a rotation rate of 1 Hz to several tens of Hz.

【0005】図6にその内容を示しており、図6におい
て、磁気ドラム1にシャフト2を取付ける。シャフト2
には回転に伴い回転と同期したsin波信号を発生する
信号発生器3を取付ける。
The details are shown in FIG. 6, in which the shaft 2 is attached to the magnetic drum 1. shaft 2
A signal generator 3 is attached to generate a sine wave signal synchronized with the rotation as it rotates.

【0006】信号発生器3から出た信号はアンプ4で増
幅され磁気ヘッド5A,5B,5C,5D(陰となるの
で図示せず)により磁気トラック6A,6B,6C,6
Dとして着磁される。磁気トラック6A,6B,6C,
6Dの磁界強さは信号発生器からのsin波信号と同期
したものとなり、sin状で磁界強さが変化する磁気ト
ラック6A,6B,6C,6Dとなる。
The signal output from the signal generator 3 is amplified by an amplifier 4, and is applied to magnetic tracks 6A, 6B, 6C, 6 by magnetic heads 5A, 5B, 5C, and 5D (not shown because they are shaded).
It is magnetized as D. Magnetic tracks 6A, 6B, 6C,
The magnetic field strength of 6D is synchronized with the sine wave signal from the signal generator, resulting in magnetic tracks 6A, 6B, 6C, and 6D whose magnetic field strength changes in a sinusoidal manner.

【0007】磁気トラック6A,6B,6C,6Dの位
相関係は6Aと6Bは180度、6Cと6Dは180度
、6Aと6Cは90度の位相差となるように着磁する。 例えば1回転1Hzの信号の場合は相互に機械角度で磁
気ヘッドAとBは180度、CとDは180度、6Aと
6Cは90度となるように取付け、直列に接続して同じ
電流で着磁する。なお51A,51B,51C,51D
は磁気ヘッド5A,5B,5C,5Dのヨーク開口部で
、磁気ドラム1の軸方向と合致しており、磁気トラック
は上下方向に磁極が設けられる。
The magnetic tracks 6A, 6B, 6C, and 6D are magnetized so that the phase difference between them is 180 degrees for 6A and 6B, 180 degrees for 6C and 6D, and 90 degrees for 6A and 6C. For example, in the case of a signal of 1 Hz per rotation, magnetic heads A and B are installed at a mechanical angle of 180 degrees, C and D are 180 degrees, and 6A and 6C are installed at 90 degrees, and they are connected in series to generate the same current. Magnetize. Furthermore, 51A, 51B, 51C, 51D
The yoke openings of the magnetic heads 5A, 5B, 5C, and 5D coincide with the axial direction of the magnetic drum 1, and the magnetic tracks are provided with magnetic poles in the vertical direction.

【0008】ここで、1回転16Hzの場合はその角度
を磁気ヘッド5Aと5Bおよび5Cと5Dは11.25
度又は等価な11.25+n×22.5度(n≧1の整
数)とし、5Aと5Cは5,625度または等価な5,
625+n×22.5度(n≧1の整数)に取付ける。
Here, in the case of one rotation of 16 Hz, the angle of the magnetic heads 5A and 5B and 5C and 5D is 11.25.
degrees or equivalent 11.25 + n × 22.5 degrees (n≧1 integer), and 5A and 5C are 5,625 degrees or equivalent 5,
Install at 625+n×22.5 degrees (n≧1 integer).

【0009】なお、磁気トラック6A,6B,6C,6
Dを同一電流で同時に着磁することで説明したが、磁気
トラック6A,6B,6C,6Dを別々の着磁電流とし
てその位相を所定の位相差としてもよい。
Note that the magnetic tracks 6A, 6B, 6C, 6
Although the explanation has been given by simultaneously magnetizing the magnetic tracks D with the same current, the magnetic tracks 6A, 6B, 6C, and 6D may be provided with separate magnetizing currents and their phases may be set to have a predetermined phase difference.

【0010】このように着磁した磁気ドラム1にMR素
子7を磁気トラック6A,6B,6C,6Dに一定のギ
ャップgで近接配置する。
The MR element 7 is placed close to the magnetic tracks 6A, 6B, 6C, and 6D with a constant gap g on the magnetic drum 1 magnetized in this manner.

【0011】MR素子7の内部には磁界により抵抗値の
変化する強磁性の磁気抵抗MR1とMR2,MR3,M
R4を配置する。磁気抵抗MR1,MR2,MR3,M
R4,MR5,MR6,MR7,MR8は図7に示すよ
うにそれぞれ磁気トラックの6A,6B,6C,6Dに
対向して配置する。
Inside the MR element 7, there are ferromagnetic magnetoresistances MR1, MR2, MR3, M whose resistance value changes depending on the magnetic field.
Place R4. Magnetic resistance MR1, MR2, MR3, M
R4, MR5, MR6, MR7, and MR8 are arranged facing magnetic tracks 6A, 6B, 6C, and 6D, respectively, as shown in FIG.

【0012】この磁気抵抗MR1,MR2,MR3,M
R4,MR5,MR6,MR7,MR8は同一基板上に
同時に作られたもので、図8に示す等価回路のようにM
R1とMR2を、MR3とMR4を、MR5とMR6を
、MR7とMR8をそれぞれ直列に接続し、その接続点
から出力信号Va,
These magnetic resistances MR1, MR2, MR3, M
R4, MR5, MR6, MR7, and MR8 were made simultaneously on the same board, and as shown in the equivalent circuit shown in Figure 8, M
R1 and MR2, MR3 and MR4, MR5 and MR6, and MR7 and MR8 are connected in series, respectively, and output signals Va,

【0013】[0013]

【外1】[Outside 1]

【0014】とVb,[0014] and Vb,

【0015】[0015]

【外2】[Outside 2]

【0016】をそれぞれ取り出し、他端側を電源Eに接
続する。より具体的なMR素子と磁気トラックとの関係
を図9により説明する。
[0016] respectively, and connect the other end to the power source E. A more specific relationship between the MR element and the magnetic track will be explained with reference to FIG.

【0017】磁気抵抗MR1,MR2,MR3,MR4
,MR5,MR6,MR7,MR8はNiFe又はNi
Co等の強磁性の合金薄膜からなる磁界によって抵抗が
変化する抵抗で、図に示すように、それぞれの抵抗は同
一基板上に同じ形状で作る。この強磁性磁気抵抗は薄膜
の面と同じ面で、電流の流れる方向と直角方向の磁界に
対して最大に抵抗変化があるので、図に示すように磁気
トラック6A,6Bの磁界方向(図では上から下)と直
角に電流が流れるように磁界を感知する磁気抵抗MR1
,MR2,MR3,MR4を配置する。
Magnetoresistive MR1, MR2, MR3, MR4
, MR5, MR6, MR7, MR8 are NiFe or Ni
A resistor whose resistance changes depending on a magnetic field is made of a thin film of a ferromagnetic alloy such as Co. As shown in the figure, each resistor is made in the same shape on the same substrate. This ferromagnetic magnetoresistance has the largest resistance change in the direction of the magnetic field in the direction perpendicular to the direction of current flow on the same plane as the thin film. Magnetoresistive MR1 that senses the magnetic field so that the current flows at right angles to (from top to bottom)
, MR2, MR3, and MR4 are arranged.

【0018】そして、MR1とMR2を接続し、その接
続点から出力Vaを、MR3とMR4を接続し、その接
続点から出力
[0018] Then, MR1 and MR2 are connected, and the output Va is output from the connection point, and MR3 and MR4 are connected, and the output Va is output from the connection point.

【0019】[0019]

【外3】[Outer 3]

【0020】を取り出す。一方、それぞれの他端子側は
電源Eに接続する。このとき図に示すようにMR1とM
R2に対してMR3とMR4は逆極性となるように電源
Eに接続する。
Take out [0020]. On the other hand, each other terminal side is connected to a power source E. At this time, as shown in the figure, MR1 and M
MR3 and MR4 are connected to power supply E so as to have opposite polarity to R2.

【0021】このように構成することによりMR素子7
の抵抗は図10(a)のようにMR1とMR2およびM
R4とMR3は互いに逆の関係でsinで増減する。し
たがって出力電圧Vaは図10(b)および図10(c
)に示すように、ほぼ電源電圧の1/2を中心にVaの
ように出力電圧として取りだせる。仮に片側MR1だけ
の動作の場合は図10(b)の点線のようにVaの1/
2の出力となる。逆極性の電源に接続したMR3,MR
4からは同様に図10(c)の点線で示す
With this configuration, the MR element 7
The resistances are MR1, MR2 and M as shown in Figure 10(a).
R4 and MR3 are inversely related to each other and increase and decrease with a sin ratio. Therefore, the output voltage Va is
), approximately 1/2 of the power supply voltage can be extracted as an output voltage such as Va. If only MR1 operates on one side, 1/1 of Va as shown by the dotted line in Fig. 10(b).
The output will be 2. MR3, MR connected to a power supply with opposite polarity
From 4 onwards, it is similarly shown by the dotted line in Fig. 10(c).

【0022】[0022]

【外4】[Outside 4]

【0023】のようにVaとは逆相の出力電圧として取
りだせる。このように、ほぼ電源電圧の1/2を中心に
Vaと
It can be obtained as an output voltage having a phase opposite to Va as shown in the following. In this way, Va and around 1/2 of the power supply voltage

【0024】[0024]

【外5】[Outer 5]

【0025】は位相が180度ずれた出力となり、この
0025 is an output whose phase is shifted by 180 degrees, and this difference

【0026】[0026]

【数1】[Math 1]

【0027】を取ると出力電圧が2倍となる。また、図
11に示すような差動アンプで出力電圧を増幅するとM
R1,MR2,MR3,MR4に入ってくるノイズは差
動アンプの同相除去により大幅に減少することができ、
大幅な耐ノイズ性が向上する。
By taking ##EQU1##, the output voltage doubles. Also, if the output voltage is amplified by a differential amplifier as shown in Figure 11, M
The noise entering R1, MR2, MR3, and MR4 can be significantly reduced by common mode rejection of the differential amplifier.
Significantly improves noise resistance.

【0028】同じようにして90度位相差のある磁気ト
ラック6C,6DおよびMR5,MR6,MR7,MR
8からはVa,
Similarly, magnetic tracks 6C, 6D and MR5, MR6, MR7, MR with a phase difference of 90 degrees
From 8, Va,

【0029】[0029]

【外6】[Outside 6]

【0030】に対して90度位相差のあるVb,Vb with a 90 degree phase difference with respect to

【00
31】
00
31]

【外7】[Outside 7]

【0032】が得られる。なお強磁性の磁気抵抗は磁極
のN,S両磁極に対して対称に抵抗変化するので1回転
1Hzを得るときは図12に示すように直流が重畳した
着磁電流で着磁し、磁気トラックの極性が反転しないよ
うにする(極性が反転すると1回転2Hzの出力信号と
なってしまう)。
##EQU1## is obtained. Note that the resistance of ferromagnetic magnetoresistance changes symmetrically with respect to both the N and S magnetic poles, so in order to obtain 1 Hz per revolution, as shown in Figure 12, magnetization is performed using a magnetizing current with superimposed direct current, and the magnetic track is (If the polarity is reversed, the output signal will be 2Hz per rotation.)

【0033】1回転に2Hz以上の場合は直流を重畳し
てもしなくてもよい。
[0033] When the frequency per revolution is 2 Hz or more, direct current may or may not be superimposed.

【0034】[0034]

【発明が解決しようとする課題】以上のような構成の従
来例では、図13に示すようにMR素子を使った磁気セ
ンサと磁気ドラムのギャップが広いところでは、ギャッ
プに対して出力電圧は大きく変化する。また、磁気ドラ
ムとセンサを近接させると、出力電圧は大きくてほぼ一
定となるが磁気抵抗変化に飽和現象の発生により出力電
圧の波形が歪むことにより、広い範囲のギャップに対し
て高出力電圧でかつ歪のない波形が得られなかった。
[Problems to be Solved by the Invention] In the conventional example with the above configuration, as shown in FIG. 13, when the gap between the magnetic sensor using an MR element and the magnetic drum is wide, the output voltage is large with respect to the gap. Change. Also, when the magnetic drum and sensor are placed close to each other, the output voltage is large and almost constant, but the waveform of the output voltage is distorted due to the saturation phenomenon occurring in the change in magnetic resistance, so the high output voltage cannot be applied over a wide range of gaps. Moreover, a distortion-free waveform could not be obtained.

【0035】[0035]

【課題を解決するための手段】上記課題を解決するため
に本発明では、磁気ドラムの一周に亘り着磁した少なく
とも2本の磁気トラックに対向して強磁性磁気抵抗素子
を配置し、かつ前記磁気トラックは、着磁方向を磁気ド
ラムの一周に亘り軸方向とするとともに、磁気ドラムの
回転に伴い強磁性磁気抵抗素子に対してほぼsin状に
磁界強さが変化する磁気トラックとし、かつ少なくとも
2本の磁気トラックは相互に磁界強さがほぼ120度位
相差になるように構成したものである。
[Means for Solving the Problems] In order to solve the above problems, in the present invention, a ferromagnetic magnetoresistive element is disposed facing at least two magnetic tracks magnetized around one circumference of a magnetic drum, and The magnetic track is a magnetic track whose magnetization direction is the axial direction over one circumference of the magnetic drum, and whose magnetic field strength changes approximately sinusoidally with respect to the ferromagnetic magnetoresistive element as the magnetic drum rotates, and at least The two magnetic tracks are constructed so that their magnetic field strengths are approximately 120 degrees out of phase with each other.

【0036】また、本発明においては、2個の強磁性磁
気抵抗を2本の磁気トラックの着磁方向と直角に配置す
るとともに、前記2個の強磁性磁気抵抗を直列に接続し
て強磁性磁気抵抗素子を構成し、かつ直列接続した端子
を信号検出端とし、他端側を電源に接続した構成や、2
個の強磁性磁気抵抗素子を1組とし、少なくとも2組用
い、かつそれぞれの組の強磁性磁気抵抗素子を互いに逆
位相とした構成や、2本の磁気トラックと2個の強磁性
磁気抵抗をそれぞれ1組とし、前記磁気トラックは、磁
気ドラムに相互に90度の位相差を設けて2組設け、前
記強磁性磁気抵抗を2組設けて相互に90度の位相差の
出力を得るように構成してもよい。
Further, in the present invention, two ferromagnetic magnetoresistances are arranged at right angles to the magnetization direction of the two magnetic tracks, and the two ferromagnetic magnetoresistances are connected in series to form a ferromagnetic magnet. A configuration in which the serially connected terminals of a magnetoresistive element are used as signal detection terminals and the other end is connected to a power supply;
A configuration in which at least two sets of ferromagnetic magnetoresistive elements are used as one set, and each set of ferromagnetic magnetoresistive elements is set in opposite phase to each other, or a configuration in which two magnetic tracks and two ferromagnetic magnetoresistive elements are used. Two sets of the magnetic tracks are provided on the magnetic drum with a phase difference of 90 degrees from each other, and two sets of the ferromagnetic magnetoresistances are provided so as to obtain outputs with a phase difference of 90 degrees from each other. may be configured.

【0037】[0037]

【作用】この構成により、120度位相差の2個の磁気
抵抗からは3次高調波が除かれ、さらに逆位相の磁気抵
抗との組合わせにより2次高調波が除かれ、高精度なs
in波信号として検出できる。もう一組の磁気トラック
は前記磁気トラックに対して電気角で90度とし、それ
ぞれの磁気トラックに対向する4個の磁気抵抗より高精
度なcos波信号として検出できる。
[Operation] With this configuration, the third harmonic is removed from the two magnetic resistances with a phase difference of 120 degrees, and the second harmonic is further removed by the combination with the magnetic resistance with the opposite phase.
It can be detected as an in-wave signal. The other set of magnetic tracks is set at an electrical angle of 90 degrees with respect to the magnetic tracks, and can be detected as a cosine wave signal with higher precision than the four magnetic resistors facing each magnetic track.

【0038】[0038]

【実施例】以下、本発明の磁気センサの一実施例につい
て説明する。
[Embodiment] An embodiment of the magnetic sensor of the present invention will be described below.

【0039】まず、本発明による磁気センサは、基本的
に図6〜図9に示すセンサと同様な構成であり、少なく
とも2本の磁気トラックを相互に磁界強さがほぼ120
度の位相差になるように構成している。
First, the magnetic sensor according to the present invention has basically the same structure as the sensor shown in FIGS.
It is configured to have a phase difference of degrees.

【0040】図2は、磁気ドラム1とMR素子7とを近
接させた状態での出力信号を示す図であり、MR素子7
の磁気飽和が発生して図2のように抵抗値は変化し信号
磁界に対する出力信号は歪を持ったものとなる。この時
、抵抗値は図1のように磁気抵抗MR1とMR2および
MR3とMR4は互いに120度の関係で変化する。
FIG. 2 is a diagram showing output signals when the magnetic drum 1 and the MR element 7 are brought close to each other.
Magnetic saturation occurs, the resistance value changes as shown in FIG. 2, and the output signal with respect to the signal magnetic field becomes distorted. At this time, the resistance values of the magnetoresistances MR1 and MR2 and MR3 and MR4 change at an angle of 120 degrees from each other as shown in FIG.

【0041】図3によりこの120度の位相差により3
次高調波が除かれることを説明する。図3において、太
い実線はMR1からの信号、細い実線はこれに含まれる
3次高調波を示し、また太い点線はMR2からの信号、
細い点線はこれに含まれる3次高調波を示す。このよう
にMR1とMR2の信号に含まれる3次高調波は同相と
なり、図8のように直列接続では差動出力となることか
ら3次高調波は除かれる。
According to FIG. 3, due to this 120 degree phase difference, 3
Explain that harmonics are removed. In FIG. 3, the thick solid line shows the signal from MR1, the thin solid line shows the third harmonic included therein, and the thick dotted line shows the signal from MR2,
The thin dotted line indicates the third harmonic included therein. In this way, the third harmonics included in the signals of MR1 and MR2 are in phase, and as shown in FIG. 8, the series connection results in a differential output, so the third harmonics are removed.

【0042】次に、MR1とMR2からの信号VaとM
R3とMR4からの信号
Next, the signals Va and M from MR1 and MR2
Signals from R3 and MR4

【0043】[0043]

【外8】[Outside 8]

【0044】から2次高調波を除く方法について、図4
により説明する。太い実線は信号Vaを、細い実線はこ
れに含まれる2次高調波を示す。また、太い点線は信号
FIG. 4 shows how to remove the second harmonic from
This is explained by: The thick solid line indicates the signal Va, and the thin solid line indicates the second harmonic included therein. Also, the thick dotted line is the signal

【0045】[0045]

【外9】[Outer 9]

【0046】を、細い点線はこれに含まれる2次高調波
を示す。この信号を図11に示すように差動増幅器に入
力することにより、2次高調波は同相なので除かれる。 このようにして出力信号VAとしては、高精度なsin
波信号が得られる。また磁気トラック6A,6Bと90
度の位相差の関係にある磁気トラック6C,6Dに対向
するMR5,MR6,MR7,MR8からの出力信号V
bも、同様に高精度なcos波信号が得られる。
The thin dotted line indicates the second harmonic contained therein. By inputting this signal to a differential amplifier as shown in FIG. 11, the second harmonic is removed because it is in phase. In this way, the output signal VA is a highly accurate sin
wave signal is obtained. Also magnetic tracks 6A, 6B and 90
Output signals V from MR5, MR6, MR7, and MR8 facing magnetic tracks 6C and 6D with a phase difference of
Similarly, a highly accurate cosine wave signal can be obtained in case b.

【0047】[0047]

【発明の効果】以上のように本発明によれば、図5に示
すように磁気ドラムとMR素子のギャップが広い範囲で
一定の高出力が得られ、かつ歪の少ない高精度なsin
波およびcos波信号が得られることにより、アブソリ
ュート型でも、少ない磁気トラックと少ないMR素子で
構成することができ、小型高精度で安価なエンコーダを
作ることができる。
As described above, according to the present invention, a constant high output can be obtained over a wide gap range between the magnetic drum and the MR element as shown in FIG.
By obtaining wave and cosine wave signals, even an absolute type encoder can be constructed with fewer magnetic tracks and fewer MR elements, making it possible to create a small, highly accurate, and inexpensive encoder.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の磁気センサにおける磁気ドラムの回転
に対する磁気抵抗の抵抗変化を示す特性図
FIG. 1 is a characteristic diagram showing the resistance change of magnetic resistance with respect to the rotation of the magnetic drum in the magnetic sensor of the present invention.

【図2】同じ
く信号磁界と出力信号の関係を示す波形図
[Figure 2] Waveform diagram also showing the relationship between the signal magnetic field and the output signal

【図3】12
0度位相差の磁気抵抗による3次高調波の状態を説明す
る概念図
[Figure 3] 12
Conceptual diagram explaining the state of the third harmonic due to magnetic resistance with a phase difference of 0 degrees

【図4】逆相のMR素子出力における2次高調波の状態
を説明する概念図
[Fig. 4] Conceptual diagram explaining the state of second harmonics in the output of an MR element with negative phase

【図5】本発明における磁気ドラムとMR素子のギャッ
プに対する出力電圧と高調波成分の関係を示す特性図
FIG. 5 is a characteristic diagram showing the relationship between output voltage and harmonic components with respect to the gap between the magnetic drum and MR element in the present invention.


図6】本発明において、磁気ドラムと着磁ヘッドの関係
を示す概略図
[
FIG. 6 is a schematic diagram showing the relationship between the magnetic drum and the magnetizing head in the present invention.

【図7】磁気ドラムとMR素子の関係を示す概略図[Figure 7] Schematic diagram showing the relationship between the magnetic drum and the MR element

【図
8】MR素子の接続を示す等価回路図
[Figure 8] Equivalent circuit diagram showing the connection of MR elements

【図9】磁気トラ
ックとMR素子の磁気抵抗との関係を示す概略図
[Figure 9] Schematic diagram showing the relationship between the magnetic track and the magnetic resistance of the MR element

【図10】(a)〜(c)は従来のMR素子の磁気抵抗
の変化と出力電圧の変化を示す波形図
[Figure 10] (a) to (c) are waveform diagrams showing changes in magnetic resistance and output voltage of a conventional MR element.

【図11】磁気センサにおける電気回路図[Figure 11] Electrical circuit diagram of magnetic sensor

【図12】1
回転1Hz時の着磁電流を示す波形図
[Figure 12] 1
Waveform diagram showing magnetizing current at 1Hz rotation

【図13】従来の
磁気ドラムとMR素子のギャップに対する出力電圧と高
調波成分の関係を示す特性図
[Fig. 13] Characteristic diagram showing the relationship between output voltage and harmonic components with respect to the gap between the conventional magnetic drum and MR element.

【符号の説明】[Explanation of symbols]

1  磁気ドラム 5A,5B,5C,5D  磁気ヘッド6A,6B,6
C,6D  磁気トラック7  MR素子 MR1,MR2,MR3,MR4,MR5,MR6,M
R7,MR8  強磁性の磁気抵抗
1 Magnetic drum 5A, 5B, 5C, 5D Magnetic head 6A, 6B, 6
C, 6D Magnetic track 7 MR element MR1, MR2, MR3, MR4, MR5, MR6, M
R7, MR8 Ferromagnetic magnetoresistance

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】磁気ドラムの一周に亘り着磁した少なくと
も2本の磁気トラックに対向して強磁性磁気抵抗素子を
配置し、かつ前記磁気トラックは、着磁方向を磁気ドラ
ムの一周に亘り軸方向とするとともに、磁気ドラムの回
転に伴い強磁性磁気抵抗素子に対してほぼsin状に磁
界強さが変化する磁気トラックとし、かつ少なくとも2
本の磁気トラックは相互に磁界強さがほぼ120度の位
相差になるように構成した磁気センサ。
1. A ferromagnetic magnetoresistive element is disposed opposite to at least two magnetic tracks magnetized around one circumference of a magnetic drum, and the magnetic tracks have a magnetized direction axially extending around one circumference of the magnetic drum. a magnetic track in which the magnetic field strength changes approximately sin-like with respect to the ferromagnetic magnetoresistive element as the magnetic drum rotates;
The magnetic tracks of the book are magnetic sensors configured so that the magnetic field strengths are approximately 120 degrees out of phase with each other.
【請求項2】2個の強磁性磁気抵抗を2本の磁気トラッ
クの着磁方向と直角に配置するとともに前記2個の強磁
性磁気抵抗を直列に接続して強磁性磁気抵抗素子を構成
し、かつ直列接続した端子を信号検出端とし、他端側を
電源に接続した請求項1記載の磁気センサ。
2. A ferromagnetic magnetoresistive element is constructed by arranging two ferromagnetic magnetoresistances perpendicular to the magnetization direction of the two magnetic tracks and connecting the two ferromagnetic magnetoresistances in series. 2. The magnetic sensor according to claim 1, wherein the terminals connected in series are used as a signal detection end, and the other end is connected to a power source.
【請求項3】2個の強磁性磁気抵抗素子を1組とし、少
なくとも2組用い、かつそれぞれの組の強磁性磁気抵抗
素子を互いに逆位相とした請求項1記載の磁気センサ。
3. The magnetic sensor according to claim 1, wherein at least two sets of two ferromagnetic magnetoresistive elements are used, and the ferromagnetic magnetoresistive elements of each set have opposite phases to each other.
【請求項4】2本の磁気トラックと2個の強磁性磁気抵
抗をそれぞれ1組とし、前記磁気トラックは、磁気ドラ
ムに相互に90度の位相差を設けて2組設け、前記強磁
性磁気抵抗を2組設けて相互に90度の位相差の出力を
得るように構成した請求項1記載の磁気センサ。
4. Each set includes two magnetic tracks and two ferromagnetic magnetic resistors, and the magnetic tracks are provided in two sets on a magnetic drum with a phase difference of 90 degrees, and the ferromagnetic magnetic 2. The magnetic sensor according to claim 1, wherein two sets of resistors are provided to obtain outputs with a phase difference of 90 degrees.
JP40650190A 1990-12-26 1990-12-26 Magnetic sensor Pending JPH04223218A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP40650190A JPH04223218A (en) 1990-12-26 1990-12-26 Magnetic sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP40650190A JPH04223218A (en) 1990-12-26 1990-12-26 Magnetic sensor

Publications (1)

Publication Number Publication Date
JPH04223218A true JPH04223218A (en) 1992-08-13

Family

ID=18516123

Family Applications (1)

Application Number Title Priority Date Filing Date
JP40650190A Pending JPH04223218A (en) 1990-12-26 1990-12-26 Magnetic sensor

Country Status (1)

Country Link
JP (1) JPH04223218A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5886520A (en) * 1995-01-24 1999-03-23 Canon Kabushiki Kaisha Position sensor having magnetic resistance effect devices for detecting a position of an object
JP2015045529A (en) * 2013-08-27 2015-03-12 Tdk株式会社 Revolving magnetic field sensor
JP2019160991A (en) * 2018-03-13 2019-09-19 ヤマハ発動機株式会社 Magnetization device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5886520A (en) * 1995-01-24 1999-03-23 Canon Kabushiki Kaisha Position sensor having magnetic resistance effect devices for detecting a position of an object
US6307366B1 (en) * 1995-01-24 2001-10-23 Canon Kabushiki Kaisha Object position sensor using magnetic effect device
JP2015045529A (en) * 2013-08-27 2015-03-12 Tdk株式会社 Revolving magnetic field sensor
US10386169B2 (en) 2013-08-27 2019-08-20 Tdk Corporation Rotating field sensor
US10648787B2 (en) 2013-08-27 2020-05-12 Tdk Corporation Rotating field sensor
JP2019160991A (en) * 2018-03-13 2019-09-19 ヤマハ発動機株式会社 Magnetization device

Similar Documents

Publication Publication Date Title
EP0235750B1 (en) Apparatus for magnetically detecting position or speed of moving body
JPH01297507A (en) Device for magnetically detecting position and speed
JPH10239338A (en) Detector
JPS6086412A (en) Magnetic detector
JPH04223218A (en) Magnetic sensor
KR20050116783A (en) Magnetic detector
JPS59147213A (en) Magnetic rotary sensor
JPH10227809A (en) Rotating condition detector
JP3064293B2 (en) Rotation sensor
JPS60162920A (en) Resolver device using magnetism sensing element
JPH0330089B2 (en)
JPH04110725A (en) Magnetic sensor and manufacture thereof
JPS63205514A (en) Device for detecting position and speed magnetically
JPH074986A (en) Reference position detector
JPH1010141A (en) Magnetic rotation detector
JP2613059B2 (en) Magnetic sensor
JP2767281B2 (en) Magnetic sensor
JPS6032996B2 (en) magnetoresistive device
JPH02264816A (en) Magnetic sensor and manufacture thereof
JP3170806B2 (en) Magnetoelectric converter
JPS6111982Y2 (en)
JPH03282213A (en) Magnetic encoder
CN117178193A (en) Magnetic sensor and magnetic detection system
JPH08271283A (en) Position sensor and detecting device of position
JPH0415517A (en) Magnetic encoder