JPH0658693A - Control system of heat storage tank for cogeneration system - Google Patents

Control system of heat storage tank for cogeneration system

Info

Publication number
JPH0658693A
JPH0658693A JP4214165A JP21416592A JPH0658693A JP H0658693 A JPH0658693 A JP H0658693A JP 4214165 A JP4214165 A JP 4214165A JP 21416592 A JP21416592 A JP 21416592A JP H0658693 A JPH0658693 A JP H0658693A
Authority
JP
Japan
Prior art keywords
heat
storage tank
cogeneration system
heat storage
demand
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4214165A
Other languages
Japanese (ja)
Other versions
JP3301784B2 (en
Inventor
Masayoshi Sato
政義 佐藤
Fumio Matsuoka
文雄 松岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
East Japan Railway Co
Original Assignee
Mitsubishi Electric Corp
East Japan Railway Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp, East Japan Railway Co filed Critical Mitsubishi Electric Corp
Priority to JP21416592A priority Critical patent/JP3301784B2/en
Publication of JPH0658693A publication Critical patent/JPH0658693A/en
Application granted granted Critical
Publication of JP3301784B2 publication Critical patent/JP3301784B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/14Combined heat and power generation [CHP]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

PURPOSE:To contrive backup of a heat source apparatus group and an arbitrary heat power ratio by simply controlling a system having an engine-driven cogeneration system, a heat pump and a heat storage tank. CONSTITUTION:A heat load side QL and a heat source apparatus group thermal output side are formed through a heat storage tank ST, and as a heat source apparatus, a cogeneration system CGS and a heat pump H are disposed in parallel. When a heat power ratio is small, the cogeneration system is operated by following up an electric power, excess heat QST1 is stored in the tank ST, and when the ratio is large, part of heat demand is furnished by utilizing heat of the tank ST, and the residual heat demand is so provided by the system CGS and the pump H as to satisfy necessary and sufficient heat power ratio for the residual heat load and power load.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明はエンジン駆動コジェネ
レーションシステムとヒートポンプと蓄熱槽とを組み合
わせた、熱電併給システムにおける蓄熱槽の制御方法に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for controlling a heat storage tank in a combined heat and power supply system that combines an engine driven cogeneration system, a heat pump and a heat storage tank.

【0002】[0002]

【従来の技術】図3は例えば「コジェネレーション」
(Vol.4,No2,1989,P25〜P30)に
示された従来のコジェネレーション・システムにおける
蓄熱槽の最適運用を示すシステム図であり、図におい
て、DGはディゼルエンジン発電機、REは電動ターボ
冷凍機、RWは温水吸収冷凍機、BAは温水ボイラ、R
Aは油焚冷暖房機、PC,PD,PH,PT,PWは各
種ポンプ、CTは冷却塔、STは蓄熱槽である。
2. Description of the Related Art FIG. 3 shows, for example, "cogeneration".
(Vol. 4, No. 2, 1989, P25 to P30) is a system diagram showing the optimum operation of the heat storage tank in the conventional cogeneration system shown in the figure, in which DG is a diesel engine generator and RE is an electric turbo. Refrigerator, RW is hot water absorption refrigerator, BA is hot water boiler, R
A is an oil-fired air conditioner, PC, PD, PH, PT, PW are various pumps, CT is a cooling tower, and ST is a heat storage tank.

【0003】次に動作について説明する。二点鎖線は燃
料の流れを示し、A重油はディゼルエンジン発電機DG
と温水ボイラBAと油焚冷暖房機RAとに投入される。
ディゼルエンジン発電機DGで電力を発生し、排熱が回
収されて蓄熱槽STに蓄えられる。蓄熱槽内の温水を使
って温水吸収冷凍機RWで冷水が得られ冷房需要を賄
う。
Next, the operation will be described. The chain double-dashed line shows the flow of fuel, and the heavy oil A is the diesel engine generator DG.
And the hot water boiler BA and the oil-fired air conditioner RA.
Electric power is generated by the diesel engine generator DG, and exhaust heat is recovered and stored in the heat storage tank ST. The hot water in the heat storage tank is used to obtain cold water by the hot water absorption refrigerator RW to meet the cooling demand.

【0004】更に蓄熱槽STの温水が暖房需要と給湯需
要に供される。それでも余る場合は冷却塔CTで余剰熱
は捨てられる。暖房需要と給湯需要に応じ切れない時
は、上記油焚冷房機RAと温水ボイラBAとから供給さ
れる。更に冷房需要に対しては、上記油焚冷暖房機RA
と電動ターボ冷凍機REにより賄われる。
Further, the hot water in the heat storage tank ST is used for heating and hot water supply. If there is still excess, excess heat is discarded in the cooling tower CT. When the demand for heating and the demand for hot water supply cannot be met, the oil is supplied from the oil-cooling machine RA and the hot water boiler BA. Furthermore, to meet the demand for cooling, the oil-fired air conditioner RA
And the electric turbo refrigerator RE.

【0005】[0005]

【発明が解決しようとする課題】従来のコジェネレーシ
ョンレーション・システムにおける蓄熱槽の運転方法
は、以上のように構成されているので、負荷側と熱源側
のつなぎとしての機能を果たしているのではなく、コジ
ェネレーションシステムのみの緩衝機能しかありえず、
他の熱源機をも含めた熱源機群の選択に寄与していない
という欠点があり、更に故障時などのバックアップ体制
が考慮されていないので、制御が複雑で信頼性に乏しい
という問題点があった。
Since the conventional method of operating the heat storage tank in the cogeneration system is configured as described above, it does not function as a connection between the load side and the heat source side. , There can only be a buffer function of the cogeneration system,
It has the disadvantage that it does not contribute to the selection of heat source units including other heat source units, and because it does not take into consideration the backup system in case of a failure, it has the problem of complicated control and poor reliability. It was

【0006】この発明は上記のような問題点を解消する
ためになされたもので、負荷側と熱源側の中間に蓄熱槽
を配し、両者のつなぎとしての機能を果たし、熱源機群
全体の能力制御を実行できるとともに、熱源機種の選
択、故障時のバックアップ等を簡単な制御で負荷側の需
要に応ずることが可能な熱電併給システムにおける蓄熱
槽の制御方法を提供することを目的としている。
The present invention has been made to solve the above-mentioned problems, and a heat storage tank is arranged between the load side and the heat source side to serve as a joint between the both sides, and the heat source machine group as a whole. An object of the present invention is to provide a method of controlling a heat storage tank in a combined heat and power supply system that can perform capacity control and can meet the demand on the load side with simple control such as selection of a heat source model and backup at the time of failure.

【0007】[0007]

【課題を解決するための手段】この発明に係る熱電併給
システムにおける蓄熱槽の制御方法は、エンジン駆動コ
ジェネレーションシステムとヒートポンプとを並列に配
置してなる熱源機と熱負荷とを蓄熱槽を介して分離し、
上記コジェネレーションシステムにおける熱電発生比率
に対し、熱負荷側の発電比率が小さい時、電力需要に合
わせてコジェネレーションシステムを運転し、余剰熱を
蓄熱槽に蓄熱し、逆に熱負荷側の発電比率が大きい時、
所要需要量の一部を蓄熱槽から放熱し、残りの熱電需要
はコジェネレーションシステムの熱電発生図における熱
電発生直線に、熱電実現直線が交差する点で運転したコ
ジェネレーションシステムの電力を受けた駆動したヒー
トポンプからの熱量を蓄熱槽を介して熱負荷側放熱する
ものである。
A method of controlling a heat storage tank in a combined heat and power supply system according to the present invention relates to a heat source unit and a heat load in which an engine driven cogeneration system and a heat pump are arranged in parallel via a heat storage tank. Separated,
When the power generation ratio on the heat load side is small relative to the thermoelectric generation ratio in the cogeneration system, the cogeneration system is operated according to the power demand, excess heat is stored in the heat storage tank, and conversely the power generation ratio on the heat load side. Is large,
A part of the required demand is radiated from the heat storage tank, and the remaining thermoelectric demand is driven by the power of the cogeneration system operated at the point where the thermoelectric generation straight line intersects the thermoelectric generation straight line in the thermoelectric generation diagram of the cogeneration system. The amount of heat from the heat pump is radiated through the heat storage tank on the heat load side.

【0008】[0008]

【作用】この発明における蓄熱槽の制御方法は、熱電負
荷比が小なる時は電力負荷追従運転で余剰熱を蓄熱槽内
に蓄えておき、熱電負荷比が大きい時は、蓄熱槽内の熱
を使いつつ任意の熱電負荷需要を賄いうることが可能な
制御性がよく、且つ信頼性のある制御方法となる。
In the heat storage tank control method according to the present invention, excess heat is stored in the heat storage tank during power load follow-up operation when the thermoelectric load ratio is small, and when the thermoelectric load ratio is large, heat in the heat storage tank is stored. The control method has good controllability and is capable of satisfying an arbitrary demand for thermoelectric load while using the control method.

【0009】[0009]

【実施例】【Example】

実施例1.以下、この発明の一実施例を図について説明
する。図1において、CGSはエンジン駆動コジェネレ
ーションシステム、Hはヒートポンプ、WL は電力負
荷、QL は熱負荷、STは蓄熱槽、θSTは蓄熱槽内温度
レベル、PC ,PH ,PL はそれぞれポンプ、VC ,V
H ,VL はそれぞれ三方弁、WA は補機電力である。
Example 1. An embodiment of the present invention will be described below with reference to the drawings. In Figure 1, CGS engine driven cogeneration system, H is the heat pump, W L is the power load, Q L is the thermal load, ST is the heat storage tank, theta ST heat storage tank temperature level, P C, P H, P L Are pump, V C and V respectively
H and V L are three-way valves, and W A is auxiliary machine power.

【0010】図2はエンジン駆動コジェネレーションシ
ステムの熱電発生図であり、横軸Qh は熱発生量、縦軸
Wは電力発生量、aは熱電発生直線、X1 ,X2 は熱電
負荷需要点、Y1 ,Y2 ’はコジェネレーションシステ
ムのそれぞれの運転点を示す。QST1 は発生熱が余るこ
とを示し、QST2 は発生熱からの採取量を示している。
FIG. 2 is a thermoelectric generation diagram of the engine-driven cogeneration system, where the horizontal axis Q h is the heat generation amount, the vertical axis W is the power generation amount, a is the thermoelectric generation line, and X 1 and X 2 are the thermoelectric load demands. The points, Y 1 and Y 2 ', indicate the respective operating points of the cogeneration system. Q ST1 indicates that the generated heat is excessive, and Q ST2 indicates the amount collected from the generated heat.

【0011】図1に示すように、蓄熱槽STを介して、
熱負荷QL 側と熱源機群側とに分離されて構成される。
蓄熱槽ST内は左端が高温槽で右端が低温槽になるよう
に構成されている。熱負荷QL 側には定流量ポンプPL
に三方弁VL を介して任意の温水が作れるようになって
いる。熱源機側はコジェネレーションシステムCGSと
ヒートポンプHが全く並列に接続されており、それぞれ
定流量ポンプPC とPH が各々三方弁VC とVH を介し
て接続され、出口水温が一定の高温になるように制御さ
れている。
As shown in FIG. 1, through the heat storage tank ST,
Configured by separated into the heat load Q L side and the heat source unit group side.
In the heat storage tank ST, the left end is a high temperature tank and the right end is a low temperature tank. The heat load Q L side constant flow rate pump P L
Any hot water can be produced through the three-way valve V L. On the heat source side, a cogeneration system CGS and a heat pump H are connected in parallel, constant flow rate pumps P C and P H are connected via three-way valves V C and V H , respectively, and the outlet water temperature is a constant high temperature. Is controlled to be.

【0012】図2の熱電負荷比の小さいX1 の需要に対
し、コジェネレーションシステムCGSは電力負荷追従
したY1 で運転し、余剰熱QST1 は蓄熱槽ST内に蓄え
られる。一方、熱電負荷比の大きいX2 =QL /WL
時は、熱負荷の一部QST2 を蓄熱槽からの放熱でまかな
うため、コジェネレーションシステムに必要されるみな
し熱需要量はQ’h となり、必要な熱電需要点はX’1
となる。熱電需要点X’2 を通り傾きが1/cop(ヒ
ートポンプ成績係数)となる熱需要実現線lと熱電発生
直線aとの交点Y’2 がコジェネレーションシステムC
GSの運転点であり、その時のヒートポンプHへの電力
はΔWを投入すればよい。
With respect to the demand for X 1 having a small thermoelectric load ratio in FIG. 2, the cogeneration system CGS operates at Y 1 which follows the electric load, and the surplus heat Q ST1 is stored in the heat storage tank ST. On the other hand, when X 2 = Q L / W L , where the thermoelectric load ratio is large, part of the heat load Q ST2 is covered by heat dissipation from the heat storage tank, so the deemed heat demand required for the cogeneration system is Q ′. h, and the thermoelectric demand points required X '1
Becomes 2 cogeneration system C 'intersection Y of the heat demand realization line l and the thermoelectric generating lines a through 2, the slope of the 1 / (cop) (heat pump coefficient of performance)' thermoelectric demand point X
This is the operating point of the GS, and the electric power to the heat pump H at that time may be ΔW.

【0013】[0013]

【発明の効果】以上のように、この発明によれば、負荷
側と、コジェネレーションシステムとヒートポンプと並
列配置してなる熱源機群側とを蓄熱槽を介してシステム
を構成し、熱電比が小の時は電力追従運転を実行し、余
剰熱を蓄熱槽に蓄え、熱電比が大の時は一部は蓄熱槽の
熱を利用し、残りの熱に関してはコジェネレーションシ
ステムとヒートポンプをして熱負荷と電力負荷に必要十
分な運転をするので、任意の電力負荷と任意の熱負荷に
対応でき、しかも、熱源機側のバックアップが自動的に
実行でき、制御が簡単になるという効果がある。
As described above, according to the present invention, the load side and the heat source unit group side in which the cogeneration system and the heat pump are arranged in parallel are configured as a system via a heat storage tank, and the thermoelectric ratio is When the power is small, the power following operation is executed, excess heat is stored in the heat storage tank, when the thermoelectric ratio is large, part of the heat is used from the heat storage tank, and for the remaining heat, the cogeneration system and heat pump are used. Since the operation is necessary and sufficient for the heat load and the power load, it is possible to handle any power load and any heat load, and the backup of the heat source machine side can be automatically executed, which has the effect of simplifying control. .

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の一実施例によるコジェネレーション
システムとヒートポンプの蓄熱槽の構成図である。
FIG. 1 is a configuration diagram of a heat generation tank of a cogeneration system and a heat pump according to an embodiment of the present invention.

【図2】エンジン駆動型コジェネレーションシステムの
熱電発生図である。
FIG. 2 is a thermoelectric generation diagram of an engine-driven cogeneration system.

【図3】従来のコジェネレーションシステムにおける蓄
熱槽を含むシステム構成図である。
FIG. 3 is a system configuration diagram including a heat storage tank in a conventional cogeneration system.

【符号の説明】[Explanation of symbols]

CGS エンジン駆動コジェネレーションシステム ST 蓄熱槽 H ヒートポンプ cop 成績係数 WL 電力負荷(電力需要量) QL 熱負荷 X1 ,X2 熱電(負荷)需要点 Y1 ,Y2 ’ コジェネレーション運転点 QST1 余剰熱 QST2 蓄熱槽からの利用熱量 Q’h みなし熱需要量 l 熱電需要実現線 a 熱電発生直線CGS engine driven cogeneration system ST storage tank H heat pump cop COP W L power load (power demand) Q L heat load X 1, X 2 thermoelectric (load) demand point Y 1, Y 2 'cogeneration operating point Q ST1 use heat Q 'h regarded heat demand l thermoelectric demand realized line a thermoelectric generation straight line from excess heat Q ST2 storage tank

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 エンジン駆動コジェネレーションシステ
ムとヒートポンプとを並列に配置してなる熱源機と熱負
荷とを蓄熱槽を介して分離し、上記コジェネレーション
システムにおける熱電発生比率に対し、熱負荷側の発電
比率が小さい時、電力需要に合わせてコジェネレーショ
ンシステムを運転し、余剰熱を蓄熱槽に蓄熱し、逆に熱
負荷側の発電比率が大きい時、所要需要量の一部を蓄熱
槽から放熱し、残りの熱電需要はコジェネレーションシ
ステムの熱電発生図における熱電発生直線に、熱電実現
直線が交差する点で運転したコジェネレーションシステ
ムの電力を受けた駆動したヒートポンプからの熱量を蓄
熱槽を介して熱負荷側へ放熱することを特徴とする熱電
併給システムにおける蓄熱槽の制御方法。
1. A heat source machine comprising an engine-driven cogeneration system and a heat pump arranged in parallel and a heat load are separated via a heat storage tank, and the heat load side of the heat generation side with respect to the thermoelectric generation ratio in the cogeneration system. When the power generation ratio is small, the cogeneration system is operated according to the power demand, surplus heat is stored in the heat storage tank, and conversely when the heat load side power generation ratio is large, part of the required demand is radiated from the heat storage tank. However, the remaining thermoelectric demand is the amount of heat from the driven heat pump that receives the electric power of the cogeneration system operated at the intersection of the thermoelectric generation line and the thermoelectric generation line in the thermoelectric generation diagram of the cogeneration system. A method for controlling a heat storage tank in a combined heat and power supply system, characterized by radiating heat to a heat load side.
JP21416592A 1992-08-11 1992-08-11 Control method of heat storage tank in combined heat and power system Expired - Fee Related JP3301784B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21416592A JP3301784B2 (en) 1992-08-11 1992-08-11 Control method of heat storage tank in combined heat and power system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21416592A JP3301784B2 (en) 1992-08-11 1992-08-11 Control method of heat storage tank in combined heat and power system

Publications (2)

Publication Number Publication Date
JPH0658693A true JPH0658693A (en) 1994-03-04
JP3301784B2 JP3301784B2 (en) 2002-07-15

Family

ID=16651315

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21416592A Expired - Fee Related JP3301784B2 (en) 1992-08-11 1992-08-11 Control method of heat storage tank in combined heat and power system

Country Status (1)

Country Link
JP (1) JP3301784B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010090727A (en) * 2008-10-03 2010-04-22 Chugoku Electric Power Co Inc:The Cogeneration system
JP2010090728A (en) * 2008-10-03 2010-04-22 Chugoku Electric Power Co Inc:The Cogeneration system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010090727A (en) * 2008-10-03 2010-04-22 Chugoku Electric Power Co Inc:The Cogeneration system
JP2010090728A (en) * 2008-10-03 2010-04-22 Chugoku Electric Power Co Inc:The Cogeneration system

Also Published As

Publication number Publication date
JP3301784B2 (en) 2002-07-15

Similar Documents

Publication Publication Date Title
US5099651A (en) Gas engine driven heat pump method
JP2000335230A (en) Heating device for vehicle
US4589262A (en) Absorption type air conditioning system
JP4128054B2 (en) Fuel cell system and operating method thereof
JPH0658693A (en) Control system of heat storage tank for cogeneration system
JP3258998B2 (en) Operation control method for cogeneration system
JPH0658692A (en) Control system of heat storage tank for cogeneration system
JPH0659748A (en) Temperature control method of heat storage tank in cogeneration system
JP2004012025A (en) Hybrid energy system
US9074779B2 (en) Distribution module for water heater
JP3616826B2 (en) Gas turbine system and operation method thereof
JPH0666110A (en) Control method of heat pump in heat and electric power double supplying system
JPS6046251B2 (en) Heating and cooling system with emergency power generator
JPH0329523Y2 (en)
JP4749161B2 (en) FUEL SUPPLY APPARATUS AND METHOD FOR OPERATING MOTOR WITH THE FUEL SUPPLY
JP3624275B2 (en) Cold and hot water generation method that does not require external power supply
JPH11351056A (en) Small-sized energy plant device
JPS60236A (en) Room cooling, heating and hot-water supplying device utilizing internal-combustion engine
JPH10141137A (en) System for supplying both heat and electricity
JPH0474531B2 (en)
JPH0117010Y2 (en)
JP3062565B2 (en) Cooling water inlet temperature control method for refrigerator in water heat storage system
JPH062569A (en) Multipurpose cooling method for gas turbine generating equipment
JPH0612205Y2 (en) Combined heat and power equipment
JPH01131859A (en) Cold and hot water controller

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees