JPH0655614A - Device and method for measuring thickness of sheet-shaped component - Google Patents

Device and method for measuring thickness of sheet-shaped component

Info

Publication number
JPH0655614A
JPH0655614A JP4207608A JP20760892A JPH0655614A JP H0655614 A JPH0655614 A JP H0655614A JP 4207608 A JP4207608 A JP 4207608A JP 20760892 A JP20760892 A JP 20760892A JP H0655614 A JPH0655614 A JP H0655614A
Authority
JP
Japan
Prior art keywords
sheet
roll
thickness
measuring
shaped member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4207608A
Other languages
Japanese (ja)
Inventor
Tetsuo Hasegawa
哲郎 長谷川
Yoshimi Oyabu
良美 大藪
Yoshibumi Tanaka
義文 田中
Sakuhiro Sakane
作裕 坂根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Industry Co Ltd
Original Assignee
Hitachi Zosen Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Industry Co Ltd filed Critical Hitachi Zosen Industry Co Ltd
Priority to JP4207608A priority Critical patent/JPH0655614A/en
Publication of JPH0655614A publication Critical patent/JPH0655614A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/92Measuring, controlling or regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92009Measured parameter
    • B29C2948/92076Position, e.g. linear or angular
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92009Measured parameter
    • B29C2948/92114Dimensions
    • B29C2948/92152Thickness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92323Location or phase of measurement
    • B29C2948/92428Calibration, after-treatment, or cooling zone
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92323Location or phase of measurement
    • B29C2948/92438Conveying, transporting or storage of articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92504Controlled parameter
    • B29C2948/92609Dimensions
    • B29C2948/92647Thickness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92819Location or phase of control
    • B29C2948/92923Calibration, after-treatment or cooling zone
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92819Location or phase of control
    • B29C2948/92933Conveying, transporting or storage of articles

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)

Abstract

PURPOSE:To find out the thickness of a sheet-shaped component without measurement error by measuring the distance to the surface of the sheet-shaped component on a roll, also measuring the distance to the roll surface and finding the difference between them. CONSTITUTION:A receptor 12 of a transmitting laser type sensor 4 outputs a signal representing the power of the laser beam emitted from a projector 11 proportioned to the laser beam amount passing a slide 12a, and the signal is proportioned to the distance (s) to a knife edge 13 and the surface of a sheet A. An eddy-current type sensor 5 is installed on an installing basket 3 on the position just next to the knife edge 13, and at the time when the sensor is moving, the relative positions of the eddy-current type sensor 5 and the knife edge 13 are not varied. The distance D between the knife edge 13 and the end face of the eddy-current sensor 5 is constant at all times.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、シート状部材の厚み測
定装置および厚み測定方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thickness measuring device and a thickness measuring method for a sheet-shaped member.

【0002】[0002]

【従来の技術】シート、フィルムなどのシート状部材を
製造する設備においては、ダイスから溶融樹脂が引き出
されることにより、連続してシート状部材が製造されて
いるが、この引き出されたシート状部材の厚みを所定の
範囲内に入るように、制御が行われており、この厚みの
制御を行うためには、シート状部材の厚みを測定する必
要がある。
2. Description of the Related Art In equipment for manufacturing sheet-shaped members such as sheets and films, sheet-shaped members are continuously manufactured by drawing molten resin from a die. Is controlled so that the thickness of the sheet-shaped member falls within a predetermined range, and in order to control the thickness, it is necessary to measure the thickness of the sheet-shaped member.

【0003】従来、この厚み測定は、回転するロール
(ベースロールともいう)表面を通過するシート状部材
を、その幅方向に沿って移動自在に設けられた横行台に
設けられたレーザ式センサを使用して、その厚みが測定
されていた。
Conventionally, this thickness measurement is performed by using a laser sensor provided on a traverse table that is provided so that a sheet-like member that passes through the surface of a rotating roll (also referred to as a base roll) is movable along the width direction. Using it, its thickness was being measured.

【0004】例えば、このレーザ式センサにより、シー
ト状部材の厚みを測定する場合、測定精度を高くするた
めに、横行台を移動させた時に生じるセンサとロールと
の間隔の変動をキャンセルするようにしている。
For example, when the thickness of a sheet-shaped member is measured by this laser type sensor, in order to improve the measurement accuracy, it is necessary to cancel the variation in the distance between the sensor and the roll when the traverse table is moved. ing.

【0005】すなわち、シート状部材が無い状態で、横
行台を移動させて、センサとロール表面との間隔を測定
するとともに、この測定値を計算機に記憶させておき、
シート状部材の厚みを実際に測定する際には、実際の測
定値から計算機に記憶されている上記測定値を減算する
ことにより、シート状部材の厚みが求められていた。
That is, without the sheet-like member, the traverse table is moved to measure the distance between the sensor and the roll surface, and the measured value is stored in the computer.
When actually measuring the thickness of the sheet-shaped member, the thickness of the sheet-shaped member was obtained by subtracting the above-mentioned measured value stored in the calculator from the actual measured value.

【0006】また、上記の測定方法以外のレーザ式の測
定方法としては、横行台側に設けられたナイフエッジと
シートとの間を通過するレーザ光量を測定することによ
り、厚みを測定する方法がある。
Further, as a laser type measuring method other than the above measuring method, there is a method of measuring the thickness by measuring the amount of laser light passing between the knife edge provided on the side of the traverse and the sheet. is there.

【0007】この測定方法は、ロールの軸心と直交する
方向に、すなわちシート状部材の引き出し方向におい
て、上流側(または下流側)にレーザ光の投光器を設け
るとともに、下流側(上流側)にナイフエッジとシート
状部材表面との間を通過したレーザ光をスリットを介し
て受光する受光器を配置し、スリットを通過したレーザ
光量を測定することにより、シート状部材表面とナイフ
エッジとの隙間を求めて、シート状部材の厚みを測定す
る方法である。
In this measuring method, a laser beam projector is provided on the upstream side (or the downstream side) in the direction orthogonal to the axis of the roll, that is, in the drawing direction of the sheet-shaped member, and the downstream side (upstream side). A gap between the sheet-shaped member surface and the knife edge is measured by arranging a photoreceiver that receives the laser light that has passed between the knife edge and the sheet-shaped member surface through a slit, and measuring the amount of laser light that has passed through the slit. Is a method of measuring the thickness of the sheet-shaped member.

【0008】なお、この測定方法においても、上述と同
様の方法により、横行台を移動させた時に生じるセンサ
とロールとの間隔の変動をキャンセルするようにしてい
る。
Also in this measuring method, the variation in the distance between the sensor and the roll, which occurs when the traverse is moved, is canceled by the same method as described above.

【0009】[0009]

【発明が解決しようとする課題】ところで、上述した各
測定方法によると、横行台の移動時に生じるセンサとロ
ール表面との間隔の変動をキャンセルすることはできる
が、その再現性による誤差、すなわちシート状部材が無
いときの測定状態と実際の測定時における状態とが、お
よび測定する度にその測定状態が、必ずしも同一である
とは限らないために発生する誤差についてはキャンセル
することができないという問題があった。
By the way, according to each of the above-described measuring methods, it is possible to cancel the variation in the distance between the sensor and the roll surface, which occurs when the traverse table is moved, but an error due to its reproducibility, that is, the sheet. The problem that the error that occurs because the measurement state when there is no shaped member and the state at the time of actual measurement, and the measurement state that is not always the same each time measurement is performed, cannot be canceled was there.

【0010】そこで、本発明は上記問題を解消し得るシ
ート状部材の厚み測定装置および厚み測定方法を提供す
ることを目的とする。
Therefore, an object of the present invention is to provide a thickness measuring device and a thickness measuring method for a sheet-shaped member which can solve the above problems.

【0011】[0011]

【課題を解決するための手段】上記課題を解決するた
め、本発明の第1の手段は、回転自在に支持されたロー
ル上を、その回転軸心と直交する方向で移動されるシー
ト状部材の厚みを、その幅方向に沿って測定する厚み測
定装置であって、ロール表面に沿ってその幅方向で移動
自在にされた移動体に、ロール上を移動するシート状部
材表面までの距離を測定するレーザ式センサおよびロー
ル表面までの距離を測定する渦電流式センサを設けたシ
ート状部材の厚み測定装置である。
In order to solve the above-mentioned problems, the first means of the present invention is a sheet-like member which is moved on a roll rotatably supported in a direction orthogonal to the axis of rotation. Is a thickness measuring device for measuring the thickness of the sheet along the width direction thereof, the moving body that is movable in the width direction along the roll surface, the distance to the surface of the sheet-like member moving on the roll. It is a thickness measuring device for a sheet-shaped member provided with a laser sensor for measuring and an eddy current sensor for measuring a distance to a roll surface.

【0012】また、上記課題を解決するため、本発明の
第2の手段は、回転自在に支持されたロール上を、その
回転軸心と直交する方向で移動されるシート状部材の厚
みを、その幅方向に沿って測定する厚み測定方法であっ
て、ロール表面に沿ってその幅方向で移動自在にされた
移動体に設けられたレーザ式センサにより、ロール上を
移動するシート状部材表面までの距離を測定するととも
に、上記移動体に設けられた渦電流式センサによりロー
ル表面までの距離を測定し、これら両測定距離の差を演
算することにより、シート状部材の厚みを測定するシー
ト状部材の厚み測定方法である。
In order to solve the above-mentioned problems, the second means of the present invention is to set the thickness of a sheet-like member which is moved on a roll supported rotatably in a direction orthogonal to the axis of rotation thereof. A thickness measuring method for measuring along the width direction, up to the surface of a sheet-like member moving on the roll by a laser sensor provided on a movable body that is movable in the width direction along the roll surface. In addition to measuring the distance, the distance to the roll surface is measured by the eddy current sensor provided on the moving body, and the difference between these two measured distances is calculated to measure the thickness of the sheet-shaped member. This is a method for measuring the thickness of a member.

【0013】さらに、上記課題を解決するため、本発明
の第3の手段は、上記第2の手段において、予めロール
上にシート状部材を配置しない状態で、レーザ式センサ
と渦電流式センサとによる両測定距離の初期変位差を求
めておき、この初期変位差を第2の手段により求めたシ
ート状部材の厚みから減算するシート状部材の厚み測定
方法である。
Furthermore, in order to solve the above-mentioned problems, the third means of the present invention is the same as the above-mentioned second means, in which the laser type sensor and the eddy current type sensor are used in the state where the sheet-shaped member is not arranged on the roll in advance. Is a method for measuring the thickness of the sheet-shaped member, in which the initial displacement difference between the two measurement distances is obtained and the initial displacement difference is subtracted from the thickness of the sheet-shaped member obtained by the second means.

【0014】[0014]

【作用】上記のシート状部材の厚み測定装置および厚み
測定方法によると、レーザ式センサにより、ロール上の
シート状部材表面までの距離を測定するとともに、渦電
流式センサにより、ロール表面までの距離を測定し、そ
してこれら両測定距離の差を求めることにより、シート
状部材の厚みを誤差無く測定している。
According to the thickness measuring device and the thickness measuring method for a sheet-shaped member described above, the distance to the surface of the sheet-shaped member on the roll is measured by the laser sensor and the distance to the roll surface is measured by the eddy current sensor. Is measured, and the difference between these two measurement distances is obtained to measure the thickness of the sheet-shaped member without error.

【0015】また、予めロール上にシート状部材を配置
しない状態で、レーザ式センサと渦電流式センサとによ
る両測定距離の差、すなわち初期変位差を求めておき、
この初期変位差を両センサに基づき求められたシート状
部材の厚みから減算することにより、移動体がロールの
幅方向で移動した際に、その移動経路がロールの回転軸
心に対して傾いている場合にでも、その移動経路の傾き
に起因する誤差をキャンセルすることができる。
Further, in a state where the sheet-like member is not arranged on the roll in advance, the difference between the measurement distances of the laser type sensor and the eddy current type sensor, that is, the initial displacement difference is obtained in advance,
By subtracting this initial displacement difference from the thickness of the sheet-shaped member obtained on the basis of both sensors, when the moving body moves in the width direction of the roll, its movement path is tilted with respect to the rotation axis of the roll. Even when there is an error, it is possible to cancel the error caused by the inclination of the moving path.

【0016】[0016]

【実施例】以下、本発明の第1の実施例を図1および図
2に基づき説明する。図1および図2において、1は例
えばダイスのリップから溶融樹脂が引き出されて形成さ
れたシート状部材(以下、単にシートという)Aを案内
するためのロールで、回転自在に支持されており、また
このロール1の上方部(側方部、下方部でもよい)に
は、移動体(横行台ともいう)2がロール1の回転軸心
に沿って、すなわちシートAの幅方向に沿って移動自在
に設けられている。勿論、この移動体2は、図示しない
移動装置(電動機により駆動されるねじ機構などからな
るもの)によって、往復移動自在にされている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A first embodiment of the present invention will be described below with reference to FIGS. 1 and 2, reference numeral 1 denotes a roll for guiding a sheet-like member (hereinafter, simply referred to as a sheet) A formed by drawing molten resin from a lip of a die, and is rotatably supported, In addition, a moving body (also referred to as a traverse table) 2 moves along the rotation axis of the roll 1, that is, along the width direction of the sheet A, in the upper portion (side portion or lower portion) of the roll 1. It is provided freely. Of course, the moving body 2 is reciprocally movable by a moving device (a screw mechanism or the like driven by an electric motor) not shown.

【0017】そして、上記ロール1の回転軸心の上方位
置における移動体2には、シートAの移動方向と平行に
取付ブラケット3が設けられており、この取付ブラケッ
ト3には、ロール1上のシートA表面までの距離をレー
ザ光により測定するための透過型レーザ式センサ4と、
ロール1表面までの距離を測定する渦電流式センサ5と
が、ロール1の回転軸心の真上に沿って並べて取り付け
られている。
A mounting bracket 3 is provided on the movable body 2 above the rotation axis of the roll 1 in parallel with the moving direction of the sheet A. The mounting bracket 3 is mounted on the roll 1. A transmissive laser sensor 4 for measuring the distance to the surface of the sheet A with a laser beam,
An eddy current type sensor 5 for measuring the distance to the surface of the roll 1 is mounted side by side along the axis of rotation of the roll 1.

【0018】上記透過型レーザ式センサ4は、取付ブラ
ケット3のシート移動方向の上流側(または下流側)に
取り付けられたレーザ光の投光器11と、同じく下流側
(または上流側)に取り付けられたレーザ光の受光器1
2と、これら投光器11と受光器12との間でしかもロ
ール1の頂上位置に配置されてレーザ光aの一部を遮る
ナイフエッジ13とから構成されている。
The transmission type laser sensor 4 is mounted on the upstream side (or the downstream side) of the mounting bracket 3 in the sheet moving direction and also on the downstream side (or the upstream side) of the laser beam projector 11. Laser light receiver 1
2 and a knife edge 13 arranged between the light projector 11 and the light receiver 12 and at the top of the roll 1 to block a part of the laser light a.

【0019】上記レーザ光の受光器12側には所定幅の
スリット12aが設けられており、また上記投光器11
およびナイフエッジ13は、スリット12aの長手方向
における一端部(本実施例においては上端部)がナイフ
エッジ13により遮られるとともに、他端部(本実施例
においては下端部)がロール1によって遮るように取り
付けられている。
A slit 12a having a predetermined width is provided on the light receiver 12 side of the laser light, and the light projector 11 is also provided.
The knife edge 13 has one end (the upper end in this embodiment) in the longitudinal direction of the slit 12a blocked by the knife edge 13 and the other end (the lower end in this embodiment) blocked by the roll 1. Is attached to.

【0020】この透過型レーザ式センサ4の受光器12
は、投光器11から発射されたレーザ光がスリット12
aを通過したレーザ光量(すなわちスリット12aの通
光面積)に比例した信号を出力するものであり、したが
ってナイフエッジ13とシートA表面までの距離(s)
に比例した信号が出力される。
The light receiver 12 of the transmission laser sensor 4
Is the laser beam emitted from the projector 11
It outputs a signal proportional to the amount of laser light that has passed through a (that is, the light transmission area of the slit 12a), and therefore the distance (s) between the knife edge 13 and the surface of the sheet A.
A signal proportional to is output.

【0021】また、上記渦電流式センサ5は、上記ナイ
フエッジ13の直ぐ隣の位置における取付ブラケット3
に取り付けられており、したがってその移動時において
は、渦電流式センサ5とナイフエッジ13との互いの相
対位置は変化しない。すなわち、ナイフエッジ13と渦
電流式センサ5の端面との距離(D)は常に一定であ
る。
The eddy current sensor 5 is mounted on the mounting bracket 3 at a position immediately adjacent to the knife edge 13.
Therefore, the relative positions of the eddy current sensor 5 and the knife edge 13 with respect to each other do not change during the movement thereof. That is, the distance (D) between the knife edge 13 and the end surface of the eddy current sensor 5 is always constant.

【0022】ここで、上記透過型レーザ式センサ4およ
び渦電流式センサ5とを使用して、シートAの厚みを測
定する原理について説明する。上述したように、渦電流
式センサ5により、ロール1表面から渦電流式センサ5
の測定端面までの距離(d)が測定されている。
Now, the principle of measuring the thickness of the sheet A using the transmission laser sensor 4 and the eddy current sensor 5 will be described. As described above, the eddy current sensor 5 causes the eddy current sensor 5 to move from the surface of the roll 1.
The distance (d) to the measurement end face of is measured.

【0023】したがって、ここで、シートAの厚みを
(t)とすると、この厚みは下記の式により、求める
ことができる。 t=D+d−s・・・・ このように、シートAの厚み(t)は、渦電流式センサ
5により検出された値に基づき求められたロール1表面
までの距離から、透過型レーザ式センサ4により検出さ
れたロール1表面までの距離を減算することにより求め
られているため、移動体2を移動させたときに、透過型
レーザ式センサ4とロール1との間隔が変化した場合で
も、常に、その変化が取り除かれた正しいシートAの厚
みを得ることができる。
Therefore, assuming that the thickness of the sheet A is (t), this thickness can be obtained by the following equation. t = D + ds -... Thus, the thickness (t) of the sheet A is calculated from the distance to the surface of the roll 1 obtained based on the value detected by the eddy current sensor 5, and the transmission laser sensor. Since it is obtained by subtracting the distance to the surface of the roll 1 detected by 4, even when the distance between the transmission laser sensor 4 and the roll 1 changes when the moving body 2 is moved, It is always possible to obtain the correct thickness of the sheet A with the change removed.

【0024】勿論、図示しないが、上記各センサ4,5
からの信号を入力して、上記シートAの厚みを演算する
演算装置が具備されている。ところで、上記説明におい
ては、透過型レーザ式センサ4と渦電流式センサ5と
が、ロールAの軸心と平行な一直線上に配置されている
ものとして説明したが、両者の配置状態がロール1の回
転軸心に対して少しでも傾いている場合には、移動体2
の移動に伴って、各センサ4,5自体が最初の位置から
ずれていくため、各センサ4,5によるシートA表面ま
での距離(s)およびロール1表面までの測定距離
(d)に誤差が発生し、したがってこのような場合には
補正が行われる。
Of course, although not shown, the above-mentioned sensors 4 and 5 are also provided.
A calculation device for calculating the thickness of the sheet A by inputting a signal from By the way, in the above description, the transmission laser sensor 4 and the eddy current sensor 5 are described as being arranged on a straight line parallel to the axis of the roll A, but the arrangement state of the both is the roll 1. If it is slightly inclined with respect to the rotation axis of
As the sensors 4 and 5 themselves deviate from the initial positions as the sensor moves, there is an error in the distance (s) to the surface of the sheet A and the measurement distance (d) to the surface of the roll 1 by the sensors 4 and 5. Occurs, and thus correction is performed in such a case.

【0025】すなわち、シートAの無い状態で、移動体
2をロール1の幅方向でもって移動させるとともに、両
センサ4,5により、ロール1表面までの距離を測定す
るとともに、これら両センサ4,5により測定された距
離の差を、例えば所定間隔置きに初期変位差すなわち初
期誤差として求めておくとともに、演算装置に記憶させ
ておく。
That is, the moving body 2 is moved in the width direction of the roll 1 without the sheet A, and the distances to the surface of the roll 1 are measured by the both sensors 4 and 5, and the both sensors 4 and 5 are measured. The difference between the distances measured by 5 is obtained as an initial displacement difference, that is, an initial error, for example, at predetermined intervals and stored in the arithmetic unit.

【0026】そして、実際のシートAの厚み測定時にお
いて、両センサ4,5による測定距離の差に、予め求め
られた初期誤差を減算することにより、たとえ移動体2
の移動経路がロール1の回転軸心に対して傾いている場
合でも、その傾きに起因する測定誤差をキャンセルする
ことができる。
Then, when the actual thickness of the sheet A is measured, even if the moving body 2 is subtracted by subtracting a preliminarily obtained initial error from the difference between the distances measured by the sensors 4 and 5.
Even if the movement path of the above is inclined with respect to the rotation axis of the roll 1, the measurement error due to the inclination can be canceled.

【0027】次に、本発明の第2の実施例を、図3に基
づき説明する。上記第1の実施例においては、透過型レ
ーザ式センサ4の受光器12に設けられたスリット12
aは、図3(a)に示すように、ロール1の回転軸心に
対して垂直に設けたものとして説明したが、本第2の実
施例においては、図3(b)に示すように、スリット1
2aを、ロール1の回転軸心に対して所定角度(θ)で
もって傾けたものである。
Next, a second embodiment of the present invention will be described with reference to FIG. In the first embodiment, the slit 12 provided in the light receiver 12 of the transmission laser sensor 4 is used.
Although a has been described as being provided perpendicularly to the rotation axis of the roll 1 as shown in FIG. 3A, in the second embodiment, as shown in FIG. , Slit 1
2a is inclined at a predetermined angle (θ) with respect to the rotation axis of the roll 1.

【0028】このように、スリット12aを傾けた場
合、同一幅のスリット12を傾けない場合に比べて、測
定の感度(ゲイン)が向上する。すなわち、スリット1
2aがロール1の回転軸心に対して垂直な場合、受光器
12からの出力信号が1mm×5mmのスリット12aの通
光面積に比例しており、全遮光状態から全通光状態に至
るまでに4V変化するものとすると、ロール1上にシー
トAを置き、その厚みが1mm変化すると、面積が1mm2
変化する。したがって、その出力信号は、4×1/5=
0.8V変化することになる。
As described above, when the slit 12a is tilted, the sensitivity (gain) of measurement is improved as compared with the case where the slit 12 having the same width is not tilted. That is, the slit 1
When 2a is perpendicular to the axis of rotation of the roll 1, the output signal from the light receiver 12 is proportional to the light-transmitting area of the slit 12a of 1 mm x 5 mm, and the total light-shielding state to the whole light-transmitting state is obtained. assuming that 4V changed, position the sheet a on the roll 1, when the thickness is 1mm change area 1mm 2
Change. Therefore, the output signal is 4 × 1/5 =
It will change by 0.8V.

【0029】これに対して、スリット12aがロール1
の回転軸心に対して角度(θ)で傾斜している場合に
は、シートAの厚みが1mm変化すると、その出力信号の
変化dVは、スリット12aの通光面積に比例するた
め、下記の式により求められる。
On the other hand, the slit 12a has the roll 1
When the thickness of the sheet A changes by 1 mm when the sheet is tilted at an angle (θ) with respect to the axis of rotation of, the change dV of the output signal is proportional to the light passing area of the slit 12a. Calculated by the formula.

【0030】 dV=4×(1/sin θ)/5=0.8/sin θ・・・・ 式から、θは90度より小さいため、sin θは1より
小さい値となり、dV>0.8Vとなる。
DV = 4 × (1 / sin θ) /5=0.8/sin θ ... From the equation, since θ is smaller than 90 degrees, sin θ becomes a value smaller than 1, and dV> 0. It becomes 8V.

【0031】したがって、同じ厚みの変化に対して、よ
り大きい出力変化が得られることになり、測定の分解能
が向上する。すなわち、測定精度を向上させることがで
きる。
Therefore, a larger output change can be obtained for the same thickness change, and the measurement resolution is improved. That is, the measurement accuracy can be improved.

【0032】ところで、上記各実施例においては、レー
ザ式センサとして、レーザ光の通過光量を求めて、距離
を求める透過型のものを使用したが、例えばレーザ光の
反射時間を測定して距離を求める反射型のレーザ式セン
サを使用した場合にも、適用し得るものである。
By the way, in each of the above-mentioned embodiments, the laser type sensor used is a transmissive type which obtains the amount of passing laser light and obtains the distance. However, for example, the reflection time of the laser light is measured to determine the distance. It is also applicable to the case where the required reflection type laser sensor is used.

【0033】[0033]

【発明の効果】以上のように本発明のシート状部材の厚
み測定装置および厚み測定方法によると、レーザ式セン
サにより、ロール上のシート状部材表面までの距離を測
定するとともに、渦電流式センサにより、同時にロール
表面までの距離も測定し、そしてこれら両測定距離の差
を求めることにより、シート状部材の厚みを求めるよう
にしているので、従来のように、異なる状態で測定した
距離同士の減算により、シート状部材の厚みを求める場
合と異なり、測定誤差を無くすことができる。
As described above, according to the thickness measuring device and the thickness measuring method of the sheet-shaped member of the present invention, the distance to the surface of the sheet-shaped member on the roll is measured by the laser type sensor, and the eddy current sensor is used. Thus, the distance to the roll surface is measured at the same time, and the thickness of the sheet-shaped member is obtained by calculating the difference between these two measured distances. Unlike the case where the thickness of the sheet-shaped member is obtained by subtraction, the measurement error can be eliminated.

【0034】また、予めロール上にシート状部材を配置
しない状態で、レーザ式センサと渦電流式センサとによ
る両測定距離の初期変位差、すなわち初期誤差を求めて
おき、この初期誤差を両センサに基づき求められたシー
ト状部材の厚みから減算することにより、両センサを取
り付けている移動体の移動経路がロールの回転軸心に対
して傾いている場合にでも、その傾きに起因する誤差を
キャンセルすることができる。
Further, the initial displacement difference between the measurement distances of the laser sensor and the eddy current sensor, that is, the initial error is obtained in advance without arranging the sheet member on the roll, and this initial error is measured by both sensors. By subtracting from the thickness of the sheet-shaped member obtained based on the above, even if the moving path of the moving body to which both sensors are attached is tilted with respect to the rotation axis of the roll, the error due to the tilt is eliminated. You can cancel.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例におけるシート状部材の
厚み測定装置の概略側面図である。
FIG. 1 is a schematic side view of a thickness measuring device for a sheet-shaped member according to a first embodiment of the present invention.

【図2】同第1の実施例における各センサの配置状態を
示す図1のB−B矢視相当図である。
FIG. 2 is a view corresponding to the arrow B-B in FIG. 1 showing an arrangement state of each sensor in the first embodiment.

【図3】本発明の第2の実施例におけるシート状部材の
厚み測定方法を説明するスリットの正面図である。
FIG. 3 is a front view of a slit for explaining a method of measuring the thickness of a sheet-shaped member according to a second embodiment of the present invention.

【符号の説明】[Explanation of symbols]

A シート状部材 1 ロール 2 移動体 4 透過型レーザ式センサ 5 渦電流式センサ 11 投光器 12 受光器 13 ナイフエツジ A sheet-like member 1 roll 2 moving body 4 transmission type laser sensor 5 eddy current type sensor 11 light emitter 12 light receiver 13 knife edge

───────────────────────────────────────────────────── フロントページの続き (72)発明者 坂根 作裕 大阪府大阪市中央区城見1丁目4番70号 日立造船産業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Sakuhiro Sakane 1-4-70 Jomi Chuo-ku, Osaka City, Osaka Prefecture Hitachi Shipbuilding Industry Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】回転自在に支持されたロール上を、その回
転軸心と直交する方向で移動されるシート状部材の厚み
を、その幅方向に沿って測定する厚み測定装置であっ
て、ロール表面に沿ってその幅方向で移動自在にされた
移動体に、ロール上を移動するシート状部材表面までの
距離を測定するレーザ式センサおよびロール表面までの
距離を測定する渦電流式センサを設けたことを特徴とす
るシート状部材の厚み測定装置。
1. A thickness measuring device for measuring the thickness of a sheet-shaped member, which is moved on a roll rotatably supported in a direction orthogonal to the axis of rotation of the roll, along the width direction thereof. Provided on the movable body that is movable in the width direction along the surface, a laser sensor for measuring the distance to the surface of the sheet-like member moving on the roll and an eddy current sensor for measuring the distance to the surface of the roll. A thickness-measuring device for a sheet-shaped member.
【請求項2】回転自在に支持されたロール上を、その回
転軸心と直交する方向で移動されるシート状部材の厚み
を、その幅方向に沿って測定する厚み測定方法であっ
て、ロール表面に沿ってその幅方向で移動自在にされた
移動体に設けられたレーザ式センサにより、ロール上を
移動するシート状部材表面までの距離を測定するととも
に、上記移動体に設けられた渦電流式センサによりロー
ル表面までの距離を測定し、これら両測定距離の差を演
算することにより、シート状部材の厚みを測定すること
を特徴とするシート状部材の厚み測定方法。
2. A thickness measuring method for measuring the thickness of a sheet-shaped member, which is moved on a roll rotatably supported in a direction orthogonal to the axis of rotation thereof, along the width direction thereof. A laser sensor provided on a moving body that is movable in the width direction along the surface measures the distance to the surface of the sheet-like member moving on the roll, and the eddy current provided on the moving body. A method for measuring the thickness of a sheet-shaped member, which comprises measuring the distance to the roll surface with a linear sensor and calculating the difference between the two measured distances to measure the thickness of the sheet-shaped member.
【請求項3】請求項2に記載のシート状部材の厚み測定
方法において、予めロール上にシート状部材を配置しな
い状態で、レーザ式センサと渦電流式センサとによる両
測定距離の初期変位差を求めておき、この初期変位差を
請求項2により求めたシート状部材の厚みから減算する
ことことを特徴とするシート状部材の厚み測定方法。
3. The method for measuring the thickness of a sheet-shaped member according to claim 2, wherein a difference in initial displacement between the laser-type sensor and the eddy-current-type sensor is not measured in advance when the sheet-shaped member is not placed on the roll. Is calculated and the initial displacement difference is subtracted from the thickness of the sheet-shaped member obtained according to claim 2.
JP4207608A 1992-08-04 1992-08-04 Device and method for measuring thickness of sheet-shaped component Pending JPH0655614A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4207608A JPH0655614A (en) 1992-08-04 1992-08-04 Device and method for measuring thickness of sheet-shaped component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4207608A JPH0655614A (en) 1992-08-04 1992-08-04 Device and method for measuring thickness of sheet-shaped component

Publications (1)

Publication Number Publication Date
JPH0655614A true JPH0655614A (en) 1994-03-01

Family

ID=16542604

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4207608A Pending JPH0655614A (en) 1992-08-04 1992-08-04 Device and method for measuring thickness of sheet-shaped component

Country Status (1)

Country Link
JP (1) JPH0655614A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114353656A (en) * 2022-01-11 2022-04-15 中北大学 Eddy current measurement curved surface correction method for thickness of coating of workpiece with gradually-changing curvature
TWI793577B (en) * 2021-04-21 2023-02-21 欣竑科技有限公司 Non-destructive milling cutter core thickness measuring device and its operation method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI793577B (en) * 2021-04-21 2023-02-21 欣竑科技有限公司 Non-destructive milling cutter core thickness measuring device and its operation method
CN114353656A (en) * 2022-01-11 2022-04-15 中北大学 Eddy current measurement curved surface correction method for thickness of coating of workpiece with gradually-changing curvature
CN114353656B (en) * 2022-01-11 2024-01-30 中北大学 Vortex measurement curved surface correction method for gradually-changed curvature workpiece coating thickness

Similar Documents

Publication Publication Date Title
US5210593A (en) Gauge for measuring the thickness of an unsupported web
EP1828713B1 (en) Thin film thickness measurement method and apparatus
CA1269525A (en) Procedure and means for measuring the thickness of a film-like or sheet-like web
JPS60127403A (en) Thickness measuring apparatus
JPH0655614A (en) Device and method for measuring thickness of sheet-shaped component
US5679161A (en) Precision center guiding of a web coated with light sensitive photographic emulsion
JPH0123041B2 (en)
US5354992A (en) Tilt compensated error correcting system
JP3282745B2 (en) Plate width and meandering measurement device using two-dimensional distance meter
JPS60102505A (en) Apparatus for measuring width of thin plate
JPS6254109A (en) Width and meandering measuring instrument for band-shaped body
JPH04225107A (en) Method and apparatus for measuring waving amount of band plate
JPH0647540A (en) Method and device for detecting welding groove shape
JP3019647B2 (en) Non-contact thickness gauge
JP3705872B2 (en) Method and apparatus for detecting the amount of meander of a rolled sheet
JPH05231856A (en) Thickness measuring instrument
JPH0749958B2 (en) Surface shape measuring device
JPH0921613A (en) Optical axis adjusting apparatus
JP2555256Y2 (en) Sheet thickness measuring device
JPH0650715A (en) Optical displacement cage
JPH01291104A (en) Film thickness measuring instrument for resin film
JPH0861943A (en) X-ray measuring device
JPH10132527A (en) Three-dimensional form measuring device
JPS63157004A (en) Reflected light detecting device
JPS63277916A (en) Measuring instrument for curvature quantity of beltlike body