JP3019647B2 - Non-contact thickness gauge - Google Patents

Non-contact thickness gauge

Info

Publication number
JP3019647B2
JP3019647B2 JP5018811A JP1881193A JP3019647B2 JP 3019647 B2 JP3019647 B2 JP 3019647B2 JP 5018811 A JP5018811 A JP 5018811A JP 1881193 A JP1881193 A JP 1881193A JP 3019647 B2 JP3019647 B2 JP 3019647B2
Authority
JP
Japan
Prior art keywords
distance
sheet
output
thickness
meter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP5018811A
Other languages
Japanese (ja)
Other versions
JPH06229752A (en
Inventor
豊 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP5018811A priority Critical patent/JP3019647B2/en
Publication of JPH06229752A publication Critical patent/JPH06229752A/en
Application granted granted Critical
Publication of JP3019647B2 publication Critical patent/JP3019647B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は,シート状物体の厚さを
非接触で正確に測定することができる非接触厚さ計に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-contact thickness gauge capable of accurately measuring the thickness of a sheet-like object in a non-contact manner.

【0002】[0002]

【従来の技術】図2は従来の非接触厚さ計の構成図であ
り,実開昭59−32907号公報に記載されている。
図1においてMはシート状物体,11はレーザ発振器,
12はシート状物体Mに入射して反射するレーザ光を受
ける検出器,13はその検出器の出力を受ける増幅器で
ある。これらレーザ発振器11,検出器12及び増幅器
13とで第1の非接触距離計を構成し,検出器12と物
体M間の距離d1を測定する。一方,レーザ発振器1
4,検出器15及び増幅器16は物体Mの下方に配置さ
れた第2の非接触距離計であり,検出器15と物体M間
の距離d2を測定する。
2. Description of the Related Art FIG. 2 is a block diagram of a conventional non-contact thickness gauge, which is described in Japanese Utility Model Laid-Open Publication No. 59-32907.
In FIG. 1, M is a sheet-like object, 11 is a laser oscillator,
Reference numeral 12 denotes a detector that receives the laser beam incident on and reflected by the sheet-like object M, and reference numeral 13 denotes an amplifier that receives the output of the detector. These laser oscillator 11 constitutes a first non-contact distance meter and the detector 12 and amplifier 13, to measure the detector 12 and the distance d 1 between the object M. On the other hand, laser oscillator 1
4, a detector 15 and an amplifier 16 are a second non-contact distance meter disposed below the object M, and measure a distance d 2 between the detector 15 and the object M.

【0003】17は発振コイル,18はターゲット,1
9は検出コイルであり,これらは前記第1,第2の非接
触距離計間の距離lを測る第3の非接触距離計を構成し
ている。この第3の非接触距離計としては物体Mを通過
して第1の距離計間の距離lを測る必要があるため,例
えば渦電流式の距離計が用いられる。30はレーザ発振
器11,検出器12,増幅器13,発振コイル17及び
検出コイル19を一体化した上ヘッドである。31はレ
ーザ発振器14,検出器15,増幅器16及びターゲッ
ト18を一体化した下ヘッドである。
[0003] 17 is an oscillation coil, 18 is a target, 1
Reference numeral 9 denotes a detection coil, which constitutes a third non-contact distance meter for measuring a distance 1 between the first and second non-contact distance meters. As the third non-contact distance meter, it is necessary to measure the distance 1 between the first distance meters passing through the object M, and therefore, for example, an eddy current type distance meter is used. Reference numeral 30 denotes an upper head in which the laser oscillator 11, the detector 12, the amplifier 13, the oscillation coil 17, and the detection coil 19 are integrated. Reference numeral 31 denotes a lower head in which the laser oscillator 14, the detector 15, the amplifier 16 and the target 18 are integrated.

【0004】20は増幅器13の出力Vd1,増幅器16
の出力Vd2及び検出コイル19の出力Vlを受けて物
体Mの厚みdに応じた信号Vdを出力する演算器であ
る。この演算器20としては例えばマイクロコンピュー
タが用いられる。
Reference numeral 20 denotes the output Vd of the amplifier 13 and the amplifier 16
A calculator for outputting a signal V d corresponding to the thickness d of the object M by receiving the output Vl of the output Vd 2 and the detection coil 19. As the arithmetic unit 20, for example, a microcomputer is used.

【0005】図3は非接触距離計の動作を説明するため
のもので,レーザ発振器11から発射されたレーザ光は
物体Mに入射した後反射する。反射光はレンズLを介し
てP点に結像する。発振器11と物体M間の距離d1
変化させると,結像点Pは直線l1上の上下に移動す
る。そこで,直線l1上に複数個の受光素子を配置して
おき,これら受光素子の出力を差動で取り出すようにす
るとこの差動出力はd1に対応したものとなるので距離
1を測定することができる。
FIG. 3 is a diagram for explaining the operation of the non-contact distance meter. The laser light emitted from the laser oscillator 11 is incident on the object M and then reflected. The reflected light forms an image at point P via the lens L. Varying the distance d 1 between the oscillator 11 and the object M, the imaging point P is moved up and down on the straight line l 1. Therefore, if a plurality of light receiving elements are arranged on the straight line l 1 and the outputs of these light receiving elements are taken out differentially, the differential output corresponds to d 1 , so that the distance d 1 is measured. can do.

【0006】次に第3の非接触距離計の動作を説明す
る。ターゲット18として磁性体を用いるものとする
と,検出コイル19のインピーダンスは発振コイル17
とターゲット18間の距離lに応じて変化する。このこ
とから距離lを測定することができる。なお,発振コイ
ル17とターゲット18間の距離lは上下のヘッドに配
置された第1,第2の非接触距離計間の距離に等しいの
で、上下第1,第2の非接触距離計間の距離を測定する
ことができる。このlに応じた信号は検出コイル19か
らVlとして出力される。
Next, the operation of the third non-contact distance meter will be described. Assuming that a magnetic material is used as the target 18, the impedance of the detection coil 19 is
It changes according to the distance 1 between the target 18. From this, the distance l can be measured. Since the distance 1 between the oscillation coil 17 and the target 18 is equal to the distance between the first and second non-contact distance meters disposed on the upper and lower heads, the distance l between the upper and lower first and second non-contact distance meters is equal. The distance can be measured. The signal corresponding to 1 is output from the detection coil 19 as Vl.

【0007】上記のように検出器12,15と物体間の
距離d1,2及び検出器12と15間の距離lが求まる
ので物体Mの厚さdは次式によって求めることができ
る。 d=l−(d1+d2) ……(1) (1)式から明らかなように,上下ヘッド間の相対的位
置lが変化しても常に正確な厚さdを測定することがで
きる。
As described above, the distances d 1 and d 2 between the detectors 12 and 15 and the object and the distance 1 between the detectors 12 and 15 are obtained, so that the thickness d of the object M can be obtained by the following equation. d = 1− (d 1 + d 2 ) (1) As is apparent from the equation (1), an accurate thickness d can always be measured even when the relative position 1 between the upper and lower heads changes. .

【0008】[0008]

【発明が解決しようとする課題】ところで,このような
非接触厚さ計は抄紙工程でのオンライン計測に用いられ
る。その場合測定対象のシート状物体は例えば毎時数K
m〜数十Kmの速さで移動しており,また上下ヘッドは
シート状物体を挟んで別々に駆動される。そのためシー
ト状物体にうねり(傾き)が生じ,また,上下ヘッドに
はX,Y,Z方向のズレが生じる。
Incidentally, such a non-contact thickness gauge is used for online measurement in a paper making process. In that case, the sheet-like object to be measured is, for example, several K per hour.
It moves at a speed of m to several tens of km, and the upper and lower heads are separately driven with the sheet-like object interposed therebetween. Therefore, a swell (inclination) is generated in the sheet-like object, and the upper and lower heads are displaced in the X, Y, and Z directions.

【0009】図4はシート状物体と上下ヘッドに配置さ
れた第1,第2距離計の照射点A,Bの関係を示すもの
で(a)図はシート状物体にうねりが生じている状態,
(b)図はうねりを拡大し,上下のヘッドのズレがない
場合,(c)図はうねりを拡大し,上下のヘッドにズレ
が生じている場合を示している。図(b)に示すように
シート状物体がうねりにより傾いている場合には実際の
厚さtに対して見かけの厚さ(l1)は1/cosθと
なり,上下のヘッドがズレている場合には見かけの厚さ
はl1+ズレの距離l2・tanθとなる。このような誤
差が生じる測定装置はμmオーダの高品質が要求される
測定装置としては適用できないという問題があった。
FIG. 4 shows the relationship between the sheet-like object and the irradiation points A and B of the first and second distance meters disposed on the upper and lower heads. FIG. 4A shows a state in which the sheet-like object has undulation. ,
(B) shows the case where the undulation is enlarged and there is no deviation between the upper and lower heads, and (c) shows the case where the undulation is enlarged and the upper and lower heads are displaced. When the sheet-like object is tilted due to undulation as shown in FIG. 9B, the apparent thickness (l 1 ) is 1 / cos θ with respect to the actual thickness t, and the upper and lower heads are displaced. Has an apparent thickness of l 1 + the deviation distance l 2 · tan θ. There is a problem that a measuring device having such an error cannot be applied as a measuring device requiring high quality on the order of μm.

【0010】本発明は上記従来技術の問題点を解決する
ためになされたもので,第1距離計を少なくとも3つの
光学式センサで構成し,その光学式センサの出力の平均
値と第2距離計の出力と前記第3距離計の出力を演算し
てシート状物体の厚みを測定することにより,より正確
な厚さ測定が可能な非接触厚さ計を提供することを目的
とする。
The present invention has been made to solve the above-mentioned problems of the prior art. A first distance meter is composed of at least three optical sensors, and the average value of the outputs of the optical sensors and the second distance are calculated. An object of the present invention is to provide a non-contact thickness gauge capable of more accurately measuring the thickness of a sheet-like object by calculating the output of the gauge and the output of the third distance meter.

【0011】[0011]

【課題を解決するための手段】上記目的を達成するため
に本発明は,シート状物体を挟んで配置された上下ヘッ
ドと,該上下ヘッドに設けられ前記シート状物体までの
距離を測定する第1,第2の光学式距離計と,前記第
1,第2距離計間の距離を測定する第3距離計を有し,
前記第1,第2距離計の出力と前記第3距離計の出力を
演算してシート状物体の厚みを測定する様にした非接触
厚さ計において,前記第1,第2距離計のいずれか一方
の距離計を少なくとも3つの光学式センサで構成し,該
センサのそれぞれの光が前記シート状物体の面の異なる
点を照射した時にその照射点を結んで形成される面積が
予め予測される前記上下ヘッドのズレの範囲よりも大き
な範囲を形成するように配置するとともに,前記少なく
とも3つの光学式センサで構成されるセンサの出力の平
均値と前記第2距離計の出力と前記第3距離計の出力を
演算してシート状物体の厚みを測定する様にしたことを
特徴とするものである。
SUMMARY OF THE INVENTION In order to achieve the above object, the present invention provides a method for measuring the distance between an upper and lower head disposed on a sheet-like object and a distance from the upper and lower heads to the sheet-like object. A first and second optical rangefinders, and a third rangefinder for measuring a distance between the first and second rangefinders;
A non-contact thickness meter configured to calculate an output of the first and second distance meters and an output of the third distance meter to measure the thickness of a sheet-like object. One of the rangefinders is composed of at least three optical sensors, and when each light of the sensors irradiates a different point on the surface of the sheet-like object, an area formed by connecting the irradiation points is predicted in advance. The upper and lower heads are arranged so as to form a range larger than the range of the displacement of the upper and lower heads, and the average value of the outputs of the sensors composed of the at least three optical sensors, the output of the second distance meter, and the third The thickness of the sheet-like object is measured by calculating the output of the range finder.

【0012】[0012]

【作用】少なくとも3つの光学式センサで構成されるセ
ンサの出力の平均値を演算することにより上下ヘッドの
ズレに起因する誤差が低減する。
By calculating the average value of the outputs of the sensors composed of at least three optical sensors, errors due to the displacement of the upper and lower heads are reduced.

【0013】[0013]

【実施例】図1(a),(b)は本発明の一実施例を示
す非接触厚さ計の説明図であり,光学式センサを3組設
ける場合を示している。なお,本発明において図2に示
す従来例と異なる点は上ヘッド30側にレーザ発振器1
1,検出器12,増幅器13をそれぞれ3組設け,それ
ぞれの信号を演算器20に入力するものであり,この演
算器20は3組のセンサからの出力の平均値を演算す
る。
1 (a) and 1 (b) are explanatory views of a non-contact thickness gauge showing an embodiment of the present invention, and show a case where three sets of optical sensors are provided. The present invention differs from the conventional example shown in FIG.
1, three detectors 12 and three amplifiers 13 are provided, and each signal is input to an arithmetic unit 20. This arithmetic unit 20 calculates the average value of the outputs from the three sets of sensors.

【0014】図1において,2点鎖線で示すdは予め予
測される上下ヘッドのズレの範囲を示すもので,このズ
レdの範囲は予め測定状態と同様の条件で上下ヘッドを
駆動し,その最大ズレ量をもとに決定する。A,A1
2で示す点は3つの光学式センサがシート状物体を照
射する点を示し,直径dの接線に一辺がl4の正三角形
を形成している。点オは上下ヘッドにズレがない状態で
他方の側の第2距離計がシート状物体を照射する点を示
している。
In FIG. 1, d indicated by a two-dot chain line indicates a range of the deviation of the upper and lower heads which is predicted in advance. The range of the deviation d is previously driven under the same conditions as in the measurement state. Determined based on the maximum deviation amount. A, A 1 ,
Point indicated by A 2 three optical sensor indicates the point of irradiating the sheet-like object, is one side in the tangent of the diameter d to form an equilateral triangle of l 4. Point o indicates a point where the second rangefinder on the other side irradiates the sheet-like object with no deviation between the upper and lower heads.

【0015】(b)図はシート状物体にうねりが発生し
傾きが生じると共に第2距離計の照射点(オ)が図1に
示すA1(若しくはA2)点までl4/2ズレた状態を示
している。この場合,演算器20(図2参照)は各セン
サからの出力をもとにシート状物体までの距離をL1
2+L3/3として演算する。そして,上下ヘッドの第
3距離計による距離をD,第2距離計により測定した距
離をUとすると,この厚さ計で測定した厚さtは次のよ
うになる。 t=D−U−(L1+L2+L3/3)
[0015] (b) drawing waviness in the sheet-like article was A 1 (or A 2) l 4/2 shift to points irradiation point of the second distance meter (E) is shown in Figure 1 with inclination occurs occurs The state is shown. In this case, the arithmetic unit 20 (see FIG. 2) determines the distance to the sheet-like object based on the output from each sensor as L 1 +
Computed as L 2 + L 3/3. When the distance between the upper and lower heads measured by the third distance meter is D and the distance measured by the second distance meter is U, the thickness t measured by the thickness meter is as follows. t = D-U- (L 1 + L 2 + L 3/3)

【0016】即ち,本発明によれば従来ヘッドのズレに
より発生していた誤差tanθ・l 3のズレを半分のt
anθ・l3/2とすることができる。また,この様な
装置では走行するシート状物体の厚さの測定は例えばシ
ート幅を数等分した位置で行うがシート状物体のうねり
の度合は常に変化している。
That is, according to the present invention, the displacement of the conventional head
Error tanθ · l ThreeHalf the t
anθ · lThree/ 2. Also, like this
The device measures the thickness of a traveling sheet-like object by, for example,
This is performed at a position where the sheet width is divided into several equal parts.
Is constantly changing.

【0017】本発明では光学式センサを3組使用してい
るのでそれぞれのセンサで測定した距離(d11,d12
13)の差を演算器20で演算することができ,その差
はシート状物体のうねり(傾き)に対応する。従ってd
11−d12,d11−d13,d12−d13を演算し,その差が
ある設定した値を越えたものはそのデータを無効にする
様にしておけばより正確な厚さを測定することができ
る。なお,本実施例では光学式センサをレーザ光を用い
た装置として説明したが,センサとしては発光ダイオー
ドの様なものであってもよく,センサの数は4個,5個
又はそれ以上であってもよい。
In the present invention, since three sets of optical sensors are used, the distances (d 11 , d 12 ,
The difference d 13 ) can be calculated by the calculator 20, and the difference corresponds to the undulation (tilt) of the sheet-like object. Therefore d
11 -d 12, d 11 -d 13 , calculates a d 12 -d 13, those exceeding the set value is the difference measured more exact thickness if in the manner to disable its data can do. In this embodiment, the optical sensor is described as a device using laser light. However, the sensor may be a light emitting diode, and the number of sensors is four, five or more. You may.

【0018】[0018]

【発明の効果】以上実施例とともに具体的に説明したよ
うに本発明によれば,第1,第2距離計のいずれか一方
の距離計を少なくとも3つの光学式センサで構成し,そ
のセンサのそれぞれの光が前記シート状物体の面の異な
る点を照射した時にその照射点を結んで形成される面積
が予め予測される上下ヘッドのズレの範囲よりも大きな
範囲を形成するように配置するとともに,少なくとも3
つの光学式センサで構成されるセンサの出力の平均値と
前記第2距離計の出力と前記第3距離計の出力を演算し
てシート状物体の厚みを測定する様にしたので,より正
確な厚さ測定が可能な非接触厚さ計を実現することがで
きる。
According to the present invention, one of the first and second rangefinders is constituted by at least three optical sensors, and the sensor of the sensor is constructed as described above. When each light illuminates a different point on the surface of the sheet-like object, the area formed by connecting the illuminated points is arranged so as to form a range larger than the range of the deviation of the upper and lower heads which is predicted in advance. , At least 3
The thickness of the sheet-like object is measured by calculating the average value of the outputs of the sensors constituted by the two optical sensors, the output of the second distance meter, and the output of the third distance meter. A non-contact thickness gauge capable of measuring thickness can be realized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例を示す説明図である。FIG. 1 is an explanatory diagram showing one embodiment of the present invention.

【図2】従来例を示す構成説明図である。FIG. 2 is a configuration explanatory view showing a conventional example.

【図3】非接触距離計の動作を説明する図である。FIG. 3 is a diagram illustrating the operation of a non-contact distance meter.

【図4】シート状物体と上下ヘッドに配置された第1,
第2距離計の照射点A,Bの関係を示す図である。
FIG. 4 shows a sheet-like object and first and second heads arranged on upper and lower heads.
It is a figure which shows the relationship of the irradiation points A and B of a 2nd range finder.

【符号の説明】[Explanation of symbols]

11,14 レーザ発振器 12,15 検出器 13,16 増幅器 17 発振コイル 18 ターゲット 19 検出コイル 20 演算器 30 上ヘッド 31 下ヘッド A 第1センサの照射点 B 第2センサの照射点 M シート状物体 11, 14 Laser oscillator 12, 15 Detector 13, 16 Amplifier 17 Oscillation coil 18 Target 19 Detection coil 20 Calculator 30 Upper head 31 Lower head A Irradiation point of first sensor B Irradiation point of second sensor M Sheet-shaped object

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 シート状物体を挟んで配置された上下ヘ
ッドと,該上下ヘッドに設けられ前記シート状物体まで
の距離を測定する第1,第2の光学式距離計と,前記第
1,第2距離計間の距離を測定する第3距離計を有し,
前記第1,第2距離計の出力と前記第3距離計の出力を
演算してシート状物体の厚みを測定する様にした非接触
厚さ計において,前記第1,第2距離計のいずれか一方
の距離計を少なくとも3つの光学式センサで構成し,該
センサのそれぞれの光が前記シート状物体の面の異なる
点を照射した時にその照射点を結んで形成される面積が
予め予測される前記上下ヘッドのズレの範囲よりも大き
な範囲を形成するように配置するとともに,前記少なく
とも3つの光学式センサで構成されるセンサの出力の平
均値と前記第2距離計の出力と前記第3距離計の出力を
演算してシート状物体の厚みを測定する様にしたことを
特徴とする非接触厚さ計。
A first and a second optical distance meter provided on the upper and lower heads for measuring a distance to the sheet-like object; A third distance meter that measures the distance between the second distance meters;
A non-contact thickness meter configured to calculate an output of the first and second distance meters and an output of the third distance meter to measure the thickness of a sheet-like object. One of the rangefinders is composed of at least three optical sensors, and when each light of the sensors irradiates a different point on the surface of the sheet-like object, an area formed by connecting the irradiation points is predicted in advance. And an average value of the outputs of the sensors composed of the at least three optical sensors, the output of the second distance meter, and the third output. A non-contact thickness meter, wherein the thickness of a sheet-like object is measured by calculating the output of a distance meter.
JP5018811A 1993-02-05 1993-02-05 Non-contact thickness gauge Expired - Fee Related JP3019647B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5018811A JP3019647B2 (en) 1993-02-05 1993-02-05 Non-contact thickness gauge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5018811A JP3019647B2 (en) 1993-02-05 1993-02-05 Non-contact thickness gauge

Publications (2)

Publication Number Publication Date
JPH06229752A JPH06229752A (en) 1994-08-19
JP3019647B2 true JP3019647B2 (en) 2000-03-13

Family

ID=11981976

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5018811A Expired - Fee Related JP3019647B2 (en) 1993-02-05 1993-02-05 Non-contact thickness gauge

Country Status (1)

Country Link
JP (1) JP3019647B2 (en)

Also Published As

Publication number Publication date
JPH06229752A (en) 1994-08-19

Similar Documents

Publication Publication Date Title
CN101120230B (en) Thin film thickness measurement method and apparatus
CA1269525A (en) Procedure and means for measuring the thickness of a film-like or sheet-like web
US5753808A (en) Self-compensating rolling weight deflectometer
EP0890078B1 (en) Method and apparatus for optical alignment of a measuring head in an x-y plane
JPH03123811A (en) Sheet thickness measuring instrument
JPH0652171B2 (en) Optical non-contact position measuring device
JP3031529B2 (en) Method and apparatus for measuring sectional dimensions of H-section steel
JPH0652170B2 (en) Optical imaging type non-contact position measuring device
JP3019647B2 (en) Non-contact thickness gauge
JP3245003B2 (en) Distance measuring apparatus and method
JPH06167327A (en) Measuring method for camber
JPH06273162A (en) Flatness measuring device
JPH0611331A (en) Instrument and method for measuring undulating wear of rail
JPH02134505A (en) Thickness measuring apparatus
JPH0450606A (en) Flatness gage
JP4230758B2 (en) Non-contact sectional shape measuring method and apparatus
JP3323963B2 (en) Measuring device
JPS63101702A (en) Optical length measuring gauge
JPH051904A (en) Optical shape measuring instrument
JPH05231856A (en) Thickness measuring instrument
JPH08136256A (en) Measuring apparatus for position deviation and angle deviation of carrier truck
JPH05240624A (en) Optical measuring instrument
JPH07107483B2 (en) Optical displacement measuring device
JPH06117852A (en) Optical displacement gauge
JPS5832103A (en) Noncontacting measuring device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080107

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090107

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100107

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100107

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110107

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120107

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees