JPH0921613A - Optical axis adjusting apparatus - Google Patents

Optical axis adjusting apparatus

Info

Publication number
JPH0921613A
JPH0921613A JP17061895A JP17061895A JPH0921613A JP H0921613 A JPH0921613 A JP H0921613A JP 17061895 A JP17061895 A JP 17061895A JP 17061895 A JP17061895 A JP 17061895A JP H0921613 A JPH0921613 A JP H0921613A
Authority
JP
Japan
Prior art keywords
light
emitting element
light emitting
optical axis
distance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17061895A
Other languages
Japanese (ja)
Inventor
Yasuo Shin
安夫 新
Mitsuhiko Yokobori
光彦 横堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP17061895A priority Critical patent/JPH0921613A/en
Publication of JPH0921613A publication Critical patent/JPH0921613A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Mounting And Adjusting Of Optical Elements (AREA)

Abstract

PROBLEM TO BE SOLVED: To correctly adjust the optical axis by detecting light beams from a light-emitting element of an optical displacement sensor for correcting position of the light-emitting element by a beam profiler and adjusting the distance between the beam profiler and the optical displacement sensor. SOLUTION: A distance adjusting means consists of a Z slider 8 driven by a Z motor 9 and set on a base 7. An S slider 16 driven by an S motor 15 is arranged at the slider 8. The distance between light-emitting element 1 of an optical displacement sensor and a beam profiler 23 is set to be a certain value by controlling the distance-adjusting means. A projection position of light beam to the beam profiler 23 in this state is measured. Then, the distance between the element 1 and the beam profiler 23 is set to a different value, and the projection position of light beams to the beam profiler 23 is measured again. The difference of measured results corresponding to two kinds of distances is obtained, based on the difference value, positional displacement of the element 1 is calculated. The optical axis is correctly adjusted by light-emitting element adjustment means 10-14.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は光学式変位計の光軸調整
や光ビーム径調整を行う光軸調整機に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical axis adjusting machine for adjusting an optical axis of an optical displacement meter and adjusting a light beam diameter.

【0002】[0002]

【従来の技術】図4は光学式変位計の光軸方向の測定原
理図であり、特に光学式変位計のセンサ部分の概略を示
したものである。この図により、光軸方向に移動する測
定物の測定について説明する。発光素子1から出た光は
投光レンズ2で集光され、測定物3に光ビームを投影す
る。この光ビームを受光レンズ4で位置検出素子5に投
影する。
2. Description of the Related Art FIG. 4 is a diagram showing the principle of measurement in the optical axis direction of an optical displacement gauge, and particularly shows the outline of the sensor portion of the optical displacement gauge. The measurement of the measurement object moving in the optical axis direction will be described with reference to this figure. The light emitted from the light emitting element 1 is condensed by the light projecting lens 2 and projects a light beam on the measurement object 3. The light beam is projected onto the position detecting element 5 by the light receiving lens 4.

【0003】測定物3が投光基準位置Lから+S寸法だ
け移動すると、位置検出素子5に投影される光ビームは
受光基準点から+ΔS寸法だけ移動する。逆に、測定物
3が−S寸法移動すると、位置検出素子5に投影される
光ビームは−ΔS寸法移動する。この変化を検出するこ
とで測定物の変位量を測定できる。図5は光学式変位計
の直角方向の測定原理図であり、これは、光軸と直角方
向に移動する測定物の移動量を測定する用途に用いた場
合を示しており、測定物3が図の矢印方向すなわち図の
上方向に移動し、光軸上に来ると、光ビームが測定物3
のエッジ部に投影され、これが位置検出素子5に投影さ
れ、測定物3の位置検出ができる。
When the object 3 moves from the light projection reference position L by + S dimension, the light beam projected on the position detecting element 5 moves from the light receiving reference point by + ΔS dimension. Conversely, when the measurement object 3 moves by -S, the light beam projected on the position detection element 5 moves by -ΔS. By detecting this change, the displacement amount of the measurement object can be measured. FIG. 5 is a diagram showing the principle of measurement in the perpendicular direction of the optical displacement meter, which shows the case where the measurement object 3 is used for measuring the amount of movement of the measurement object moving in the direction perpendicular to the optical axis. When it moves in the direction of the arrow in the figure, that is, in the upward direction of the figure, and comes to the optical axis, the light beam becomes
Is projected onto the edge portion of the object, which is projected onto the position detecting element 5, and the position of the measured object 3 can be detected.

【0004】この場合、測定誤差±Sの範囲内であれば
どの位置で移動しても、測定物の測定値は同じである必
要がある。
In this case, it is necessary that the measured value of the object to be measured is the same regardless of the position where the measurement error is within ± S.

【0005】[0005]

【発明が解決しようとする課題】前述の光学式変位計の
組立後の光軸は、部品の加工精度、組立精度のばらつき
の影響で、センサベース6に対してずれる場合がある。
図6は光軸方向の光軸ずれの影響を示す説明図であり、
この図において、発光素子1が基準位置よりd寸法ずれ
ると、投光ビームはe寸法のずれが生じ、受光ビームは
f寸法ずれることになる。これを解消するために位置検
出素子5をf寸法だけ移動するか、その位置検出素子か
らの出力信号を処理する図2に示すアンプ27の設定を
変更する必要がある。
The optical axis of the above-described optical displacement gauge after assembly may be displaced with respect to the sensor base 6 due to the influence of variations in processing accuracy and assembly accuracy of parts.
FIG. 6 is an explanatory diagram showing the influence of the optical axis shift in the optical axis direction,
In this figure, when the light emitting element 1 is displaced from the reference position by the dimension d, the projected beam is displaced by the dimension e, and the received beam is displaced by the dimension f. In order to eliminate this, it is necessary to move the position detection element 5 by the size of f or change the setting of the amplifier 27 shown in FIG. 2 that processes the output signal from the position detection element.

【0006】後者の場合は、そのアンプの設定変更によ
って受光特性が変わり、センサとアンプ27は対で使用
しなければならなくなる。また、光軸ずれが大きいと受
光ビームが位置検出素子5から外れてしまう恐れがあ
る。図7は直角方向の光軸ずれの影響を示す説明図であ
り、図のように、基準位置Lに対して+Sと−Sの位置
では、g寸法のずれが生じ、測定誤差が出てしまう。
In the latter case, the light receiving characteristic is changed by changing the setting of the amplifier, and the sensor and the amplifier 27 must be used as a pair. Further, if the optical axis shift is large, the received light beam may deviate from the position detection element 5. FIG. 7 is an explanatory view showing the influence of the optical axis shift in the right angle direction. As shown in the figure, at the positions of + S and −S with respect to the reference position L, the g dimension shifts and a measurement error occurs. .

【0007】以上述べたように、光軸ずれが発生するた
めにセンサの互換性が無く、測定誤差も出るので、精密
な測定に使えない。また、光ビームは物理的に測定でき
ないので、光軸調整ができないという問題があった。
As described above, since the optical axes are displaced and the sensors are not compatible with each other, and measurement errors occur, they cannot be used for precise measurement. Further, there is a problem that the optical axis cannot be adjusted because the light beam cannot be physically measured.

【0008】[0008]

【課題を解決するための手段】本発明は、測定物に投光
するための光ビームを発光する発光素子と、その光ビー
ムを入力して測定物に投光する投光レンズと、測定物か
らの反射光を受光してその測定物の位置を測定する位置
検出素子からなる光学式変位計の光軸を調整する光軸調
整機であって、光学式変位計の発光素子を保持してこの
発光素子の位置を修正する発光素子調整手段と、その発
光素子からの光ビームを検出するビームプロファイラ
と、このビームプロファイラと光学式変位計との距離を
調整する距離調整手段とを有し、発光素子の位置ずれを
算出してこの発光素子の位置を修正し、光軸を正しく調
整することを特徴としている。
SUMMARY OF THE INVENTION The present invention is directed to a light emitting element that emits a light beam for projecting onto a measurement object, a projection lens that receives the light beam and projects it onto the measurement object, and a measurement object. An optical axis adjuster that adjusts the optical axis of an optical displacement gauge that consists of a position detection element that receives the reflected light from the optical axis and measures the position of the object to be measured. A light emitting element adjusting means for correcting the position of the light emitting element, a beam profiler for detecting a light beam from the light emitting element, and a distance adjusting means for adjusting the distance between the beam profiler and the optical displacement meter, The feature is that the position shift of the light emitting element is calculated, the position of the light emitting element is corrected, and the optical axis is correctly adjusted.

【0009】[0009]

【作用】まず、距離調整手段を制御することにより、光
学式変位計の発光素子とビームプロファイラとの距離を
ある値に設定し、この状態におけるビームプロファイラ
への光ビームの投射位置の測定を行う。次に、光学式変
位計の発光素子とビームプロファイラとの距離をその他
の値に設定し直し、再びその状態におけるビームプロフ
ァイラへの光ビームの投射位置の測定を行う。
First, by controlling the distance adjusting means, the distance between the light emitting element of the optical displacement gauge and the beam profiler is set to a certain value, and the projection position of the light beam on the beam profiler in this state is measured. . Next, the distance between the light emitting element of the optical displacement meter and the beam profiler is reset to another value, and the projection position of the light beam on the beam profiler in that state is measured again.

【0010】こうして得られた、2種類の距離値にそれ
ぞれ対応した2つの測定結果の差を求め、この差の値に
基づいて発光素子の位置ずれを算出し、発光素子調節手
段をはたらかせて、発光素子の位置ずれの解消に必要な
だけ発光素子を変位させて光軸を正しく調整し、その状
態で発光素子を固定する。
The difference between the two measurement results corresponding to the two kinds of distance values thus obtained is calculated, the positional deviation of the light emitting element is calculated based on the difference value, and the light emitting element adjusting means is operated. The light emitting element is displaced as much as necessary to eliminate the displacement of the light emitting element, the optical axis is adjusted correctly, and the light emitting element is fixed in that state.

【0011】[0011]

【実施例】以下に図を用いて本発明の実施例を説明す
る。図1は実施例の光軸調整機構部の斜視図である。ベ
ース7の上にZスライダ8があり、Zモータ9で駆動さ
れる。このZスライダ8とZモータ9は、光学式変位計
の発光素子1と後述するビームプロファイラとの距離を
調整する距離調整手段としてはたらく。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a perspective view of the optical axis adjusting mechanism portion of the embodiment. A Z slider 8 is provided on the base 7 and is driven by a Z motor 9. The Z slider 8 and the Z motor 9 serve as distance adjusting means for adjusting the distance between the light emitting element 1 of the optical displacement meter and the beam profiler described later.

【0012】Zスライダ8の上にはYモータ10によっ
て駆動されるYスライダ11があり、その上にXモータ
12で駆動されるXスライダ13が設けてある。このX
スライダ13にはチャック爪14が取り付けられてい
る。これらのYモータ10、Yスライダ11、Xモータ
12、Xスライダ13およびチャック爪14は、発光素
子1を保持して該発光素子の位置を修正する発光素子調
整手段としてはたらく。
A Y slider 11 driven by a Y motor 10 is provided on the Z slider 8, and an X slider 13 driven by an X motor 12 is provided on the Y slider 11. This X
Chuck claws 14 are attached to the slider 13. The Y motor 10, the Y slider 11, the X motor 12, the X slider 13, and the chuck claw 14 serve as a light emitting element adjusting means that holds the light emitting element 1 and corrects the position of the light emitting element.

【0013】Zスライダ8にはさらにSモータ15で駆
動されるSスライダ16が設置され、このSスライダ1
6にはシフト爪17が取り付けられている。これらのS
モータ15、Sスライダ16およびシフト爪17は、光
学式変位計の投光レンズ2を保持して該投光レンズの位
置を修正する投光レンズ調整手段としてはたらく。光学
式変位計のセンサベース6はZスライダ8の上に位置決
め、固定される。発光素子1を取り付けた発光素子ホル
ダ18は、固定ねじ19を緩め、チャック爪14で把持
される。投光レンズ2を内蔵したレンズホルダ20は止
めねじ21を緩め、シフト爪17を嵌合することにより
保持される。
The Z slider 8 is further provided with an S slider 16 driven by an S motor 15.
A shift claw 17 is attached to the position 6. These S
The motor 15, the S slider 16 and the shift claw 17 serve as a projection lens adjusting means for holding the projection lens 2 of the optical displacement meter and correcting the position of the projection lens. The sensor base 6 of the optical displacement gauge is positioned and fixed on the Z slider 8. The light emitting element holder 18 to which the light emitting element 1 is attached is held by the chuck claws 14 after loosening the fixing screw 19. The lens holder 20 incorporating the light projecting lens 2 is held by loosening the set screw 21 and fitting the shift claw 17.

【0014】ベース7上の一端にはサポート22により
ビームプロファイラ23が固定されている。ビームプロ
ファイラ23とは、光ビームの直径とX,Y座標を検出
する測定器である。図2は実施例のブロック図であり、
コンピュータ等による制御部24が、Zモータ9、Yモ
ータ10、Xモータ12、Sモータ15の動作制御、ア
ンプ27を介して発光素子1の点灯制御、ビームプロフ
ァイラ23の計測制御を行う。
A beam profiler 23 is fixed to one end of the base 7 by a support 22. The beam profiler 23 is a measuring device that detects the diameter of the light beam and the X and Y coordinates. FIG. 2 is a block diagram of the embodiment,
A control unit 24 such as a computer controls the operation of the Z motor 9, the Y motor 10, the X motor 12, and the S motor 15, controls the lighting of the light emitting element 1 via the amplifier 27, and controls the measurement of the beam profiler 23.

【0015】25はキーボード、26はモニタをそれぞ
れ示し、制御部24の制御の下で作業者とのインターフ
ェースをとる。作業者は、キーボード25で操作を行
い、モニタ26の表示によって動作状態や計測結果等の
情報を得る。図3は光軸調整の原理図であり、この図を
併用して実施例の動作を説明する。上記構成の光軸調整
機構部に光学式変位計のセンサをセットした状態でキー
ボード25から始動操作を行い、アンプ27を介して発
光素子1を点灯し、Zモータ9を駆動してZスライダを
シフトし、図3に示すように、投光レンズ2とビームプ
ロファイラ23の距離をB寸法に設定し、ビームプロフ
ァイラ23の座標値bを読む。
Reference numeral 25 denotes a keyboard, and 26 denotes a monitor, which interface with a worker under the control of the control unit 24. The operator operates the keyboard 25 and obtains information such as the operating state and the measurement result by displaying on the monitor 26. FIG. 3 is a principle diagram of the optical axis adjustment, and the operation of the embodiment will be described by using this diagram together. With the sensor of the optical displacement gauge set in the optical axis adjusting mechanism configured as described above, a starting operation is performed from the keyboard 25, the light emitting element 1 is turned on via the amplifier 27, and the Z motor 9 is driven to move the Z slider. After shifting, as shown in FIG. 3, the distance between the light projecting lens 2 and the beam profiler 23 is set to the B dimension, and the coordinate value b of the beam profiler 23 is read.

【0016】次に、Zスライダ8を後退させ、さらにC
寸法離れた位置でビームプロファイラ23の座標値cを
読む。A,B,Cは既知の値であるから、光軸の傾きθ
=tan-1(c−b)/Cで求められる。そして、発光
素子1の位置ずれはa=Atanθである。ビームプロ
ファイラ23はX,Y方向の座標値を計測できるので位
置ずれaもX,Y両方向の数値が求められる。
Next, the Z slider 8 is retracted, and further C
The coordinate value c of the beam profiler 23 is read at the positions separated by the dimension. Since A, B, and C are known values, the inclination θ of the optical axis
= Tan −1 (c−b) / C. The positional deviation of the light emitting element 1 is a = Atan θ. Since the beam profiler 23 can measure the coordinate values in the X and Y directions, the positional deviation a can be calculated in the X and Y directions.

【0017】計測結果から制御部24は、Xモータ12
とYモータ10を駆動してXスライダ13とYスライダ
11をそれぞれ移動させ、発光素子1をX,Y方向のそ
れぞれに応じた位置ずれの寸法だけ図3に示す基準光軸
方向に移動する。そして、前記のように、ビームプロフ
ァイラ23で2点の座標を再び計測し、その差が規格範
囲内であることを確認する。制御部24は計測結果をモ
ニタ26に表示し、固定ねじ19を締める指示をモニタ
26に表示する。
Based on the measurement result, the control unit 24 determines that the X motor 12
And the Y motor 10 are driven to move the X slider 13 and the Y slider 11, respectively, and the light emitting element 1 is moved in the reference optical axis direction shown in FIG. 3 by a positional displacement dimension corresponding to each of the X and Y directions. Then, as described above, the beam profiler 23 measures the coordinates of the two points again, and confirms that the difference is within the standard range. The control unit 24 displays the measurement result on the monitor 26, and displays an instruction to tighten the fixing screw 19 on the monitor 26.

【0018】作業者は指示に従って固定ねじ19を締め
て発光素子ホルダ18を固定する。次に、光ビーム径の
調整を行う。狭い部分の測定や精密な測定を行うために
は、光ビーム径は極力小さいほうが良い。レンズホルダ
20を固定している止めねじ21を緩め、キーボード2
5から次の始動操作を行うと、制御部24はZモータ9
を駆動してZスライダ8を移動させ、投光レンズ2とビ
ームプロファイラ23の距離を最小ビーム径設定位置に
合わせる。
According to the instruction, the operator tightens the fixing screw 19 to fix the light emitting element holder 18. Next, the diameter of the light beam is adjusted. The light beam diameter should be as small as possible in order to measure a narrow portion or perform precise measurement. Loosen the setscrew 21 that secures the lens holder 20 to the keyboard 2
When the next starting operation is performed from 5, the control unit 24 causes the Z motor 9
Is driven to move the Z slider 8, and the distance between the light projecting lens 2 and the beam profiler 23 is adjusted to the minimum beam diameter setting position.

【0019】Sモータ15を駆動し、Sスライダ16を
シフトさせてビームプロファイラ23でビーム径を計測
する。この動作を繰り返して最小ビーム径になる位置を
見つける。規格範囲内で最小ビーム径になった位置で、
制御部24はモニタ26に計測結果と止めねじ21を締
める指示を表示する。作業者は止めねじ21を締め、キ
ーボードから終了操作をして光軸調整は完了する。
The S motor 15 is driven, the S slider 16 is shifted, and the beam profiler 23 measures the beam diameter. Repeat this operation to find the position where the minimum beam diameter is reached. At the position where the minimum beam diameter is within the standard range,
The control unit 24 displays the measurement result and the instruction to tighten the set screw 21 on the monitor 26. The worker tightens the setscrew 21 and performs an end operation from the keyboard to complete the optical axis adjustment.

【0020】上述のように本実施例の光軸調整機を用い
ることにより、 1.光軸をセンサベース6に対して平行に調整できるの
で、受光ビーム位置のばらつきが少なくなり、位置検出
素子の調整が不要になる。 2.センサの互換性があるので、アンプとの組み合わせ
が自由になる。 3.光軸と直角方向の位置測定でも測定誤差が小さくな
り、精度の良い測定ができる。
By using the optical axis adjuster of this embodiment as described above, Since the optical axis can be adjusted parallel to the sensor base 6, there is less variation in the position of the received light beam, and adjustment of the position detection element is unnecessary. 2. Since the sensors are compatible, the combination with the amplifier is free. 3. Even in the position measurement in the direction perpendicular to the optical axis, the measurement error is small, and accurate measurement can be performed.

【0021】なお、本実施例で述べた光軸の調整および
ビーム径の調整は、制御部24の制御の下、自動的に実
行可能であり、また、手動あるいは一部手動の操作によ
り行うこともできる。
The adjustment of the optical axis and the adjustment of the beam diameter described in this embodiment can be automatically executed under the control of the control section 24, and can be performed manually or partially manually. You can also

【0022】[0022]

【発明の効果】以上詳細に説明したように、発光素子調
整手段および距離調整手段により、光軸のずれを正確に
検出してこの光軸を正しく調整することが可能となる効
果を有する。さらに、投光レンズ調整手段により、光ビ
ームのビーム径を適切な値に調整することが可能となる
効果を有する。
As described above in detail, the light emitting element adjusting means and the distance adjusting means have the effect that the deviation of the optical axis can be accurately detected and the optical axis can be adjusted correctly. Further, there is an effect that the beam diameter of the light beam can be adjusted to an appropriate value by the light projecting lens adjusting means.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例の光軸調整機構部の斜視図FIG. 1 is a perspective view of an optical axis adjusting mechanism section according to an embodiment.

【図2】実施例のブロック図FIG. 2 is a block diagram of an embodiment.

【図3】光軸調整の原理図[Figure 3] Principle diagram of optical axis adjustment

【図4】光学式変位計の光軸方向の測定原理図[Fig. 4] Principle of measurement in the optical axis direction of the optical displacement meter

【図5】光学式変位計の直角方向の測定原理図FIG. 5: Principle of measurement of the optical displacement meter in the perpendicular direction

【図6】光軸方向の光軸ずれの影響を示す説明図FIG. 6 is an explanatory diagram showing the influence of optical axis shift in the optical axis direction.

【図7】直角方向の光軸ずれの影響を示す説明図FIG. 7 is an explanatory diagram showing the influence of optical axis shift in the perpendicular direction.

【符号の説明】[Explanation of symbols]

1 発光素子 2 投光レンズ 3 測定物 5 位置検出素子 8,9 距離調整手段 10〜14 発光素子調整手段 15〜17 投光レンズ調整手段 23 ビームプロファイラ 24 制御部 DESCRIPTION OF SYMBOLS 1 light emitting element 2 light projecting lens 3 measured object 5 position detecting element 8, 9 distance adjusting means 10-14 light emitting element adjusting means 15-17 light projecting lens adjusting means 23 beam profiler 24 control section

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 測定物に投光するための光ビームを発光
する発光素子と、その光ビームを入力して前記測定物に
投光する投光レンズと、前記測定物からの反射光を受光
してその測定物の位置を測定する位置検出素子から成る
光学式変位計の前記発光素子の位置を修正する発光素子
調整手段と、 その発光素子からの光ビームを検出するビームプロファ
イラと、 該ビームプロファイラと前記光学式変位計との距離を調
整する距離調整手段とから成り、 発光素子の位置ずれを算出して該発光素子の位置を修正
し、光軸を調整することを特徴とする光軸調整機。
1. A light emitting element that emits a light beam for projecting light onto a measurement object, a light projecting lens that inputs the light beam and projects light onto the measurement object, and receives reflected light from the measurement object. And a beam profiler for detecting a light beam from the light emitting element, a light emitting element adjusting means for correcting the position of the light emitting element of the optical displacement meter including a position detecting element for measuring the position of the object to be measured, An optical axis comprising a distance adjusting means for adjusting a distance between the profiler and the optical displacement meter, calculating a positional deviation of the light emitting element, correcting the position of the light emitting element, and adjusting the optical axis. Adjuster.
【請求項2】 測定物に投光するための光ビームを発光
する発光素子と、その光ビームを入力して前記測定物に
投光する投光レンズと、前記測定物からの反射光を受光
してその測定物の位置を測定する位置検出素子から成る
光学式変位計の前記発光素子の位置を修正する発光素子
調整手段と、 その発光素子からの光ビームを検出するビームプロファ
イラと、 該ビームプロファイラと前記光学式変位計との距離を調
整する距離調整手段と、 前記の発光素子調整手段および距離調整手段の動作を制
御するとともに前記発光素子の点灯制御を行う制御部と
から成り、 発光素子の位置ずれを算出して該発光素子の位置を修正
し、光軸を調整することを特徴とする光軸調整機。
2. A light emitting element that emits a light beam for projecting light onto a measurement object, a projection lens that inputs the light beam and projects the light beam onto the measurement object, and receives reflected light from the measurement object. And a beam profiler for detecting a light beam from the light emitting element, a light emitting element adjusting means for correcting the position of the light emitting element of the optical displacement meter including a position detecting element for measuring the position of the object to be measured, The light emitting device includes a distance adjusting unit that adjusts a distance between the profiler and the optical displacement meter, and a control unit that controls the operation of the light emitting device adjusting unit and the distance adjusting unit and controls lighting of the light emitting device. An optical axis adjusting machine, which adjusts the optical axis by calculating the position shift of the light emitting element to correct the position of the light emitting element.
【請求項3】 請求項1および請求項2において、距離
調整手段によって光学式変位計の発光素子とビームプロ
ファイラとの距離をある値に設定し、光ビームのビーム
プロファイラへの投射位置の測定を行い、 さらに、光学式変位計の発光素子とビームプロファイラ
との距離をその他の値に設定して光ビームのビームプロ
ファイラへの投射位置の測定を行い、 前記2つの測定結果の差から発光素子の位置ずれを算出
して位置修正することを特徴とする光軸調整機。
3. The distance adjusting means sets the distance between the light emitting element of the optical displacement meter and the beam profiler to a certain value, and measures the projection position of the light beam onto the beam profiler. Further, the distance between the light emitting element of the optical displacement gauge and the beam profiler is set to another value to measure the projection position of the light beam onto the beam profiler, and the difference between the two measurement results indicates that the light emitting element An optical axis adjuster characterized by calculating a position shift and correcting the position.
【請求項4】 請求項1、請求項2および請求項3にお
いて、光学式変位計の投光レンズの位置を修正する投光
レンズ調整手段を設け、 その投光レンズ調整手段により、前記投光レンズの位置
を調整して光ビーム径を調整することを特徴とする光軸
調整機。
4. The light projecting lens adjusting means for correcting the position of the light projecting lens of the optical displacement gauge according to claim 1, claim 2 and claim 3, wherein the light projecting lens adjusting means is used to project the light. An optical axis adjuster characterized by adjusting the position of a lens to adjust the light beam diameter.
JP17061895A 1995-07-06 1995-07-06 Optical axis adjusting apparatus Pending JPH0921613A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17061895A JPH0921613A (en) 1995-07-06 1995-07-06 Optical axis adjusting apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17061895A JPH0921613A (en) 1995-07-06 1995-07-06 Optical axis adjusting apparatus

Publications (1)

Publication Number Publication Date
JPH0921613A true JPH0921613A (en) 1997-01-21

Family

ID=15908217

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17061895A Pending JPH0921613A (en) 1995-07-06 1995-07-06 Optical axis adjusting apparatus

Country Status (1)

Country Link
JP (1) JPH0921613A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7119895B2 (en) 2000-11-28 2006-10-10 Honda Giken Kogyo Kabushiki Kaisha Method of and apparatus for adjusting optical component, and optical unit
JP2007263818A (en) * 2006-03-29 2007-10-11 Jfe Steel Kk Adjusting method for thickness measuring instrument, and device therefor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7119895B2 (en) 2000-11-28 2006-10-10 Honda Giken Kogyo Kabushiki Kaisha Method of and apparatus for adjusting optical component, and optical unit
JP2007263818A (en) * 2006-03-29 2007-10-11 Jfe Steel Kk Adjusting method for thickness measuring instrument, and device therefor

Similar Documents

Publication Publication Date Title
US5852493A (en) Self-aligning laser transmitter having a dual slope grade mechanism
US7424339B2 (en) Method and system for acquiring delivery position data of carrying apparatus
JPH03233925A (en) Automatic focus adjustment and control apparatus
EP1102032B1 (en) Method and device for measuring a folding angle of a sheet in a folding machine
JPH10340112A (en) Robot with automatic calibration function
JPH0921613A (en) Optical axis adjusting apparatus
JP3014499B2 (en) Position information detecting device and transfer device using the same
JP3831720B2 (en) Reticle focus measurement system and reticle focus measurement method using multiple interference beams
JPH0854234A (en) Three-dimensional coordinate position measuring method
KR0131526B1 (en) Optical measuring device and its measuring method
JPH0637180A (en) Method for measuring backlash of narrow groove making machine and narrow groove making machine having backlash correcting function
JP2977307B2 (en) Sample height measurement method
JP7337637B2 (en) Laser probe and optical adjustment method
JPH063112A (en) Optical method for measuring distance
JPH11281319A (en) Position setting apparatus of optical element and position setting method of optical element
WO1988005152A1 (en) Optical measuring instrument
JPH10103937A (en) Optical axis inclination measuring method for laser light and apparatus therefor
JPH05280927A (en) Position detection method of laser slit light
JPH09243304A (en) Shape measuring device, and method of positioning surface to be measured using it
KR100380133B1 (en) Method for compensating error according to intensity of rays reflected on subject in optical sensor
TW202434903A (en) Lidar gesture calibration apparatus and method
TWI425206B (en) An optical imaging apparatus capable of measuring image defects, a mask for the optical imaging apparatus, an imaging method, and a method for measuring image defects
JPH09189522A (en) Optical dimension-measuring device
KR100254279B1 (en) Apparatus and method for reticle alignment
JPH05215524A (en) Laser-type height measuring apparatus