JPH0653475A - Fabrication of solid state image sensor - Google Patents

Fabrication of solid state image sensor

Info

Publication number
JPH0653475A
JPH0653475A JP4203298A JP20329892A JPH0653475A JP H0653475 A JPH0653475 A JP H0653475A JP 4203298 A JP4203298 A JP 4203298A JP 20329892 A JP20329892 A JP 20329892A JP H0653475 A JPH0653475 A JP H0653475A
Authority
JP
Japan
Prior art keywords
charge transfer
diffusion layer
solid
type diffusion
transfer electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4203298A
Other languages
Japanese (ja)
Inventor
Takao Shibuya
隆夫 渋谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electronics Corp filed Critical Matsushita Electronics Corp
Priority to JP4203298A priority Critical patent/JPH0653475A/en
Publication of JPH0653475A publication Critical patent/JPH0653475A/en
Pending legal-status Critical Current

Links

Landscapes

  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

PURPOSE:To provide a solid state image sensor, and fabrication thereof, in which potential at a read out part is stabilized even upon progress of micromachining and thereby saturation signal voltage is stabilized to leave no after-image. CONSTITUTION:A charge transfer electrode is formed of double structure of silicide 14 and poly-Si 9 and an n-type diffusion layer (photodiode part) 15 is formed through ion implantation with the charge transfer electrode as a mask thus preventing positional error from occurring between the charge transfer electrode (silicide 14 and poly-Si 9) and the n-type diffusion layer (photodiode part) 15.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、入射光に応じて信号電
荷を発生する感光画素部と、信号電荷を順次転送するC
CD(Charge Coupled Device) とを有した固体撮像装置
の製造方法に係るもので、特に感光画素部から信号電荷
を読み出すゲートとその下の不純物拡散層の製造方法に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a photosensitive pixel portion for generating a signal charge according to incident light and a C for sequentially transferring the signal charge.
The present invention relates to a method of manufacturing a solid-state imaging device having a CD (Charge Coupled Device), and more particularly to a method of manufacturing a gate for reading out signal charges from a photosensitive pixel portion and an impurity diffusion layer thereunder.

【0002】[0002]

【従来の技術】カメラ一体型VTRに搭載されている固
体撮像装置は年々小型化が進められており、画素部のセ
ルサイズが小さくなっている。このため、固体撮像装置
を製造する上では微細加工技術が求められる。これにも
かかわらず、固体撮像装置の特性は従来と同等かそれ以
上のものが求められている。
2. Description of the Related Art A solid-state image pickup device mounted on a camera-integrated VTR has been miniaturized year by year, and the cell size of a pixel portion has been reduced. Therefore, a fine processing technique is required for manufacturing the solid-state imaging device. Nevertheless, the characteristics of the solid-state imaging device are required to be equal to or better than those of the conventional one.

【0003】図3は従来の固体撮像装置の断面図を示し
たものである。1はn型半導体基板、2はpウェル、3
はn型拡散層(フォトダイオード部)、4はn型拡散層
(垂直電荷転送部)、5は信号電荷読み出し部、6はp
+ 型拡散層(分離部)、7は表面p+ 型拡散層、8は酸
化珪素膜、9は多結晶シリコン電荷転送電極、10は遮
光アルミ、11は表面保護膜である。
FIG. 3 is a sectional view of a conventional solid-state image pickup device. 1 is an n-type semiconductor substrate, 2 is a p-well, 3
Is an n-type diffusion layer (photodiode section), 4 is an n-type diffusion layer (vertical charge transfer section), 5 is a signal charge reading section, and 6 is p
+ Type diffusion layer (separation part), 7 is a surface p + type diffusion layer, 8 is a silicon oxide film, 9 is a polycrystalline silicon charge transfer electrode, 10 is light-shielding aluminum, and 11 is a surface protective film.

【0004】ここで、図3においてxで示したのはn型
拡散層(フォトダイオード部)3と信号読み出し部5と
の境界と、多結晶シリコン電荷転送電極9の端部との距
離である。また、yで示したのは信号読み出し部の幅で
ある。
Here, x in FIG. 3 indicates the distance between the boundary between the n-type diffusion layer (photodiode section) 3 and the signal reading section 5 and the end of the polycrystalline silicon charge transfer electrode 9. . Further, y represents the width of the signal reading unit.

【0005】図4の(a)〜(c)は従来の固体撮像装
置の製造方法の一部を示したものである。まず、図4の
(a)に示すように、n型半導体基板1上にpウェル2
を形成し、この上にフォトレジスト12をパターニング
して、更にリンイオン13を注入する。次に、図4の
(b)に示すように、レジスト12を除去して、pウェ
ル2の中にn型拡散層3を形成する。そして、図4の
(c)に示すように、n型拡散層(垂直電荷転送部)4
とp+ 型拡散層(分離部)6を形成し、更に酸化珪素膜
8、多結晶シリコン電荷転送電極9のパターニングを行
う。
FIGS. 4A to 4C show a part of a conventional method for manufacturing a solid-state image pickup device. First, as shown in FIG. 4A, the p well 2 is formed on the n-type semiconductor substrate 1.
Is formed, the photoresist 12 is patterned thereon, and phosphorus ions 13 are further implanted. Next, as shown in FIG. 4B, the resist 12 is removed to form the n-type diffusion layer 3 in the p-well 2. Then, as shown in FIG. 4C, the n-type diffusion layer (vertical charge transfer portion) 4
And the p + type diffusion layer (separation part) 6 are formed, and the silicon oxide film 8 and the polycrystalline silicon charge transfer electrode 9 are patterned.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、図4で
示した製造方法で固体撮像素子を製造した場合、図3に
おける、n型拡散層(フォトダイオード部)3と信号読
み出し部5との境界と、多結晶シリコン電荷転送電極9
の端部との距離xはパターニングの変動により最大0.
4μmの誤差が生じる。すなわち、セルサイズの小型化
により図3における信号読み出し部の幅yは0.8μm
以下にすることが必要になっているにもかかわらず、画
素部のセルサイズを小さくしていく上で上記距離xの誤
差が読み出し部ポテンシャルを変動させ、撮像特性、特
に飽和信号電圧、残像に大きく影響を与えて小型化を進
めていく上で大きな障害となっていた。
However, when the solid-state imaging device is manufactured by the manufacturing method shown in FIG. 4, the boundary between the n-type diffusion layer (photodiode part) 3 and the signal reading part 5 in FIG. , Polycrystalline silicon charge transfer electrode 9
The maximum distance x from the edge of the pattern is 0.
An error of 4 μm occurs. That is, the width y of the signal readout portion in FIG. 3 is 0.8 μm due to the reduction in cell size.
Although it is necessary to reduce the pixel size to the following, the error of the distance x causes the readout portion potential to fluctuate in reducing the cell size of the pixel portion, and the imaging characteristics, especially the saturation signal voltage and the afterimage It had a great impact and was a major obstacle in promoting miniaturization.

【0007】本発明は上記問題を解決するもので、微細
加工を進めても読み出し部ポテンシャルが安定して、飽
和信号電圧が安定し、残像がない固体撮像装置の製造方
法を提供することを目的とするものである。
The present invention solves the above problems, and an object of the present invention is to provide a method for manufacturing a solid-state imaging device in which the read-out portion potential is stable, the saturation signal voltage is stable, and there is no afterimage even when microfabrication is advanced. It is what

【0008】[0008]

【課題を解決するための手段】上記問題を解決するため
に本発明の固体撮像装置の製造方法は、電荷転送電極を
シリサイドと多結晶シリコンとの二層構造で形成し、こ
の電荷転送電極をマスクにしてフォトダイオード部を形
成するものである。
In order to solve the above problems, a method of manufacturing a solid-state image pickup device according to the present invention comprises forming a charge transfer electrode with a two-layer structure of silicide and polycrystalline silicon, and forming the charge transfer electrode The photodiode portion is formed using the mask.

【0009】[0009]

【作用】上記構成により、フォトダイオード部の読み出
し部側をシリサイドと多結晶シリコンの二層構造の電荷
転送電極をマスクにして形成するため、電荷転送電極と
フォトダイオード部との位置に誤差を生じることがなく
なり、飽和信号電圧が安定して残像がない固体撮像装置
を提供できる。
With the above structure, the read-out side of the photodiode section is formed by using the charge transfer electrode having the two-layer structure of silicide and polycrystalline silicon as a mask, so that an error occurs in the position between the charge transfer electrode and the photodiode section. It is possible to provide a solid-state imaging device in which the saturation signal voltage is stable and there is no afterimage.

【0010】[0010]

【実施例】以下、本発明の実施例について図面を参照し
て説明する。図2は、本発明の一実施例を示す固体撮像
装置の断面図である。なお、従来例と同機能のものには
同符号を付し、その説明は省略する。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 2 is a sectional view of a solid-state image pickup device showing an embodiment of the present invention. The same functions as those of the conventional example are designated by the same reference numerals, and the description thereof will be omitted.

【0011】図2に示すように、電荷転送電極は、多結
晶シリコン9上にシリサイド14を形成した二層構造と
されている。n型拡散層(フォトダイオード部)15は
二層構造の電荷転送電極をマスクにしてセルフアライン
で形成されている。
As shown in FIG. 2, the charge transfer electrode has a two-layer structure in which silicide 14 is formed on polycrystalline silicon 9. The n-type diffusion layer (photodiode portion) 15 is formed in self-alignment by using the charge transfer electrode having a two-layer structure as a mask.

【0012】図1の(a)〜(c)はこの固体撮像装置
の製造工程の概略断面図をそれぞれ示すものである。ま
ず、図1の(a)に示すように、n型半導体基板1上に
pウェル2を形成し、更にn型拡散層(垂直電荷転送
部)4、p+ 型拡散層(分離部)6、酸化珪素膜8を形
成する。
FIGS. 1A to 1C are schematic sectional views showing the manufacturing process of the solid-state image pickup device. First, as shown in FIG. 1A, a p-well 2 is formed on an n-type semiconductor substrate 1, and an n-type diffusion layer (vertical charge transfer portion) 4 and a p + -type diffusion layer (separation portion) 6 are formed. , A silicon oxide film 8 is formed.

【0013】次に、図1の(b)に示すように、電荷転
送電極である多結晶シリコン9とシリサイド14とを形
成し、パターニング後にリンイオン13を注入する。こ
こで、多結晶シリコン9の膜厚は100nm、シリサイ
ド14としてはWSi2 を用い、膜厚は2000nmと
した。
Next, as shown in FIG. 1 (b), polycrystalline silicon 9 as a charge transfer electrode and silicide 14 are formed, and phosphorus ions 13 are implanted after patterning. Here, the film thickness of the polycrystalline silicon 9 was 100 nm, WSi 2 was used as the silicide 14, and the film thickness was 2000 nm.

【0014】そして、図1の(c)に示すように、イオ
ン注入はシリサイド14によるマスクで阻止されてセル
フアラインでn型拡散層(フォトダイオード部)15が
形成される。したがって、n型拡散層(フォトダイオー
ド部)15と信号読み出し部5との境界と、多結晶シリ
コン9およびシリサイド14の端部との距離xは0μm
となり、従来のような誤差は生じない。
Then, as shown in FIG. 1C, the ion implantation is blocked by the mask of the silicide 14, and the n-type diffusion layer (photodiode portion) 15 is formed by self-alignment. Therefore, the distance x between the boundary between the n-type diffusion layer (photodiode portion) 15 and the signal reading portion 5 and the end portions of the polycrystalline silicon 9 and the silicide 14 is 0 μm.
Therefore, the error as in the past does not occur.

【0015】[0015]

【発明の効果】以上に述べたように、本発明によると、
光電変換素子をなす不純物拡散層の一端を、シリサイド
と多結晶シリコンの二層構造の電荷転送電極をマスクに
してイオン注入にて形成することにより、電荷転送電極
と不純物拡散層との位置に誤差を生じることがなくな
り、固体撮像装置の画素部セルサイズを小型化したとき
に飽和信号電圧が安定し、残像をなくすことに対して絶
大なる効果がある。
As described above, according to the present invention,
By forming one end of the impurity diffusion layer forming the photoelectric conversion element by ion implantation using the charge transfer electrode having a two-layer structure of silicide and polycrystalline silicon as a mask, an error occurs in the position between the charge transfer electrode and the impurity diffusion layer. And the saturation signal voltage becomes stable when the cell size of the pixel portion of the solid-state imaging device is reduced, and there is a great effect in eliminating the afterimage.

【図面の簡単な説明】[Brief description of drawings]

【図1】(a)〜(c)はそれぞれ本発明の一実施例を
示す固体撮像装置の製造工程を示す断面図
1A to 1C are cross-sectional views showing a manufacturing process of a solid-state imaging device showing an embodiment of the present invention.

【図2】同固体撮像装置の断面図FIG. 2 is a sectional view of the solid-state imaging device.

【図3】従来の固体撮像装置の断面図FIG. 3 is a sectional view of a conventional solid-state imaging device.

【図4】(a)〜(c)はそれぞれ従来の固体撮像装置
の製造工程を示す断面図
4A to 4C are cross-sectional views showing manufacturing steps of a conventional solid-state imaging device.

【符号の説明】[Explanation of symbols]

1 n型半導体基板 2 pウェル 4 n型拡散層(垂直電荷転送部) 5 信号電荷読み出し部 6 p+ 型拡散層(分離部) 7 表面p+ 型拡散層 8 酸化珪素膜 9 多結晶シリコン 14 シリサイド 15 n型拡散層(フォトダイオード部)DESCRIPTION OF SYMBOLS 1 n-type semiconductor substrate 2 p-well 4 n-type diffusion layer (vertical charge transfer section) 5 signal charge reading section 6 p + type diffusion layer (separation section) 7 surface p + type diffusion layer 8 silicon oxide film 9 polycrystalline silicon 14 Silicide 15 n-type diffusion layer (photodiode part)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 一導電性半導体基板上に、入射光量に応
じた信号電荷を発生する複数の光電変換素子と、この光
電変換素子で発生した信号電荷を転送する垂直電荷転送
素子と、前記光電変換素子から発生した信号電荷を前記
垂直電荷転送素子に読み出すための読み出しゲートとを
有する固体撮像装置の製造方法であって、前記読み出し
ゲートをシリサイドと多結晶シリコンとの二層構造で形
成し、前記光電変換素子をなす不純物拡散層の一端を前
記読み出しゲートをマスクとしてイオン注入で形成する
固体撮像装置の製造方法。
1. A plurality of photoelectric conversion elements for generating signal charges according to the amount of incident light, a vertical charge transfer element for transferring the signal charges generated by the photoelectric conversion elements, and the photoelectric conversion element on one conductive semiconductor substrate. A method for manufacturing a solid-state imaging device having a read gate for reading signal charges generated from a conversion element to the vertical charge transfer element, the read gate having a two-layer structure of silicide and polycrystalline silicon, A method for manufacturing a solid-state imaging device, wherein one end of an impurity diffusion layer forming the photoelectric conversion element is formed by ion implantation using the read gate as a mask.
JP4203298A 1992-07-30 1992-07-30 Fabrication of solid state image sensor Pending JPH0653475A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4203298A JPH0653475A (en) 1992-07-30 1992-07-30 Fabrication of solid state image sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4203298A JPH0653475A (en) 1992-07-30 1992-07-30 Fabrication of solid state image sensor

Publications (1)

Publication Number Publication Date
JPH0653475A true JPH0653475A (en) 1994-02-25

Family

ID=16471718

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4203298A Pending JPH0653475A (en) 1992-07-30 1992-07-30 Fabrication of solid state image sensor

Country Status (1)

Country Link
JP (1) JPH0653475A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6306676B1 (en) * 1996-04-04 2001-10-23 Eastman Kodak Company Method of making self-aligned, high-enegry implanted photodiode for solid-state image sensors

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6306676B1 (en) * 1996-04-04 2001-10-23 Eastman Kodak Company Method of making self-aligned, high-enegry implanted photodiode for solid-state image sensors

Similar Documents

Publication Publication Date Title
JPH0774337A (en) Solid-state image sensing device
US6606124B1 (en) Solid-state imaging device with photoelectric conversion portions in an array and manufacturing method thereof
EP0463455A2 (en) Solid-state image pickup device, process for its manufacture, and method of driving the device
JP2845216B2 (en) Solid-state imaging device and method of manufacturing the same
JP3272941B2 (en) Solid-state imaging device and method of manufacturing the same
JP3248225B2 (en) Method for manufacturing solid-state imaging device
JPH0653475A (en) Fabrication of solid state image sensor
JP2996567B2 (en) Method for manufacturing solid-state imaging device
JP3326798B2 (en) Solid-state imaging device
JP2936153B2 (en) Method for manufacturing solid-state imaging device
JP3393418B2 (en) Amplification type solid-state imaging device and manufacturing method thereof
JP2003347537A (en) Solid-state image pickup element
JPH06244397A (en) Solid-state image pick-up device
JP3384509B2 (en) Solid-state imaging device
KR19990049052A (en) Manufacturing Method of Solid State Imaging Device
JPH04315474A (en) Manufacture of solid-state image pickup element
JP2526512B2 (en) Method of manufacturing solid-state imaging device
JPH11284167A (en) Semiconductor device, its manufacture, and solid-state imaging device
JP3467918B2 (en) Method for manufacturing solid-state imaging device and solid-state imaging device
JP2507015B2 (en) Method of manufacturing solid-state imaging device
JPH06268191A (en) Manufacture of solid-state image sensing device
KR100304977B1 (en) Method for fabricating solid state image sensor
JPH06296008A (en) Manufacture of solid-state image pickup element
JPH0613600A (en) Solid-state image pick-up element
JPS60105382A (en) Solid-state pickup element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040917

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20050705

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050706

A131 Notification of reasons for refusal

Effective date: 20061114

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070320