JPH06296008A - Manufacture of solid-state image pickup element - Google Patents

Manufacture of solid-state image pickup element

Info

Publication number
JPH06296008A
JPH06296008A JP5083343A JP8334393A JPH06296008A JP H06296008 A JPH06296008 A JP H06296008A JP 5083343 A JP5083343 A JP 5083343A JP 8334393 A JP8334393 A JP 8334393A JP H06296008 A JPH06296008 A JP H06296008A
Authority
JP
Japan
Prior art keywords
light receiving
receiving region
polycrystalline silicon
region
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5083343A
Other languages
Japanese (ja)
Inventor
Yuuya Kitamura
勇也 北村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP5083343A priority Critical patent/JPH06296008A/en
Priority to US08/225,004 priority patent/US5483090A/en
Priority to KR1019940007330A priority patent/KR100196302B1/en
Publication of JPH06296008A publication Critical patent/JPH06296008A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To simplify the manufacturing process of a solid-state image pickup element provided with a transfer electrode whose thickness is different in a light receiving region and in its peripheral region. CONSTITUTION:A plurality of isolation regions 31 are formed in the light receiving region of a silicon substrate 30, and similarly an isolation region 32 is formed in the peripheral region surrounding the isolation regions 31. An insulating film 34, a polycrystalline silicon film 35, and a nitride film 36 are formed in order. The nitride film 36 of the light receiving region part is eliminated and the residual part is made the mask of selective oxidation. The thickness of the polycrystalline silicon film 35 of the light receiving region part is reduced by selectively oxidizing the polycrystalline silicon film 35. A transfer electrode traversing the light receiving region in the direction crossing the isolation regions 31 is obtained by patterning the polycrystalline silicon film 35.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、撮像領域が転送電極で
覆われた固体撮像素子の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a solid-state image pickup device having an image pickup area covered with transfer electrodes.

【0002】[0002]

【従来の技術】フレームトランスファ型のCCD固体撮
像素子において、被写体からの光を受ける撮像部は、照
射された光に応答して発生する情報電荷を蓄積すると同
時に、所定の期間蓄積された情報電荷を蓄積部へ転送出
力する構成となっている。このため、光の受光領域にも
情報電荷を転送駆動するための転送電極が設けられる。
2. Description of the Related Art In a frame transfer type CCD solid-state image pickup device, an image pickup portion which receives light from an object accumulates information charges generated in response to the applied light, and at the same time, accumulates information charges accumulated for a predetermined period. Is transferred to the storage unit and output. Therefore, transfer electrodes for transferring and driving information charges are also provided in the light receiving region.

【0003】図5は、フレームトランスファ型のCCD
固体撮像素子の概略を示す平面図である。撮像部1は、
垂直方向に連続する複数のCCDシフトレジスタからな
り、入射する光の量に応じて発生する情報電荷を受光期
間に各ビットに蓄積し、その情報電荷を転送期間に垂直
転送クロックφVに従って転送出力する。蓄積部2は、
撮像部1のシフトレジスタに連続するCCDシフトレジ
スタからなり、蓄積転送クロックφSを受けて転送期間
に撮像部1から出力される情報電荷を取り込んで蓄積す
る。水平転送部3は、水平方向に連続する1列のCCD
シフトレジスタ(場合によっては2列以上となる)で構
成され、各ビットに蓄積部2のシフトレジスタの出力を
受け、水平転送クロックφHに従って情報電荷を水平ラ
イン単位で出力する。出力部4は、電荷量を電圧値に変
換するフローティングディフュージョン(電気的に独立
した拡散領域)及びそのフローティングディフュージョ
ンの電位変動を取り出すアンプを備え、水平転送部4か
ら1ビット単位で出力される情報電荷を逐次電圧値に変
換し、映像信号として出力する。この出力部4は、例え
ば図6に示すように、水平転送部3のCCD出力を受け
るフローティングディフュージョン10、このフローテ
ィングディフュージョン10の電位をリセットクロック
φRに従ってリセットするトランジスタ11及びソース
フォロワ接続されてアンプを構成する一対のトランジス
タ12、13で構成され、水平転送部3から出力される
情報電荷の電荷量の変化に応答する映像信号を出力す
る。
FIG. 5 shows a frame transfer type CCD.
It is a top view which shows the outline of a solid-state image sensor. The imaging unit 1
Comprised of a plurality of CCD shift registers that are continuous in the vertical direction, the information charges generated according to the amount of incident light are accumulated in each bit during the light receiving period, and the information charges are transferred and output according to the vertical transfer clock φ V during the transfer period. To do. The storage unit 2 is
The shift register of the image pickup unit 1 is composed of a continuous CCD shift register, receives the storage transfer clock φ S , and takes in and accumulates the information charges output from the image pickup unit 1 during the transfer period. The horizontal transfer unit 3 is a row of CCDs that are continuous in the horizontal direction.
It is composed of a shift register (two or more columns in some cases), receives the output of the shift register of the storage unit 2 for each bit, and outputs the information charges in horizontal line units in accordance with the horizontal transfer clock φ H. The output unit 4 includes a floating diffusion (electrically independent diffusion region) that converts a charge amount into a voltage value and an amplifier that extracts a potential fluctuation of the floating diffusion, and information output from the horizontal transfer unit 4 in 1-bit units. The charges are sequentially converted into voltage values and output as video signals. For example, as shown in FIG. 6, the output unit 4 includes a floating diffusion 10 that receives the CCD output of the horizontal transfer unit 3, a transistor 11 that resets the potential of the floating diffusion 10 according to a reset clock φ R, and a source follower-connected amplifier. And a video signal responsive to a change in the amount of information charges output from the horizontal transfer section 3 is output.

【0004】図7は、固体撮像素子の撮像部1の構造を
示す平面図で、図8は、そのX−X線の断面図である。
P型のシリコン基板20の一面の受光領域部分には、P
型の不純物が高濃度に注入された複数の分離領域21が
互いに平行に配置され、同様にして周辺領域にも高濃度
のP型の不純物を含む分離領域22が受光領域を取り囲
むように形成される。また、各分離領域21の間のチャ
ネル領域23は、基板表面部分にN型の不純物が拡散さ
れて埋め込みチャネル構造を成している。このような分
離領域21及びチャネル領域23が形成されたシリコン
基板20上には、絶縁膜24を介して多結晶シリコンか
らなる複数の転送電極25が、チャネル領域23と交差
する方向に、受光領域を横切って周辺領域まで延在して
配置される。これらの転送電極25上には、同じく多結
晶シリコンからなる2層目の転送電極26が、1層目の
転送電極25の間隙を覆うように配置されて2層構造を
成している。各転送電極25、26については、受光領
域上で周辺領域上より膜厚が薄く形成され、これにより
受光領域部分で光が転送電極25、26を透過してチャ
ネル領域23に入射し易いようにしている。そして、周
辺領域部分の転送電極25、26上に、絶縁膜27を介
してアルミニウム配線28が配置され、絶縁膜28に設
けられるコンタクトホール29を通して各転送電極2
5、26と接続される。このアルミニウム配線28は、
転送電極25、26に供給する転送クロックの相数に対
応して設けられるもので、4相クロックの場合には4本
配置され、各配線が3本置きに転送電極25、26と接
続される。ここで、各転送電極25、26は、アルミニ
ウム配線28が接続される部分で膜厚が厚く形成される
ことから、コンタクトの突き抜けが生じにくくなってい
る。
FIG. 7 is a plan view showing the structure of the image pickup section 1 of the solid-state image pickup device, and FIG. 8 is a sectional view taken along line XX thereof.
The P-type silicon substrate 20 has P
A plurality of isolation regions 21 into which high-concentration type impurities are implanted are arranged in parallel to each other, and similarly, isolation regions 22 containing high-concentration P-type impurities are formed in the peripheral region so as to surround the light receiving region. It The channel region 23 between the isolation regions 21 has a buried channel structure in which N-type impurities are diffused in the substrate surface portion. On the silicon substrate 20 on which the isolation region 21 and the channel region 23 are formed, a plurality of transfer electrodes 25 made of polycrystalline silicon via the insulating film 24 are formed in the light receiving region in a direction intersecting the channel region 23. Is located across and across to the peripheral region. On these transfer electrodes 25, a second-layer transfer electrode 26 also made of polycrystalline silicon is arranged so as to cover the gap between the first-layer transfer electrodes 25 to form a two-layer structure. Each of the transfer electrodes 25 and 26 is formed to have a smaller film thickness on the light receiving region than on the peripheral region, so that light can easily pass through the transfer electrodes 25 and 26 and enter the channel region 23 in the light receiving region. ing. Then, the aluminum wiring 28 is arranged on the transfer electrodes 25 and 26 in the peripheral region portion via the insulating film 27, and the transfer electrodes 2 are formed through the contact holes 29 provided in the insulating film 28.
5, 26 are connected. This aluminum wiring 28 is
It is provided corresponding to the number of phases of the transfer clocks supplied to the transfer electrodes 25 and 26. In the case of a four-phase clock, four lines are arranged and every three lines are connected to the transfer electrodes 25 and 26. . Here, since the transfer electrodes 25 and 26 are formed to have a large film thickness at the portion to which the aluminum wiring 28 is connected, it is difficult for the contact to penetrate.

【0005】[0005]

【発明が解決しようとする課題】以上のような固体撮像
素子において、受光領域と周辺領域とで膜厚が異なる転
送電極25、26は、転送電極25、26となる多結晶
シリコン膜を一旦全面に形成した後に受光領域部分のみ
を除去し、再度多結晶シリコン膜を全面に形成すること
によって得られる。この場合、多結晶シリコン膜を形成
する工程が2回必要となり、製造工程での処理時間が長
くなる。特に、2回目の多結晶シリコン膜の形成では、
自然酸化を防ぐために低温での処理が必要となり、多結
晶シリコン膜を所定の膜厚とするのに長い時間が必要で
ある。また、始めに形成した多結晶シリコン膜の受光領
域部分を除去する際、オーバーエッチングにより多結晶
シリコン膜の下の絶縁膜の一部まで除去される虞があ
り、素子の信頼性の低下を招くという問題がある。
In the solid-state image pickup device as described above, the transfer electrodes 25 and 26 having different film thicknesses in the light receiving region and the peripheral region are formed by temporarily covering the entire surface of the polycrystalline silicon film to be the transfer electrodes 25 and 26. It is obtained by removing only the light-receiving region portion after forming the above-mentioned structure, and forming a polycrystalline silicon film over the entire surface again. In this case, the process of forming the polycrystalline silicon film is required twice, and the processing time in the manufacturing process becomes long. Especially in the second polycrystalline silicon film formation,
Processing at low temperature is required to prevent natural oxidation, and it takes a long time to bring the polycrystalline silicon film to a predetermined thickness. In addition, when removing the light receiving region of the polycrystalline silicon film that is initially formed, there is a risk that a part of the insulating film below the polycrystalline silicon film may be removed by overetching, resulting in a decrease in device reliability. There is a problem.

【0006】そこで本発明は、製造工程の処理時間を短
縮すると共に、素子の信頼性の低下を防止しながら撮像
部への光の入射効率を向上することを目的とする。
It is therefore an object of the present invention to shorten the processing time of the manufacturing process and to improve the efficiency of light incident on the image pickup section while preventing the reliability of the device from being lowered.

【0007】[0007]

【課題を解決するための手段】本発明は、上述の課題を
解決するために成されたもので、その特徴とするところ
は、半導体基板の表面部分の受光領域となる範囲に、電
荷の移動を阻止する分離領域を複数本互いに平行に形成
する工程と、上記半導体基板上に導電層を形成し、この
導電層を上記受光領域の範囲に対応して選択的に酸化す
る工程と、上記導電層の酸化部分を除去した後、上記導
電層をエッチングして上記分離領域と交差する方向に上
記受光領域を横切る複数の転送電極を得る工程と、上記
受光領域の周辺領域部分で上記転送電極に接続される電
力供給線を形成する工程と、を備えることにある。
The present invention has been made in order to solve the above-mentioned problems, and is characterized in that charges move to a range that becomes a light-receiving region on a surface portion of a semiconductor substrate. Forming a plurality of isolation regions parallel to each other, forming a conductive layer on the semiconductor substrate, and selectively oxidizing the conductive layer corresponding to the range of the light receiving region; After removing the oxidized portion of the layer, a step of etching the conductive layer to obtain a plurality of transfer electrodes that cross the light receiving region in a direction intersecting the isolation region, and forming a transfer electrode in the peripheral region portion of the light receiving region. Forming a connected power supply line.

【0008】[0008]

【作用】本発明によれば、厚く形成した多結晶シリコン
膜を選択酸化して部分的に膜厚を薄くすることで、多結
晶シリコン膜を形成する工程が1回となり、多結晶シリ
コン膜を形成するための処理時間が短縮される。また、
選択酸化によって多結晶シリコン膜の膜厚を薄くしてい
るため、多結晶シリコン膜の下の絶縁膜が製造工程での
影響を受けにくくなり、信頼性が保たれる。
According to the present invention, the step of forming the polycrystalline silicon film is performed once by selectively oxidizing the thickly formed polycrystalline silicon film to partially reduce the film thickness. Processing time for forming is reduced. Also,
Since the thickness of the polycrystalline silicon film is reduced by the selective oxidation, the insulating film below the polycrystalline silicon film is less likely to be affected by the manufacturing process, and the reliability is maintained.

【0009】[0009]

【実施例】図1乃至図4は、本発明の固体撮像素子の製
造方法を示す工程別の断面図で、素子の撮像部を示す。
まず、P型のシリコン基板30の受光領域にボロン等の
P型の不純物を高濃度に注入して分離領域31、32を
形成し、同様にして、周辺領域にもP型の不純物を注入
して分離領域32を形成する。さらに、分離領域31の
間にリン等のN型の不純物を注入して埋め込みチャネル
構造のチャネル領域33を形成する。これらの注入工程
は、周知のフォトリソグラフィ技術によって得られる所
望の形状のレジストパターンをマスクとして行われる。
1 to 4 are sectional views showing steps of a method of manufacturing a solid-state image pickup device according to the present invention, showing an image pickup portion of the device.
First, P-type impurities such as boron are implanted at a high concentration into the light-receiving region of the P-type silicon substrate 30 to form the isolation regions 31 and 32. Similarly, P-type impurities are implanted into the peripheral region as well. To form the isolation region 32. Further, N-type impurities such as phosphorus are implanted between the isolation regions 31 to form a channel region 33 having a buried channel structure. These implantation steps are performed using a resist pattern having a desired shape obtained by a well-known photolithography technique as a mask.

【0010】そこで、図1に示すように、分離領域3
1、32及びチャネル領域33が形成されたシリコン基
板30上に、熱酸化によりゲート絶縁膜となる酸化膜3
4を形成した後、CVD法により、転送電極となる多結
晶シリコン膜35、選択酸化のマスクとなる窒化膜36
を順次形成する。続いて、図2に示すように、受光領域
部分が開口するレジストパターン42を窒化膜36上に
形成し、このレジストパターン37をマスクとして窒化
膜36をエッチングする。これにより、受光領域を除く
部分に酸化マスクとなる窒化膜36が残される。そこ
で、図3に示すように、多結晶シリコン膜35を選択酸
化することにより受光領域部分に酸化膜38を形成す
る。この選択酸化においては、多結晶シリコン膜35を
所定の膜厚だけ残し、酸化膜38が多結晶シリコン膜3
5の下の絶縁膜34まで達しないようにして処理条件の
設定が成される。そして、多結晶シリコン膜35上の窒
化膜36及び酸化膜38を除去すると、図4に示すよう
に、多結晶シリコン膜35の膜厚が受光領域で薄く、周
辺領域で厚く形成される。この後、多結晶シリコン膜3
5をパターニングしてチャネル領域31と交差する方向
に受光領域を横切り、周辺領域まで延在する1層目の転
送電極を形成する。
Therefore, as shown in FIG.
An oxide film 3 to be a gate insulating film by thermal oxidation is formed on the silicon substrate 30 on which the channel regions 33 and 1 and 32 are formed.
4 is formed, a polycrystalline silicon film 35 to be a transfer electrode and a nitride film 36 to be a mask for selective oxidation are formed by a CVD method.
Are sequentially formed. Then, as shown in FIG. 2, a resist pattern 42 having an opening in the light receiving region is formed on the nitride film 36, and the nitride film 36 is etched using the resist pattern 37 as a mask. As a result, the nitride film 36 serving as an oxidation mask is left in the portion except the light receiving region. Therefore, as shown in FIG. 3, the polycrystalline silicon film 35 is selectively oxidized to form an oxide film 38 in the light receiving region. In this selective oxidation, the polycrystalline silicon film 35 is left with a predetermined film thickness, and the oxide film 38 is replaced by the polycrystalline silicon film 3
The processing conditions are set so as not to reach the insulating film 34 below 5. Then, when the nitride film 36 and the oxide film 38 on the polycrystalline silicon film 35 are removed, as shown in FIG. 4, the polycrystalline silicon film 35 is formed to be thin in the light receiving region and thick in the peripheral region. After this, the polycrystalline silicon film 3
5 is patterned to cross the light receiving region in a direction intersecting with the channel region 31 to form a first-layer transfer electrode extending to the peripheral region.

【0011】さらに、1層目の転送電極の表面部分を熱
酸化して層間絶縁膜を形成した後、同様にして、多結晶
シリコン膜の形成及び、その多結晶シリコン膜の選択酸
化の処理を繰り返し、受光領域より周辺領域で膜厚が厚
くなる多結晶シリコン膜を形成する。そして、この多結
晶シリコン膜をパターニングすることで1層目の転送電
極の間隙を覆う2層目の転送電極を形成する。
Furthermore, after the surface portion of the transfer electrode of the first layer is thermally oxidized to form an interlayer insulating film, the polycrystalline silicon film is formed and the selective oxidation of the polycrystalline silicon film is similarly performed. Repeatedly, a polycrystalline silicon film whose thickness is thicker in the peripheral region than in the light receiving region is formed. Then, by patterning this polycrystalline silicon film, a second-layer transfer electrode that covers the gap between the first-layer transfer electrodes is formed.

【0012】以上のように2層の転送電極を形成した後
には、窒化膜等の絶縁膜を介して、周辺領域部分にアル
ミニウム配線を形成し、このアルミニウム配線を各転送
電極に接続する。このアルミニウム配線の形成は、各転
送電極を覆う絶縁膜の所定の位置にコンタクトホールを
形成した後に、スパッタリング等によって形成されるア
ルミニウム膜を所望のパターンにエッチングすることに
より行われる。従って、膜厚が受光領域で薄くなり、そ
の周辺領域で厚くなる2層構造の転送電極を得ることが
でき、結果的に図8に示す固体撮像素子と形状の一致し
た固体撮像素子が形成される。
After the two layers of transfer electrodes are formed as described above, aluminum wiring is formed in the peripheral region through an insulating film such as a nitride film, and the aluminum wiring is connected to each transfer electrode. The formation of the aluminum wiring is performed by forming a contact hole at a predetermined position of an insulating film covering each transfer electrode and then etching the aluminum film formed by sputtering or the like into a desired pattern. Therefore, it is possible to obtain a transfer electrode having a two-layer structure in which the film thickness becomes thin in the light receiving region and becomes thick in the peripheral region, and as a result, a solid-state imaging device having the same shape as the solid-state imaging device shown in FIG. It

【0013】ところで、撮像部以外の蓄積部及び水平転
送部の転送電極については、受光領域の多結晶シリコン
膜35のように選択酸化されることなく、始めに形成さ
れる多結晶シリコン膜35と同等の膜厚を有する。さら
に、出力部のトランジスタのゲートについても、蓄積部
及び水平転送部の転送電極と同一工程で形成され、周辺
領域の転送電極と同等の膜厚を有する。
Incidentally, the transfer electrodes of the storage section and the horizontal transfer section other than the image pickup section are not selectively oxidized like the polycrystalline silicon film 35 in the light receiving region, and are formed with the polycrystalline silicon film 35 formed first. It has an equivalent film thickness. Further, the gates of the transistors in the output section are formed in the same step as the transfer electrodes in the storage section and the horizontal transfer section, and have the same film thickness as the transfer electrodes in the peripheral area.

【0014】以上の製造工程によれば、1回の多結晶シ
リコン膜の形成で受光領域と周辺領域とで膜厚が異なる
転送電極を得られ、さらには、多結晶シリコン膜の下の
ゲート絶縁膜がエッチングされることがなくなる。
According to the above manufacturing steps, a transfer electrode having a different thickness in the light receiving region and the peripheral region can be obtained by forming the polycrystalline silicon film once, and further, the gate insulation under the polycrystalline silicon film can be obtained. The film is no longer etched.

【0015】[0015]

【発明の効果】本発明によれば、撮像部の受光領域で転
送電極の膜厚を薄くした転送電極を1回の多結晶シリコ
ン膜の形成によって得ることができるため、多結晶シリ
コン膜を形成するための処理時間が短縮される。また、
多結晶シリコン膜を受光領域部分で薄くする際に多結晶
シリコン膜の下の絶縁膜がエッチングされることがなく
なるため、絶縁膜を所定の膜厚に保つことができ、素子
の信頼性の低下を抑圧できる。
According to the present invention, a transfer electrode having a thin film thickness of the transfer electrode in the light receiving region of the image pickup portion can be obtained by forming the polycrystalline silicon film once, so that the polycrystalline silicon film is formed. The processing time for doing this is reduced. Also,
Since the insulating film under the polycrystalline silicon film is not etched when the polycrystalline silicon film is thinned in the light receiving region, the insulating film can be kept at a predetermined film thickness and the reliability of the device is deteriorated. Can be suppressed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の固体撮像素子の第1の製造工程を示す
断面図である。
FIG. 1 is a cross-sectional view showing a first manufacturing process of a solid-state imaging device of the present invention.

【図2】本発明の固体撮像素子の第2の製造工程を示す
断面図である。
FIG. 2 is a cross-sectional view showing a second manufacturing process of the solid-state imaging device of the present invention.

【図3】本発明の固体撮像素子の第3の製造工程を示す
断面図である。
FIG. 3 is a cross-sectional view showing a third manufacturing process of the solid-state imaging device of the present invention.

【図4】本発明の固体撮像素子の第4の製造工程を示す
断面図である。
FIG. 4 is a cross-sectional view showing a fourth manufacturing process of the solid-state imaging device of the present invention.

【図5】フレームトランスファ型のCCD固体撮像素子
の模式的平面図である。
FIG. 5 is a schematic plan view of a frame transfer type CCD solid-state imaging device.

【図6】CCD固体撮像素子の出力部の回路図である。FIG. 6 is a circuit diagram of an output unit of a CCD solid-state image sensor.

【図7】従来の固体撮像素子の撮像部を示す平面図であ
る。
FIG. 7 is a plan view showing an image pickup section of a conventional solid-state image pickup element.

【図8】図7のX−X線の断面図である。8 is a cross-sectional view taken along line XX of FIG.

【符号の説明】[Explanation of symbols]

1 撮像部 2 蓄積部 3 水平転送部 4 出力部 20、30 シリコン基板 21、22、31、32 分離領域 23、33 チャネル領域 24、27、34、37 絶縁膜 25、26、35、36 転送電極 28 アルミニウム配線 29 コンタクトホール 36 窒化膜 37 レジストパターン 38 酸化膜 DESCRIPTION OF SYMBOLS 1 Imaging part 2 Storage part 3 Horizontal transfer part 4 Output part 20, 30 Silicon substrate 21, 22, 31, 32 Separation area 23, 33 Channel area 24, 27, 34, 37 Insulating film 25, 26, 35, 36 Transfer electrode 28 Aluminum wiring 29 Contact hole 36 Nitride film 37 Resist pattern 38 Oxide film

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 半導体基板の表面部分の受光領域となる
範囲に、電荷の移動を阻止する分離領域を複数本互いに
平行に形成する工程と、上記半導体基板上に導電層を形
成し、この導電層を上記受光領域の範囲に対応して選択
的に酸化する工程と、上記導電層の酸化部分を除去した
後、上記導電層をエッチングして上記分離領域と交差す
る方向に上記受光領域を横切る複数の転送電極を得る工
程と、上記受光領域の周辺領域部分で上記転送電極に接
続される電力供給線を形成する工程と、を備えることを
特徴とする固体撮像素子の製造方法。
1. A step of forming a plurality of separation regions in parallel with each other in the area of the surface portion of a semiconductor substrate, which is a light receiving region, and a step of forming a conductive layer on the semiconductor substrate. A step of selectively oxidizing a layer corresponding to the range of the light receiving region; and after removing an oxidized portion of the conductive layer, the conductive layer is etched to cross the light receiving region in a direction intersecting with the isolation region. A method for manufacturing a solid-state imaging device, comprising: a step of obtaining a plurality of transfer electrodes; and a step of forming a power supply line connected to the transfer electrodes in a peripheral region part of the light receiving region.
【請求項2】 上記転送電極を形成する工程を繰り返
し、一定の間隔を置いて配置される第1の電極と、これ
らの第1の電極の間隙を覆って配置される第2の電極と
を得ることを特徴とする請求項3記載の固体撮像素子の
製造方法。
2. The step of forming the transfer electrode is repeated to form a first electrode arranged at a constant interval and a second electrode arranged so as to cover a gap between these first electrodes. The method for manufacturing a solid-state image sensor according to claim 3, wherein the method is obtained.
JP5083343A 1993-04-09 1993-04-09 Manufacture of solid-state image pickup element Pending JPH06296008A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP5083343A JPH06296008A (en) 1993-04-09 1993-04-09 Manufacture of solid-state image pickup element
US08/225,004 US5483090A (en) 1993-04-09 1994-04-07 Solid-state image pickup device and method for manufacturing such device
KR1019940007330A KR100196302B1 (en) 1993-04-09 1994-04-08 Solid state image pickup device designed to have the optimal layer thickness and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5083343A JPH06296008A (en) 1993-04-09 1993-04-09 Manufacture of solid-state image pickup element

Publications (1)

Publication Number Publication Date
JPH06296008A true JPH06296008A (en) 1994-10-21

Family

ID=13799798

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5083343A Pending JPH06296008A (en) 1993-04-09 1993-04-09 Manufacture of solid-state image pickup element

Country Status (1)

Country Link
JP (1) JPH06296008A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100336934B1 (en) * 1998-08-25 2002-05-15 가네코 히사시 Solid state imaging apparatus with transistors having different gate insulating film thickness and manufacturing method for the same
US6525356B1 (en) 1998-12-15 2003-02-25 Nec Corporation Solid imaging device
JP2004508727A (en) * 2000-09-05 2004-03-18 ダルサ、コーポレーション Image sensor and manufacturing method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100336934B1 (en) * 1998-08-25 2002-05-15 가네코 히사시 Solid state imaging apparatus with transistors having different gate insulating film thickness and manufacturing method for the same
US6525356B1 (en) 1998-12-15 2003-02-25 Nec Corporation Solid imaging device
US6849476B2 (en) 1998-12-15 2005-02-01 Nec Electronics Corporation Method of manufacturing a solid-state imaging device
JP2004508727A (en) * 2000-09-05 2004-03-18 ダルサ、コーポレーション Image sensor and manufacturing method thereof

Similar Documents

Publication Publication Date Title
US4517733A (en) Process for fabricating thin film image pick-up element
US4471371A (en) Thin film image pickup element
JPH10135439A (en) Solid state imaging device and its manufacture
KR100196302B1 (en) Solid state image pickup device designed to have the optimal layer thickness and manufacturing method thereof
JP3272941B2 (en) Solid-state imaging device and method of manufacturing the same
JPH06296008A (en) Manufacture of solid-state image pickup element
JP2919697B2 (en) Method for manufacturing solid-state imaging device
US5627096A (en) Manufacturing method of electric charge transferring devices
JPH09172156A (en) Solid-state image pick-up device and its fabrication
JP2936153B2 (en) Method for manufacturing solid-state imaging device
JP3036747B2 (en) Method for manufacturing solid-state imaging device
JP3493658B2 (en) Solid-state imaging device and method of manufacturing the same
JP3028823B2 (en) Charge coupled device and solid-state imaging device using the same
KR100266803B1 (en) Ccd-type solid state image sensor with improved flatness
JPH06244397A (en) Solid-state image pick-up device
JP2877656B2 (en) Method for manufacturing solid-state imaging device
JPH03259570A (en) Solid-state image sensing device and manufacture thereof
JP2867469B2 (en) Charge transfer device and method of manufacturing the same
JP3467918B2 (en) Method for manufacturing solid-state imaging device and solid-state imaging device
JP3081588B2 (en) Method for manufacturing solid-state imaging device
JPH0499381A (en) Solid-state image sensor and manufacture thereof
JPH03125474A (en) Solid state imaging device
JPS60105382A (en) Solid-state pickup element
JPH11251572A (en) Solid-state image-pickup element and manufacture thereof
JPH07283385A (en) Semiconductor device and its manufacture