JPH065255B2 - Fault location method for power transmission system - Google Patents

Fault location method for power transmission system

Info

Publication number
JPH065255B2
JPH065255B2 JP60238953A JP23895385A JPH065255B2 JP H065255 B2 JPH065255 B2 JP H065255B2 JP 60238953 A JP60238953 A JP 60238953A JP 23895385 A JP23895385 A JP 23895385A JP H065255 B2 JPH065255 B2 JP H065255B2
Authority
JP
Japan
Prior art keywords
phase
fault
self
orientation
impedance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP60238953A
Other languages
Japanese (ja)
Other versions
JPS6298273A (en
Inventor
英二 原田
正巳 矢代
俊久 舟橋
哲也 水鳥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Tokyo Electric Power Company Holdings Inc
Original Assignee
Meidensha Corp
Tokyo Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Tokyo Electric Power Co Inc filed Critical Meidensha Corp
Priority to JP60238953A priority Critical patent/JPH065255B2/en
Publication of JPS6298273A publication Critical patent/JPS6298273A/en
Publication of JPH065255B2 publication Critical patent/JPH065255B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Locating Faults (AREA)

Description

【発明の詳細な説明】 A.産業上の利用分野 本発明は、送電系の故障点標定方式に関する。Detailed Description of the Invention A. TECHNICAL FIELD The present invention relates to a fault location system for a power transmission system.

B.発明の概要 本発明は送電系の故障点を標定原理式に従って標定する
において、 各相及び相間毎の線路定数及び電流,電圧,零相電流検
出値から故障相別に標定することにより、非ねん架系に
なる送電系についての故障相の違いによる標定誤差を小
さくするようにしたものである。
B. SUMMARY OF THE INVENTION According to the present invention, when locating a fault point of a power transmission system according to a locating principle formula, non-stretching is performed by locating a faulty phase from a line constant and current, voltage, and zero-phase current detection value for each phase and each phase. This is intended to reduce the localization error due to the difference in the failure phases of the power transmission system that becomes the system.

C.従来の技術 送電系の故障点標定方式として、送電線路一端の電気所
で計測した電圧,電流及び既知である線路定数とを用い
た演算により、故障点を標定する方法を本願出願人は既
に提案している(例えば特願昭59−143056号、
特願昭59−143057号)。
C. BACKGROUND ART The applicant of the present application has already proposed a method for locating a fault point in a power transmission system, which is a method of locating a fault point by calculation using a voltage, a current, and a known line constant measured at an electric station at one end of a transmission line. (For example, Japanese Patent Application No. Sho 59-143056,
Japanese Patent Application No. 59-143057).

上記方法に基づいた装置構成は、第1図に示すようにな
る。自端の各相電圧Va,Vb,Vc及び各相電流I
a,Ib,Icを変圧器PT及び変流器CTで検出し、
これら検出信号は標定装置Dの第1の回路D1に一定周期
のサンプリングデータとして取込み、これらデータを使
って第2の回路D2で零相電圧Voも求め、第3の回路D3
からは単位長当りの自己インピーダンスZa,相互インピ
ーダンスZm,自己アドミックタンスYsのデータを得、回
路D2,D3の各データから第4の回路D4が例えば以下の標
定原理式からa相地絡時の故障点距離xを求める(線路
のアドミッタンスYsは無視する)。
An apparatus configuration based on the above method is as shown in FIG. Each phase voltage Va, Vb, Vc at each end and each phase current I
a, Ib, Ic are detected by the transformer PT and the current transformer CT,
These detection signals are taken into the first circuit D 1 of the orientation device D as sampling data of a constant cycle, and the zero-phase voltage Vo is also obtained by the second circuit D 2 using these data, and the third circuit D 3
Self-impedance Za per unit length from mutual impedance Zm, obtain the data of the self-address Mick drawers Ys, circuit D 2, a phase from the fourth circuit D 4, for example, following orientation principle expression from the data D 3 Find the fault point distance x at the time of ground fault (ignore the admittance Ys of the line).

Real〔A〕・Imag〔B〕-Imag〔A〕・Real〔B〕=0 但し、A=Va-{(Zs-Zm)・Ia+Zm・3Io}x B=3Io D.発明が解決しようとする問題点 従来の故障点標定方式においては、送電系か平衡線路
(ねん架系)にあっては何ら問題がないが、一般の不平
衡線路(非ねん架系)にあっては各相自己インピーダン
スZaa,Zbb,Zcc及び相互インピーダンスZab,Zbc,Zca
が Zaa≒Zbb≒Zcc Zab≒Zbc≒Zca にあって異なる値になり、従来方式の仮定になる Zaa=Zbb=Zcc=Zs Zab=Zbc=Zca=Zm からの標定では標定誤差を生じる問題があった。この誤
差発生は、故障箇所を巡視する際に故障箇所の発見に手
間取ることになる。
Real [A] / Imag [B] -Imag [A] / Real [B] = 0 However, A = V a -{(Zs-Zm) ・ Ia + Zm / 3Io} x B = 3Io D. Problems to be Solved by the Invention In the conventional fault point locating method, there is no problem in the power transmission system or the balanced line (suspended system), but in the general unbalanced line (non-suspended system). Self-impedance Zaa, Zbb, Zcc and mutual impedance Zab, Zbc, Zca of each phase.
There is a problem that there is a location error in the orientation from Zaa = Zbb = Zcc = Zs Zab = Zbc = Zca = Zm, which is different from that of the conventional method. It was This error occurrence takes time to find the failure point when observing the failure point.

E.問題点を解決するための手段と作用 本発明は上記問題点に鑑みてなされたもので、送電線の
自端a,b,cの各相電流Ia,Ib,Icと各相電圧Va,V
b,Vcと零相電流Io及び該送電線の単位長当りの各相
別の自己インピーダンスZaa,Zbb,Zcc及び相互インピ
ーダンスZab,Zbc,Zcaから次の式 Real〔A〕・Imag〔B〕-Imag〔A〕・Real〔B〕=0 但し、送電線が3相短絡,3相地絡,2相短絡及び2相
地絡のとき、bc相について A=(VB-VC)-{(Zba-Zca)Ia+(Zbb-Zcb)Ib+(Zbc-Zcc)Ic}x B=Ib−Ic 送電線が1相地絡のとき、a相について A=Va-{Zaa・Ia+Zab・Ib+Zac・Ic}x B=3Io に従って自端から故障点までの距離xを求める。
E. Means and Actions for Solving Problems The present invention has been made in view of the above problems, and the phase currents Ia, Ib, Ic and the phase voltages Va, V at the self ends a, b, c of the transmission line are provided.
b, Vc, zero-phase current Io, self-impedance Zaa, Zbb, Zcc for each phase per unit length of the transmission line, and mutual impedances Zab, Zbc, Zca from the following expressions Real [A] / Imag [B]- Imag [A] ・ Real [B] = 0 However, when the transmission line has a three-phase short circuit, a three-phase ground fault, a two-phase short circuit, and a two-phase ground fault, A = (V B -V C )-{ (Zba-Zca) Ia + (Zbb-Zcb) Ib + (Zbc-Zcc) Ic} x B = Ib-Ic When the transmission line has one-phase ground fault, for phase a, A = V a- {Zaa ・ Ia + Zab ・The distance x from the self-end to the fault point is calculated according to Ib + Zac · Ic} x B = 3Io.

こうした標定方式により、非ねん架系による各相別の線
路定数,故障状態の違いによる標定誤差の発生を小さく
した標定値を得る。
By using this orientation method, the orientation constants that minimize the occurrence of orientation errors due to the difference in the line constants and fault states for each phase due to the non-suspended system are obtained.

F.実施例 本発明の一実施例を第1図乃至第3図を参照して詳細に
説明する。
F. Embodiment An embodiment of the present invention will be described in detail with reference to FIGS.

第1図において、第3の回路D3は、送電線の単位長当り
の各相,相間の線路定数Raa,Xaa,Rbb,Xbb,Rcc,Xc
c,Rab,Xab,Rbc,Rbc,Rca,Xcaのデータを発生す
る。ここで、 Raa,Rbb,Rcc:各相抵抗分 Xaa,Xbb,Xcc:各相リアクタンス分 Rab,Rbc,Rca:相間抵抗分 Xab,Xbc,Xca:相間リアクタンス分 である。
In FIG. 1, the third circuit D 3 is a line constant Raa, Xaa, Rbb, Xbb, Rcc, Xc for each phase per unit length of the transmission line.
Generates data of c, Rab, Xab, Rbc, Rbc, Rca, and Xca. Here, Raa, Rbb, Rcc: resistance of each phase Xaa, Xbb, Xcc: reactance of each phase Rab, Rbc, Rca: resistance of interphase Xab, Xbc, Xca: reactance of interphase.

第4図の回路D4は、第2の回路D2からの各相電流Ia,I
b,Ic、各相電圧Va,Vb,Vc、零相電流3Ioと、第3の
回路D3からの線路定数から求める各相の自己インピーダ
ンスZaa,Zbb,Zcc及び相互インピーダンスZab,Zbc,Z
caによって次式の演算 Real〔A〕・Imag〔B〕-Imag〔A〕・Real〔B〕=0………(1) 但し、A=(VB-VC)-{(Zba-Zca)Ia+(Zbb-Zcb)Ib+(Zbc-Zcc)Ic}x ………(2) B=Ib−Ic ………(3) により、2相短絡(上式はbc相短絡),2相同時地
絡,3相短絡,3相地絡についての故障点までの距離x
を求める。
The circuit D 4 in FIG. 4 is the phase currents Ia, I from the second circuit D 2.
b, Ic, phase voltages Va, Vb, Vc, zero-phase current 3Io, and self-impedance Zaa, Zbb, Zcc and mutual impedance Zab, Zbc, Z of each phase obtained from the line constant from the third circuit D 3.
Calculation of the following formula by ca Real [A] ・ Imag [B] -Imag [A] ・ Real [B] = 0 ......... (1) where A = (V B -V C )-{(Zba-Zca ) Ia + (Zbb-Zcb) Ib + (Zbc-Zcc) Ic} x ………… (2) B = Ib−Ic ………… (3) Two-phase short circuit (above formula is bc phase short circuit), two-phase simultaneous Distance to fault point for ground fault, 3-phase short circuit, 3-phase ground fault x
Ask for.

また、第4の回路D4は、1相地絡については上記(1)式
のA,Bに次式を使った演算 A=Va-{Zaa・Ia+Zab・Ib+Zac・Ic}x………(4) B=3Io ………(5) により故障点までの距離xを求める(上式はa相地絡の
場合)。
In addition, the fourth circuit D 4 uses the following equation for A and B of the above equation (1) for the one-phase ground fault A = V a- {Zaa · Ia + Zab · Ib + Zac · Ic}. x ……… (4) B = 3Io ……… (5) Find the distance x to the failure point (the above equation is for a-phase ground fault).

このような標定により、故障相に応じて線路定数を換
え、他相の影響を含ませて故障相の違いによる標定誤差
の変動を軽減し、標定値xには不平衡線路(非ねん架
系)に対しても標定誤差を小さくした値として得る。
With such orientation, the line constant is changed according to the fault phase, the influence of other phases is included to reduce the fluctuation of the orientation error due to the difference of the fault phase, and the orientation value x is an unbalanced line (non-suspended system). ) Is also obtained as a value with a small orientation error.

なお、実施例において、零相電流3Ioは変圧器PTの残
留回路あるいは3次回路から検出し、第2の回路D2によ
る演算を省略することもできる。
In the embodiment, the zero-phase current 3Io can be detected from the residual circuit or the tertiary circuit of the transformer PT and the calculation by the second circuit D 2 can be omitted.

上記(1)〜(5)式により標定誤差が少なくなる理由を以下
に詳細に説明する。
The reason why the orientation error is reduced by the above equations (1) to (5) will be described in detail below.

第2図に示すように、相手端を非電源端とし、背後イン
ピーダンスを介して3相平衡電源に接続される単回線の
3相不平衡線路について、線路の対地静電容量及び負荷
を無視したときの自端各相電圧Va,Vb,Vc,電流Ia,I
b,Icと事故点までの距離x,事故点各相電圧Vfa,Vf
b,Vfcとの間には基本回路方程式が成り立つ。
As shown in Fig. 2, with respect to the single-phase three-phase unbalanced line connected to the three-phase balanced power supply through the back impedance, with the other end being the non-power supply end, the ground capacitance and load of the line were ignored. At each end, each phase voltage Va, Vb, Vc, current Ia, I
b, Ic and distance x to the accident point, phase voltage Vfa, Vf of each accident point
The basic circuit equation holds between b and Vfc.

ただし ここで、第2図中の事故点インピーダンスZfは時間によ
って変化しない純抵抗として事故種別によって第3図の
形とする。これら事故種別毎に成立する関係式,仮定か
ら夫々の演算論理式は以下のようになる。
However Here, the accident point impedance Zf in FIG. 2 is a pure resistance that does not change with time, and has the form shown in FIG. 3 depending on the accident type. Based on the relational expressions and assumptions that are established for each accident type, the respective arithmetic logical expressions are as follows.

(3.1)3相地絡の場合 (1)事故点において成立する関係式 (2)仮定 2相の事故点抵抗が等しいとする。たとえば、 Rfb=Rfc=Rf ………(14) (3)演算理論式 (11)〜(14)式より、 Vb-Vc={(Zba-Zca)・Ia+(Zbb-Zcb)・Ib +(Zbc-Zcc)・Ic}x+Rf・(Ib-Ic)…(15) (3.2)3相短絡の場合 (1)事故点において成立する関係式 (2)仮定 2相の事故点抵抗が等しいとする。たとえば、 Rfb=Rfc=Rf ………(17) (3)演算理論式 (12),(13),(16),(17)式より、 Vb-Vc={(Zba-Zca)・Ia+(Zbb-Zcb)・Ib +(Zbc-Zcc)・Ic}x+Rf・(Ib-Ic)……(18) (3.3)2相短絡の場合(bc相) (1)事故点において成立する関係式 (2)仮定 2相の事故点抵抗が等しいとする。たとえば、 Rfb=Rfc=Rf ………(20) (3)演算理論式 (11),(12),(19),(20)式より、 Vb-Vc={(Zba-Zca)・Ia+(Zbb-Zcb)・Ib+(Zbc-Zcc)・Ic}x+Rf(Ib-Ic)……(21) (11)式において、(Zba-Zca)・Iaの項は不必要であるが、
後に負荷電流を導入するため、残しておく。
(3.1) In case of three-phase ground fault (1) Relational expression established at the accident point (2) Assumption It is assumed that the two-phase accident point resistances are equal. For example, Rfb = Rfc = Rf ……… (14) (3) Theoretical formulas (11) to (14) show that Vb-Vc = {(Zba-Zca) ・ Ia + (Zbb-Zcb) ・ Ib + ( Zbc-Zcc) ・ Ic} x + Rf ・ (Ib-Ic)… (15) (3.2) In case of three-phase short circuit (1) Relational expression established at the accident point (2) Assumption It is assumed that the two-phase accident point resistances are equal. For example, Rfb = Rfc = Rf ……… (17) (3) Theoretical formulas (12), (13), (16), and (17) show that Vb-Vc = {(Zba-Zca) ・ Ia + ( Zbb-Zcb) ・ Ib + (Zbc-Zcc) ・ Ic} x + Rf ・ (Ib-Ic) …… (18) (3.3) In case of two-phase short circuit (bc phase) (1) Relationship established at the accident point formula (2) Assumption It is assumed that the two-phase accident point resistances are equal. For example, Rfb = Rfc = Rf ……… (20) (3) Theoretical formulas (11), (12), (19), and (20) show that Vb-Vc = {(Zba-Zca) ・ Ia + ( Zbb-Zcb) ・ Ib + (Zbc-Zcc) ・ Ic} x + Rf (Ib-Ic) ...... (21) In the formula (11), the terms (Zba-Zca) ・ Ia are unnecessary,
Leave it for the load current to be introduced later.

(3.4)2相短絡の場合(bc相) (1)事故点において成立する関係式 (2)仮定 なし。(3.4) In case of 2-phase short circuit (bc phase) (1) Relational expression established at the accident point (2) No assumptions.

(3)演算理論式 (11),(12),(20)式より、 Vb-Vc={(Zba-Zcc)・Ia+(Zbb-Zcb)・Ib+(Zbc-Zcc)・Ic}x+Rf・(Ib-Ic)……(23) ただし Rf=Rfb=Rfcと考える。(3) Theoretical formulas (11), (12), and (20) show that Vb-Vc = {(Zba-Zcc) ・ Ia + (Zbb-Zcb) ・ Ib + (Zbc-Zcc) ・ Ic} x + Rf・ (Ib-Ic) …… (23) However, consider that Rf = Rfb = Rfc.

(23)式において、(Zba-Zca)・Iaの項は不必要であ
るが、後に負荷電流を導入するため、残しておく。
In the equation (23), the term of (Zba-Zca) · Ia is unnecessary, but it is retained because a load current will be introduced later.

(3.5)1相短絡の場合(a相) (1)事故点において成立する関係式 Rfa=Rf・3Io ………(24) ここで 3Io=Ia であるが、後に負荷電流を導入するため、3Ioで表現し
た。
(3.5) In the case of 1-phase short circuit (a phase) (1) Relational expression that holds at the accident point Rfa = Rf 3Io ……… (24) Here, 3Io = Ia, but since the load current is introduced later, Expressed in 3 Io.

(2)仮定 なし。(2) No assumptions.

(3)演算理論式 (11),(12)式より、 Va={Zaa・Ia+Zab・Ib+Zac・Ic}x+Rf・3Io……(25) (25)式において、Zab・Ib+Zac・Icの項は不必要である
が、後に負荷電流を導入するため、残しておく。
(3) Computational theory From equations (11) and (12), Va = {Zaa ・ Ia + Zab ・ Ib + Zac ・ Ic} x + Rf ・ 3Io …… (25) In equation (25), Zab ・ Ib The + Zac / Ic term is unnecessary, but it is retained because it introduces the load current later.

以上までのことから、事故種別毎の演算理論式は次のよ
うにまとめられる。
From the above, the theoretical calculation formulas for each accident type can be summarized as follows.

(A)3相地絡,3相短絡,2相地絡,2相短絡について
はb,c相のデータを用いた場合、 Vb-Vc={(Zba-Zca)・Ia+(Zbb-Zcb)・Ib +(Zbc-Zcc)・Ic}x+Rf・(Ib-Ic)……(26) (B)1相地絡についてはa相地絡の場合、 Va={Zaa・Ia+Zab・Ib+Zac・Ic}x+Rf・3Io……(27) 上記(26),(27)式より標定原理式は故障点抵抗Rfを無
視すると前述の(1)〜(3)式又は(1),(4),(5)式にな
り、これら式からの標定によって非ねん架系の場合も誤
差を小さくすることができる。
(A) For 3-phase ground fault, 3-phase short circuit, 2-phase ground fault, and 2-phase short circuit, when using b and c phase data, Vb-Vc = {(Zba-Zca) ・ Ia + (Zbb-Zcb)・ Ib + (Zbc-Zcc) ・ Ic} x + Rf ・ (Ib-Ic) …… (26) (B) About 1-phase ground fault, Va = {Zaa ・ Ia + Zab ・Ib + Zac ・ Ic} x + Rf ・ 3Io (27) From the above equations (26) and (27), the orientation principle equation ignores the fault point resistance Rf, and the above equations (1) to (3) or (1) ), (4), and (5), and the error can be reduced by the orientation from these expressions even in the non-suspended system.

下記表は模擬線路(22KV)における従来方式と上記(1)
〜(3)式による標定誤差の実験結果を示し、標定誤差が
小さくなることが確認された。
The table below shows the conventional method for the simulated line (22KV) and the above (1)
~ The experimental result of the orientation error by (3) is shown, and it was confirmed that the orientation error becomes small.

G.発明の効果 以上のとおり、本発明によれば、送電系の各相電圧,電
流,零相電流と線路定数に従って標定原理式から標定値
を得るのに、各相及び相間毎の線路定数を使って故障相
別に標定することとしたため、故障相の違いによる標定
誤差を小さくし、非ねん架系に適用して精度良い標定を
行うことができる。また、これに伴い、標定による故障
点探索作業を容易にする等の効果がある。
G. EFFECTS OF THE INVENTION As described above, according to the present invention, the line constant for each phase and each phase is used to obtain the orientation value from the orientation principle formula according to each phase voltage, current, zero-phase current and line constant of the power transmission system. Since it is decided to locate each fault phase, it is possible to reduce the orientation error due to the difference of the fault phases and to apply it to the non-suspended system for accurate orientation. Further, along with this, there is an effect such as facilitating the fault point search work by orientation.

【図面の簡単な説明】[Brief description of drawings]

第1図は標定装置構成図、第2図及び第3図は本発明方
式を原理的に説明するための送電系基本回路図(第2
図)と故障種別毎の故障点インピーダンスZfの等価回
路図(第3図)である。 D…標定装置、PT…計器用変圧器、CT…変流器。
FIG. 1 is a block diagram of the orientation device, and FIGS. 2 and 3 are basic circuit diagrams of a power transmission system for explaining the principle of the method of the present invention (second
FIG. 3 is an equivalent circuit diagram (FIG. 3) of the fault point impedance Zf for each fault type. D ... Orientation device, PT ... Instrument transformer, CT ... Current transformer.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 舟橋 俊久 東京都品川区大崎2丁目1番17号 株式会 社明電舎内 (72)発明者 水鳥 哲也 東京都品川区大崎2丁目1番17号 株式会 社明電舎内 (56)参考文献 特開 昭60−164264(JP,A) 特開 昭61−222644(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Toshihisa Funabashi 2-1-1-17 Osaki, Shinagawa-ku, Tokyo Stock company inside the company Meidensha (72) Inventor Tetsuya Mizutori 2-1-1-17 Osaki, Shinagawa-ku, Tokyo Stock association In Shameidensha (56) Reference JP-A-60-164264 (JP, A) JP-A-61-222644 (JP, A)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】送電線の自端a,b,cの各相電流Ia,
Ib,Icと各相電圧Va,Vb,Vcと零相電流Io
及び該送電線の単位長当りの自己インピーダンス及び相
互インピーダンスに従って自端から故障点までの距離x
を求めるにおいて、 送電線の各相別の自己インピーダンスZaa,Zbb,
Zcc及び各相間の相互インピーダンスZab,Zb
c,Zcaから次の式 Real〔A〕・Imag〔B〕-Imag〔A〕・Real〔B〕=0 但し、送電線が3相短絡,3相地絡,2相短絡及び2相
地絡のとき、bc相について A=(VB-VC)-{(Zba-Zca)Ia+(Zbb-Zcb)Ib+(Zbc-Zcc)Ic}x B=Ib−Ic 送電線が1相地絡のとき、a相について A=Va-{Zaa・Ia+Zab・Ib+Zac・Ic}x B=3Io に従って自端から故障点までの距離xを求めることを特
徴とする送電系の故障点標定方式。
1. A phase current Ia of each end a, b, c of a transmission line,
Ib, Ic and phase voltages Va, Vb, Vc and zero-phase current Io
And the distance x from the self-end to the fault point according to the self-impedance per unit length and the mutual impedance of the transmission line
In order to obtain, the self-impedance of each phase of the transmission line Zaa, Zbb,
Zcc and mutual impedance between each phase Zab, Zb
c, Zca from the following formula Real [A] ・ Imag [B] -Imag [A] ・ Real [B] = 0 However, the transmission line has a three-phase short circuit, a three-phase ground fault, a two-phase short circuit and a two-phase ground fault. Then, for bc phase, A = (V B -V C )-{(Zba-Zca) Ia + (Zbb-Zcb) Ib + (Zbc-Zcc) Ic} x B = Ib-Ic Then, the fault location of the transmission system is characterized in that the distance x from the self-end to the fault point is obtained according to A = V a- {Zaa ・ Ia + Zab ・ Ib + Zac ・ Ic} x B = 3Io for the a phase. method.
JP60238953A 1985-10-25 1985-10-25 Fault location method for power transmission system Expired - Fee Related JPH065255B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60238953A JPH065255B2 (en) 1985-10-25 1985-10-25 Fault location method for power transmission system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60238953A JPH065255B2 (en) 1985-10-25 1985-10-25 Fault location method for power transmission system

Publications (2)

Publication Number Publication Date
JPS6298273A JPS6298273A (en) 1987-05-07
JPH065255B2 true JPH065255B2 (en) 1994-01-19

Family

ID=17037745

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60238953A Expired - Fee Related JPH065255B2 (en) 1985-10-25 1985-10-25 Fault location method for power transmission system

Country Status (1)

Country Link
JP (1) JPH065255B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102620325A (en) * 2012-04-13 2012-08-01 广东格兰仕微波炉电器制造有限公司 Fixing structure for microwave oven

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2468378C2 (en) * 2010-12-02 2012-11-27 Общество с ограниченной ответственностью "Электроавтоматика" Method of measurement of distance to fault location
RU2638088C2 (en) * 2015-05-12 2017-12-11 Общество с ограниченной ответственностью "Электроавтоматика" Method of measurement of distance to earth fault point
CN109153950A (en) 2016-06-13 2019-01-04 宝洁公司 Water soluble unit dose product made of the combination of different films and containing home care composition
CN109975653B (en) * 2019-02-26 2021-03-02 国网江西省电力有限公司电力科学研究院 10kV distribution line fault location method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60164264A (en) * 1984-02-06 1985-08-27 Mitsubishi Electric Corp Ground fault point locator
JPS6122264A (en) * 1984-07-10 1986-01-30 Tokyo Electric Power Co Inc:The Method for locating trouble point of transmission line

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102620325A (en) * 2012-04-13 2012-08-01 广东格兰仕微波炉电器制造有限公司 Fixing structure for microwave oven

Also Published As

Publication number Publication date
JPS6298273A (en) 1987-05-07

Similar Documents

Publication Publication Date Title
Umans et al. Modeling of solid rotor turbogenerators Part I: Theory and techniques
Girgis et al. Fault location techniques for radial and loop transmission systems using digital fault recorded data
CA1200582A (en) Method of measuring the distance of a fault on a line taking account of distributed capacitances
JPH065255B2 (en) Fault location method for power transmission system
JP3586266B2 (en) Fault location method for transmission line and fault location system using the same
JPS562569A (en) Insulating resistance measuring instrument
JP2598991Y2 (en) Insulation leakage current measuring device
JPH0627760B2 (en) Fault location method for power transmission system
US3408564A (en) Electrical apparatus including a pair of replica impedances for measuring distances along a loaded electrical line
Battauscio et al. Experimental validation of a numerical model of busbar systems
SU1569753A1 (en) Method of determining distance to places of double short-circuits to ground
JPH0373825B2 (en)
JP4752006B2 (en) Three-phase three-wire load simulator
Ashtiani et al. Simulation of the transient and subtransient reactances of a large hydrogenerator by finite elements
JPH10132890A (en) Method and device for locating failure point
JPS60262069A (en) Monitoring of deterioration in insulation of power cable
SU711497A1 (en) Method of testing insulation in circuits with earthed neutral wire under operating voltage and load
JPH0718906B2 (en) Fault locator for power transmission system
JPH0481145B2 (en)
JPS58180478U (en) Low-voltage line-to-ground capacitance compensator
Demerdash et al. An adaptive Newton-Raphson technique for combined vector-scalar potential solutions of large scale 3D magnetic field problems involving anisotropic materials
SU853570A1 (en) Device for locating grounding in networks with isolated neutral
JPS5817260Y2 (en) Transformer corona test circuit
Winkleman et al. An analysis of interarea dynamics of multi-machine systems
SU759991A1 (en) Method of detecting short-circuited turns in three-phase electric motor stator windings

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees