JPH0627760B2 - Fault location method for power transmission system - Google Patents
Fault location method for power transmission systemInfo
- Publication number
- JPH0627760B2 JPH0627760B2 JP23895485A JP23895485A JPH0627760B2 JP H0627760 B2 JPH0627760 B2 JP H0627760B2 JP 23895485 A JP23895485 A JP 23895485A JP 23895485 A JP23895485 A JP 23895485A JP H0627760 B2 JPH0627760 B2 JP H0627760B2
- Authority
- JP
- Japan
- Prior art keywords
- phase
- transmission line
- fault
- distance
- zab
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Locating Faults (AREA)
Description
【発明の詳細な説明】 A.産業上の利用分野 本発明は、送電系の故障点標定方式に関する。Detailed Description of the Invention A. TECHNICAL FIELD The present invention relates to a fault location system for a power transmission system.
B.発明の概要 本発明は、送電系の故障点を標定原理式に従つて標定す
るにおいて、 自端から故障点までの間の分岐負荷による標定誤差を補
償した標定を行うことにより、分岐負荷による標定誤差
を無くすようにしたものである。B. SUMMARY OF THE INVENTION According to the present invention, in locating a fault point of a power transmission system according to a locating principle formula, a locator that compensates for a locating error due to a branch load from its own end to a fault point is used to locate the branch load. This is to eliminate the error.
C.従来の技術 送電系の故障点標定方式として、送電線路一端の電気所
で計測した電圧,電流及び既知である線路定数とを用い
た演算により、故障点を標定する方法を本願出願人は既
に提案している(例えば特願昭59−143056号,
特願昭59−143057号)。C. BACKGROUND ART The applicant of the present application has already proposed a method for locating a fault point in a power transmission system, which is a method of locating a fault point by calculation using a voltage, a current, and a known line constant measured at an electric station at one end of a transmission line. (For example, Japanese Patent Application No. 59-143056,
Japanese Patent Application No. 59-143057).
上記方法に基づいた装置構成は、第4図に示すようにな
る。自端の各相電圧Va,Vb,Vc及び各相電流I
a,Ib,Icを変圧器PT及び変流器CTで検出し、
これら検出信号は標定装置D1の第1の回路D1に一定周
期のサンプリングデータとして取込み、これらデータを
使つて第2の回路D2で零相電圧Vo,零相電流Ioも
求め、第3の回路D3からは単位長当りの自己インピー
ダンスZs,相互インピーダンスZm,自己アドミツタ
ンスYsのデータを得、回路D2,D3の各データから
第4の回路D4が例えば以下の標定原理式からa相地絡
時の故障点距離xを求める(線路のアドミツタンスYs
は無視する)。An apparatus configuration based on the above method is as shown in FIG. Each phase voltage Va, Vb, Vc at each end and each phase current I
a, Ib, Ic are detected by the transformer PT and the current transformer CT,
These detection signals are taken into the first circuit D 1 of the orienting device D 1 as sampling data having a constant cycle, and the zero-phase voltage Vo and zero-phase current Io are also obtained in the second circuit D 2 by using these data, and the third circuit 3 Data of the self impedance Zs, the mutual impedance Zm, and the self admittance Ys per unit length are obtained from the circuit D 3, and from the data of the circuits D 2 and D 3 , the fourth circuit D 4 is obtained from, for example, Calculate the fault point distance x at the time of phase-to-ground fault (track admittance Ys
Is ignored).
Real〔A〕・Imag〔B〕−Imag〔A〕・Real〔B〕=0 ………(1) 但し、A=Va-{(Zs-Zm)・Ia+Zm・3Io}x ………(2) B=3Io ………………………(3) 上記標定方式は、送電系が平衡線路(ねん架系)の場合
に好ましいもので、一般の不平衡線路(非ねん架系)に
あつては各相自己インピーダンスZaa,Zbb,Zcc及び相
互インピーダンスZab,Zbc,Zcaが異なるため、標定誤
差を生じる。そこで、非ねん架系については3相短絡,
3相地絡,2相短絡,2相地絡のとき、例えばbc相に
ついてRfを故障点抵抗とすると、 A=(Vb-Vc)-{(Zba-Zca)Ia+(Zbb-Zcb)Ib +(Zbc-Zcc)Ic}x ………………………(4) B=Ib−Ic ………………………(5) とし、送電線が1相地絡のとき、例えばa相について A=Va-{Zaa・Ia+Zab・Ib+Zac・Ic}x ………………………(6) B=3I0 ………………………(7) として標定値xを求めることを本願出願人は同日出願で
提案している。Real [A] / Imag [B] -Imag [A] / Real [B] = 0 ... (1) However, A = Va-{(Zs-Zm) / Ia + Zm / 3Io} x .... (2) B = 3Io …………………… (3) The above-mentioned orientation method is preferable when the power transmission system is a balanced line (a suspended system), and it is a general unbalanced line (a non-suspended system). ), The self-impedances of each phase Zaa, Zbb, Zcc and the mutual impedances Zab, Zbc, Zca are different, which causes localization error. So, for non-suspended system, 3 phase short circuit,
When there is a three-phase ground fault, a two-phase short circuit, or a two-phase ground fault, and Rf is the fault point resistance for the bc phase, for example, A = (Vb-Vc)-{(Zba-Zca) Ia + (Zbb-Zcb) Ib + (Zbc-Zcc) Ic} x …………………… (4) When B = Ib−Ic …………………… (5) and the transmission line has a one-phase ground fault, for example, Phase a As A = Va- {Zaa ・ Ia + Zab ・ Ib + Zac ・ Ic} x ………………………… (6) B = 3I 0 …………………… (7) The applicant of the present application has proposed in the application on the same day to obtain the orientation value x.
D.発明が解決しようとする問題点 従来の故障点標定方式において、自端と故障点との間に
負荷があると標定誤差を生じる問題があつた。この誤差
発生により、故障箇所を巡視する際に故障箇所の発見に
手間取ることになる。D. Problems to be Solved by the Invention In the conventional fault point locating method, there is a problem that a locating error occurs when there is a load between the self-end and the fault point. Due to the occurrence of this error, it takes time and effort to find the failure point when observing the failure point.
E.問題点を解決するための手段と作用 本発明は上記問題点に鑑みてなされたもので、送電線の
各相電圧,電流,零相電流,単位長当りの自己インピー
ダンス,相互インピーダンスから求める標定原理式に分
岐負荷までの距離と負荷電流及び負荷配分比による補正
を各負荷について行つた演算式により、自端から故障点
までの距離を求めるようにしたものである。E. Means and Actions for Solving Problems The present invention has been made in view of the above problems, and the orientation principle obtained from each phase voltage, current, zero-phase current, self impedance per unit length, and mutual impedance of a transmission line. The distance from the self-end to the failure point is obtained by an arithmetic expression in which the distance to the branch load, the load current and the load distribution ratio are corrected for each load.
こうした標定方式により、分岐負荷の存在による負荷電
流分による影響を検出電流から取除き、標定誤差の発生
を小さくした標定値を得る。By such an orientation method, the influence of the load current due to the presence of the branch load is removed from the detected current, and the orientation value in which the orientation error is reduced is obtained.
F.実施例 第1図は本発明の一実施例を示す標定装置構成図であ
る。同図において、標定装置Dの第1の回路D1は各相
電圧Va,Vb,Vcと各相電流Ia,Ib,Icのサ
ンプリングのほかに、分岐負荷L1〜Lnの各相電流Ia
L1,IbL1,IcL1〜IaLn,IbLn,IcLnの各データを伝送装
置TCから取込む。第3の回路D3は、送電線の単位長
当りの各相,相間の線路定数Raa,Xaa,Rbb,Xbb,Rc
c,Xcc,Rab,Xab,Rbc,Xbc,Rca,Xca及び負荷L1〜
Lnまでの距離1〜nのデータを発生する。ここ
で、 Raa,Rbb,Rcc…各相抵抗分 Xaa,Xbb,Xcc…各相リアクタンス分 Rab,Rbc,Rca…相間抵抗分 Xab,Xbc,Xca…相間リアクタンス分 である。F. Embodiment FIG. 1 is a block diagram of an orientation apparatus showing an embodiment of the present invention. In the figure, the first circuit D 1 of the orienting device D not only samples the phase voltages Va, Vb, Vc and the phase currents Ia, Ib, Ic, but also the phase currents Ia of the branch loads L 1 to Ln.
Each data of L 1 , IbL 1 , IcL 1 to IaLn, IbLn, IcLn is fetched from the transmission device TC. The third circuit D 3 is for each phase per unit length of the transmission line, and line constants Raa, Xaa, Rbb, Xbb, Rc between the phases.
c, Xcc, Rab, Xab, Rbc, Xbc, Rca, Xca and load L 1 ~
Data for distances 1 to n to Ln are generated. Here, Raa, Rbb, Rcc ... each phase resistance Xaa, Xbb, Xcc ... each phase reactance Rab, Rbc, Rca ... interphase resistance Xab, Xbc, Xca ... interphase reactance.
第4の回路D4は、第2の回路D2からの各相電流I
a,Ib,Ic,各相電圧Va,Vb,Vc,零相電流
3Io(=Ia+Ib+Ic)及び各負荷L1〜Lnの各
相電流IaL1〜IcLnと、第3の回路D3からの線路定数か
ら求める各相の自己インピーダンスZaa,Zbb,Zcc,相
互インピーダンスZab,Zbc,Zca及び各負荷L1〜Ln
までの距離1〜nによつて次式の演算 により、a相地絡についての故障点までの距離xを求め
る。b,c相についても同様の式から求める。The fourth circuit D 4 receives each phase current I from the second circuit D 2.
a, Ib, Ic, each phase voltage Va, Vb, Vc, zero phase current
And 3Io (= Ia + Ib + Ic ) and the phase current IaL 1 ~IcLn of each load L 1 Ln, each phase of the self-impedance Zaa obtained from line constants from the third circuit D 3, Zbb, Zcc, mutual impedance Zab, Zbc , Zca and loads L 1 to Ln
Calculation of the following formula according to the distance 1 to n The distance x to the fault point for the a-phase ground fault is obtained by The same formula is used for the b and c phases.
また、第4の回路D4は、短絡故障については次式の演
算 により、bc相短絡故障についての故障点までの距離x
を求める。ab相,ca相についても同様の式から求め
る。In addition, the fourth circuit D 4 calculates the following equation for a short-circuit fault. Therefore, the distance x to the failure point for the bc phase short circuit failure is
Ask for. The ab phase and the ca phase are also obtained from the same formula.
このような標定により、分岐負荷が故障点との間にある
場合にも標定誤差を軽減した標定値xを得る。With such orientation, the orientation value x with reduced orientation error is obtained even when the branch load is between the fault point.
上記(8),(9)式により標定誤差が少なくなる理由を以下
に詳細に説明する。The reason why the orientation error is reduced by the above equations (8) and (9) is explained in detail below.
第2図に示すように、相手端を非電源端として末端負荷
L2を持ち、背後インピーダンスを介して3相平衡電源
に接続される単回線の送電線について、事故点との間に
分岐負荷L1を持ち、線路の対地静電容量を無視したと
きの自端各相電圧Va,Vb,Vc,電流Ia,Ib,
Icと事故点までの距離x、分岐負荷L1までの距離K
x、事故点各相電圧Vfa,Vfb,Vfcとの間には次の基本
回路方程式が成り立つ。As shown in FIG. 2 , for a single-line power transmission line that has a terminal load L 2 with the other end as a non-power supply end and is connected to a three-phase balanced power supply via a rear impedance, a branch load is created between the power supply line and the fault point. With L 1 and ignoring the ground capacitance of the line, each phase voltage Va, Vb, Vc, current Ia, Ib,
Ic and distance x to accident point, distance K to branch load L 1
x, the fault point The following basic circuit equations hold between the phase voltages Vfa, Vfb, and Vfc.
ただし ここで、第2図中の事故点インピーダンスZfは時間に
よつて変化しない純抵抗として事故種別によつて第3図
の形とする。これら事故種別毎に成立する関係式,仮定
から1相地絡と他の故障の場合の演算論理式は以下のよ
うになる。 However The accident point impedance Zf in FIG. 2 is a pure resistance that does not change with time and has the form shown in FIG. 3 according to the type of accident. Based on the relational expressions established for each accident type and assumptions, the arithmetic logical expressions for one-phase ground fault and other failures are as follows.
(3.1)3相地絡,3相短絡,2相地絡,2相短絡に
ついて、b,c相のデータを用いた場合、事故点におい
て成立する関係式は ただし 仮定により Rfb=Rfc=Rf …………………(15) 回路方程式(11),(12)および(13),(14)より Vb-Vc={(Zba-Zca)・Ia+(Zbb-Zcb)・Ib +(Zbc-Zcc)・Ic}・x -{(Zba-Zca)・IaLl+(Zbb-Zcb)・ IbL1+(Zbc-Zcc)・IcL1}・(1-K)・ x+Rf・{(Ib-Ic)-(IbL-IcL)} ……………(16) (16)式と演算理論式(4)を比べると、(16)式の -{(Zba-Zca)・IaL1+(Zbb-Zcb)・IbL1 +(Zbc-Zcc)・IcL1}・(1-K)・x および −(IbL−IcL) の項が誤差となる。(3.1) About the three-phase ground fault, the three-phase short circuit, the two-phase ground fault, and the two-phase short circuit, when using the b and c phase data, the relational expression that holds at the accident point is However By assumption, Rfb = Rfc = Rf ………………… (15) From circuit equations (11), (12) and (13), (14), Vb-Vc = {(Zba-Zca) ・ Ia + (Zbb- Zcb) ・ Ib + (Zbc-Zcc) ・ Ic} ・ x-{(Zba-Zca) ・ I aLl + (Zbb-Zcb) ・ I bL1 + (Zbc-Zcc) ・ I cL1 } ・ (1-K)・ X + Rf ・ {(Ib-Ic)-(I bL -I cL )} …………… (16) Comparing Eq. (16) with theoretical formula (4),-{in Eq. (16) (Zba-Zca) ・ I aL1 + (Zbb-Zcb) ・ I bL1 + (Zbc-Zcc) ・ I cL1 } ・ (1-K) ・ x and − (I bL −I cL ). .
ただし、事故点抵抗Rfb,Rfcが小さい場合には、(4)式
の Rf・(Ib−Ic) および(16)式の Rf・{(Ib−Ic)−(IbL−IcL)} は意味を持たない。However, the fault point resistance Rfb, when Rfc is small, (4) Rf · (Ib-Ic) and (16) Rf · of {(Ib-Ic) - ( I bL -I cL)} is Has no meaning.
(3.2)1相地絡について、a相地絡の場合、事故点
において成立する関係式は Vfa=Rf・3Io ………………(17) よつて Va={Zaa・Ia+Zab・Ib+Zac・Ic}・x ={Zaa・IaL1+Zab・IbL1+Zac・IcL1}・(1-K)・x+Rf・3Io
…………(18) (18)式と演算理論式(6)を比べると、(18)式の -{Zaa・IaL1+Zab・IbL1+Zac・IcL1}・ (1-K)・x の項が誤差となる。(3.2) Regarding 1-phase ground fault, in the case of a-phase ground fault, the relational expression established at the accident point is Vfa = Rf / 3Io ………… (17) Therefore, Va = {Zaa ・ Ia + Zab・ Ib + Zac ・ Ic} ・ x = {Zaa ・ I aL1 + Zab ・ I bL1 + Zac ・ I cL1 } ・ (1-K) ・ x + Rf ・ 3Io
………… (18) Comparing Eq. (18) with theoretical formula (6),-{Zaa ・ I aL1 + Zab ・ I bL1 + Zac ・ I cL1 } ・ (1-K) in Eq. (18)・ The term of x becomes an error.
以上までの説明から明らかなように、分岐負荷による誤
差分を含ませた標定演算に前述の(8),(9)式からn個の
分岐負荷を持つ場合に夫々の分岐負荷による誤差分を補
償することができる。この補償手順は故障発生でまず従
来の(1),(4),(6)式により標定値xを求め、このxと
分岐負荷点までの距離比較によつて該標定値xと自端と
の間に分岐負荷があるか否か判定し、少なくとも1つの
分岐負荷があるときにこれら分岐負荷について補償演算
を行う。As is apparent from the above description, when the orientation calculation including the error due to the branch load has n branch loads from the above equations (8) and (9), the error due to each branch load is calculated. Can be compensated. In this compensation procedure, when a failure occurs, the orientation value x is first obtained by the conventional equations (1), (4), and (6), and the orientation value x is compared with the self-end by comparing the distance between this x and the branch load point. It is determined whether or not there is a branch load between them, and when there is at least one branch load, compensation calculation is performed for these branch loads.
なお、実施例において、各負荷電流を標定装置に取込む
場合を示すが、経済的な面から伝送装置TCの設置が難
しい場合には、線路一端の電流情報と各負荷への配分比
から各負荷電流を推定した次式(a相地絡の場合)によ
つて標定することができる。この場合、負荷の配分比は
設備容量比あるいは過去の負荷実績により決めることが
でき、第3の回路D3から与えるようにする。In the embodiment, the case where each load current is taken into the locating device is shown. However, if it is difficult to install the transmission device TC from the economical point of view, the current information at one end of the line and the distribution ratio to each load will The load current can be estimated according to the following equation (in the case of a-phase ground fault). In this case, the load distribution ratio can be determined by the equipment capacity ratio or the past load record, and is given from the third circuit D 3 .
但し、Pi:i番目の負荷の配分比 Ia′=−(Ib+Ic):故障相負荷電流の合計 なお、上記(19)式においては1線地絡の場合に故障相負
荷電流の合計Ia′を健全相b,c電流から求められるこ
とができる理由から1線地絡に限られ、相間の短絡を伴
う故障(2相地絡,2相短絡,3相地絡,3相短絡)に
は適用できない。しかし、分岐負荷電流の大きさは、短
絡を伴う故障の場合に故障相電流に較べて充分小さいた
め、分岐負荷による誤差は1相地絡ほど大きくならな
い。 However, Pi: i-th load distribution ratio Ia '=-(Ib + Ic): total of fault phase load currents In the above equation (19), the total Ia' of fault phase load currents in the case of one-wire ground fault is given. It is limited to 1-wire ground fault because it can be obtained from sound phase b and c currents, and is applicable to failures involving short-circuit between phases (2-phase ground fault, 2-phase short circuit, 3-phase ground fault, 3-phase short circuit) Can not. However, since the magnitude of the branch load current is sufficiently smaller than the fault phase current in the case of a fault involving a short circuit, the error due to the branch load does not become as large as the one-phase ground fault.
上述までの実施例において、零相電流3Ioは変流器CT
の残留回路あるいは3次回路から検出し、第2の回路D
2による演算を省略することもできる。In the above embodiments, the zero-phase current 3Io is the current transformer CT.
Detected from the residual circuit or the tertiary circuit of the second circuit D
The calculation by 2 can be omitted.
G.発明の効果 以上のとおり、本発明によれば、送電系の各相電流,電
圧,零相電流と線路定数に従つて標定原理式から標定値
を得るのに、自端から故障点までの間の分岐負荷による
検出電流への影響を取除いた演算から標定することとし
たため、分岐負荷による標定誤差を小さくし、精度良い
標定を行うことができる。また、これに伴い、標定によ
る故障点探索作業を容易にするという効果がある。G. EFFECTS OF THE INVENTION As described above, according to the present invention, in order to obtain the orientation value from the orientation principle formula according to each phase current, voltage, zero-phase current and line constant of the power transmission system, from the self-end to the failure point. Since the orientation is determined based on the calculation that removes the influence of the branch load on the detected current, the orientation error due to the branch load can be reduced and accurate orientation can be performed. Further, along with this, there is an effect that the fault point search work by orientation is facilitated.
第1図は本発明の一実施例を示す装置構成図、第2図及
び第3図は本発明方式を原理的に説明するための送電系
基本回路図(第2図)と故障種別毎の故障点インピーダ
ンスZfの等価回路図(第3図)、第4図は従来の装置
構成図である。 D……標定装置、PT……計器用変圧器、CT……変流
器、TC……伝送装置、L1,Ln……分岐負荷。FIG. 1 is an apparatus configuration diagram showing an embodiment of the present invention, and FIGS. 2 and 3 are basic circuit diagrams of a power transmission system (FIG. 2) for explaining the principle of the present invention and the fault types. An equivalent circuit diagram (FIG. 3) of the fault impedance Zf and FIG. 4 are conventional device configuration diagrams. D ...... locating system, PT ...... instrument transformer, CT ...... current transformer, TC ...... transmission device, L 1, Ln ...... branch load.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 舟橋 俊久 東京都品川区大崎2丁目1番17号 株式会 社明電舎内 (72)発明者 須田 典雄 東京都品川区大崎2丁目1番17号 株式会 社明電舎内 (72)発明者 水鳥 哲也 東京都品川区大崎2丁目1番17号 株式会 社明電舎内 (56)参考文献 特開 昭60−164264(JP,A) 特開 昭60−204220(JP,A) 特開 昭61−22264(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Toshihisa Funabashi 2-1-1-17 Osaki, Shinagawa-ku, Tokyo Stock Company Inside the company Meidensha (72) Norio Suda 2-1-1-17 Osaki, Shinagawa-ku, Tokyo Stock Association Shameidensha (72) Inventor Tetsuya Mizutori 2-17 Osaki, Shinagawa-ku, Tokyo Stock company Shameidensha (56) References JP-A-60-164264 (JP, A) JP-A-60-204220 (JP) , A) JP 61-22264 (JP, A)
Claims (2)
Ib,Ic,各相電圧Va,Vb,Vc,零相電流I
o,該送電線の単位長当りの各相別の自己インピーダン
スZaa,Zab,Zac,相互インピーダンスZab,Zbc,Zca及び該
送電線に接続された分岐負荷までの距離1〜nと負
荷電流IaL1〜IaLn,IbL1〜IbLn,IcL1〜IcLnから次の式 Real〔A〕・Imag〔B〕−Imag〔A〕・Real〔B〕=0 但し、送電線が1線地絡故障のとき、a相について A=Va−{Zaa・Ia+Zab・Ib+Zac・Ic}x B=3I0 送電線が短絡故障のとき、bc相について A=(Vb-Vc)-{(Zba-Zca)Ia+(Zbb-Zcb)Ib +(Zbc-Zcc)}x B=Ib−Ic に従って自端から故障点までの距離xを求め、その距離
xと距離1とを比較し、x>1なるときは次の式 送電線が短絡故障のとき、bc相について に従って自端から故障点までの距離xを求めることを特
徴とする送電系の故障点標定方式。1. A phase current Ia of each end a, b, c of a transmission line,
Ib, Ic, phase voltages Va, Vb, Vc, zero-phase current I
o, self-impedance Zaa, Zab, Zac, mutual impedance Zab, Zbc, Zca of each phase per unit length of the transmission line, distances 1 to n to a branch load connected to the transmission line, and load current IaL1 〜I aLn , I bL1 〜I bLn , I cL1 〜I cLn From the following formula Real [A] ・ Imag [B] −Imag [A] ・ Real [B] = 0 However, the transmission line has a one-line ground fault. Then, for the a phase, A = Va− {Zaa · Ia + Zab · Ib + Zac · Ic} x B = 3I 0 When the transmission line has a short circuit fault, for the bc phase, A = (Vb-Vc)-{(Zba -Zca) Ia + (Zbb-Zcb) Ib + (Zbc-Zcc)} x According to B = Ib-Ic, the distance x from the self-end to the failure point is calculated, and the distance x and the distance 1 are compared, and x> 1 Then the following formula About bc phase when the transmission line has a short circuit fault A fault location method for a power transmission system, characterized in that the distance x from the self-end to the fault point is obtained in accordance with.
Ib,Ic,各相電圧Va,Vb,Vc,零相電流
I0,該送電線の単位長当りの各相別の自己インピーダ
ンスZaa,Zab,Zac,相互インピーダンスZab,Zbc,Zca及び
該送電線に接続された分岐負荷までの距離1〜nと
各分岐負荷の配分比P1〜Pnから次の式 Real〔A〕・Imag〔B〕−Imag〔A〕・Real〔B〕=0 但し、送電線が1線地絡故障のときa相について A=Va−{Zaa・Ia+Zab・Ib+Zac・Ic}x B=3I0 に従って故障点までの距離xを求め、その距離xと距離
1とを比較し、x>1なるときは次の式 に従って自端から故障点までの距離xを求めることを特
徴とする送電系の故障点標定方式。2. A phase current Ia of each end a, b, c of the transmission line,
Ib, Ic, phase voltages Va, Vb, Vc, zero-phase current I 0 , self-impedance Zaa, Zab, Zac, mutual impedance Zab, Zbc, Zca for each phase per unit length of the transmission line, and the transmission line Based on the distances 1 to n to the branch load connected to and the distribution ratios P 1 to P n of the respective branch loads, the following expression Real [A] · Imag [B] −Imag [A] · Real [B] = 0 , When the transmission line has a one-line ground fault, the distance x to the fault point is calculated according to A = Va− {Zaa · Ia + Zab · Ib + Zac · Ic} x B = 3I 0 for the phase a and the distance x distance
1 is compared, and when x> 1, the following equation A fault location method for a power transmission system, characterized in that the distance x from the self-end to the fault point is obtained in accordance with.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23895485A JPH0627760B2 (en) | 1985-10-25 | 1985-10-25 | Fault location method for power transmission system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23895485A JPH0627760B2 (en) | 1985-10-25 | 1985-10-25 | Fault location method for power transmission system |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6298274A JPS6298274A (en) | 1987-05-07 |
JPH0627760B2 true JPH0627760B2 (en) | 1994-04-13 |
Family
ID=17037762
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP23895485A Expired - Lifetime JPH0627760B2 (en) | 1985-10-25 | 1985-10-25 | Fault location method for power transmission system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0627760B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104360230A (en) * | 2014-11-07 | 2015-02-18 | 国家电网公司 | Method and device for locating fault branches of active multi-branch nodes of power distribution network |
US10745655B2 (en) | 2016-06-13 | 2020-08-18 | The Procter & Gamble Company | Water-soluble unit dose articles made from a combination of different films and containing household care compositions |
-
1985
- 1985-10-25 JP JP23895485A patent/JPH0627760B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPS6298274A (en) | 1987-05-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5446387A (en) | Method and a device for determining a fault on a transmission line | |
Zhan et al. | Characteristic of voltage dips (sags) in power systems | |
Girgis et al. | Fault location techniques for radial and loop transmission systems using digital fault recorded data | |
US5825189A (en) | Method of locating the position of a fault on a power transmission | |
Umans et al. | Modeling of solid rotor turbogenerators Part I: Theory and techniques | |
Lawrence et al. | Development of an advanced transmission line fault location system. II. Algorithm development and simulation | |
CA2489178A1 (en) | Fault location using measurements of current and voltage from one end of a line | |
CA1200582A (en) | Method of measuring the distance of a fault on a line taking account of distributed capacitances | |
US11327105B2 (en) | Fault location in multi-terminal tapped lines | |
JP3586266B2 (en) | Fault location method for transmission line and fault location system using the same | |
JPH0627760B2 (en) | Fault location method for power transmission system | |
JPH065255B2 (en) | Fault location method for power transmission system | |
Lopes et al. | Real-time evaluation of PMU-based fault locators | |
JPH11142465A (en) | Ground-fault point detecting method | |
JPH0373825B2 (en) | ||
JPS6298272A (en) | Fault point locating system for power transmission system | |
JPS60262069A (en) | Monitoring of deterioration in insulation of power cable | |
JPH0428065Y2 (en) | ||
JPH08122395A (en) | Method for locating fault on multiterminal transmission line | |
JPH0328389Y2 (en) | ||
JP3013488B2 (en) | Ground fault fault location method | |
JPH0575980B2 (en) | ||
JP2002040085A (en) | Method for locating fault point of branched parallel dual line | |
JPS6358272A (en) | Ground fault locating method for three-phase high-voltage power distribution line | |
Winkleman et al. | An analysis of interarea dynamics of multi-machine systems |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |