JPH0481145B2 - - Google Patents

Info

Publication number
JPH0481145B2
JPH0481145B2 JP14305784A JP14305784A JPH0481145B2 JP H0481145 B2 JPH0481145 B2 JP H0481145B2 JP 14305784 A JP14305784 A JP 14305784A JP 14305784 A JP14305784 A JP 14305784A JP H0481145 B2 JPH0481145 B2 JP H0481145B2
Authority
JP
Japan
Prior art keywords
point
fault point
sinθ
transmission line
per unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP14305784A
Other languages
Japanese (ja)
Other versions
JPS6122264A (en
Inventor
Eiji Harada
Hiroyasu Oonishi
Yoshihiro Kawasaki
Norio Suda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Tokyo Electric Power Co Holdings Inc
Original Assignee
Meidensha Corp
Tokyo Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Tokyo Electric Power Co Inc filed Critical Meidensha Corp
Priority to JP14305784A priority Critical patent/JPS6122264A/en
Publication of JPS6122264A publication Critical patent/JPS6122264A/en
Publication of JPH0481145B2 publication Critical patent/JPH0481145B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Locating Faults (AREA)

Description

【発明の詳細な説明】 本発明は、送電線路の故障点標定方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for locating fault points in power transmission lines.

現在、広く実用化されている故障点標定方式に
は、線路の故障発生時に線路一端からパルスを印
加送信し、故障点からの反射波を受信するまでの
時間を測定し、この時間から故障点距離を求める
パルス送信方式がある。しかしながら、この方式
は線路伝搬過程での波形の歪みや減衰が大きく、
さらには故障様相によつてサージあるいは反射パ
ルスの波形が異なることから高精度の故障点標定
が難しいものであつた。
Currently, the fault point locating method that is widely used in practice involves applying and transmitting a pulse from one end of the line when a fault occurs on the line, measuring the time until the reflected wave is received from the fault point, and measuring the time from which the fault point is located. There is a pulse transmission method for determining distance. However, this method suffers from large waveform distortion and attenuation during the line propagation process.
Furthermore, the waveforms of surges or reflected pulses differ depending on the failure mode, making it difficult to locate the failure point with high precision.

この他の方式としては、線路保護装置に実用化
されている距離継電方式があるが、この方式は故
障点抵抗の影響による誤差が大きく、保護方式と
して実用化されても標定方式としての実用化には
無理がある。
Another method is the distance relay method, which has been put into practical use as a line protection device, but this method has large errors due to the influence of fault point resistance, and even if it is put into practical use as a protection method, it is not practical as a location method. There is no way to change it.

本発明の目的は故障点の影響を受けることなく
高精度に故障点標定ができる標定方法を提供する
にある。
An object of the present invention is to provide a locating method that can locate a fault point with high accuracy without being affected by the fault point.

本発明は、線路一端の電気所にて計測した電圧
値と電流値及び既知である線路定数とを用いた演
算により故障点を標定することを特徴とする。
The present invention is characterized in that a failure point is located by calculation using voltage and current values measured at an electric station at one end of the line and known line constants.

以下、本発明方法を詳細に説明する。 The method of the present invention will be explained in detail below.

第1図は単相線路を分布定数として扱つた回路
を示す。点Sは変電所を、点Fは故障点を、RF
は故障点抵抗を示し、線路の単位長当りの抵抗
r′、リアクタンスL′、サセプタンスC1′とし、点
Sから故障点Fまでの距離x、線路全長lとする
と、集中定数的には図示のπ型等価回路で表わさ
れ、点sから見たアドミツタンスY及びインピー
ダンスZは夫々次のようになる。
Figure 1 shows a circuit that treats a single-phase line as a distributed constant. Point S is the substation, point F is the fault point, R F
indicates the fault point resistance, which is the resistance per unit length of the line.
r', reactance L', susceptance C1 ', distance x from point S to fault point F, and total line length l, then in terms of lumped constants, it is represented by the π-type equivalent circuit shown in the figure, and as seen from point s. Admittance Y and impedance Z are as follows.

Y=jxC1′ Z=xr′+jxL′ 3相になる送電線路についても同様の分布定数
として扱つた第2図の等価回路で表わされ、点S
から見たa、b、c相の各相自己インピーダンス
Zs、相互インピーダンスZn、自己アドミツタン
スYs1は次のようになる。
Y=jxC 1 'Z=xr'+jxL' The three-phase power transmission line is also represented by the equivalent circuit in Figure 2, which is treated as a similar distributed constant, and the point S
Self-impedance of each phase of a, b, and c as seen from
Z s , mutual impedance Z n , and self-admittance Y s1 are as follows.

Zs=rs+jωls=Z′s・x =(r′s+jωls′)・x Zn=rn+jωln=Z′n・x =(r′n+jωln′)・x Ys1=jωCs1=Ys1・x=jωC′s1・x 但し、 Zs′:単位長当りの自己インピーダンス Zn′:単位長当りの相互インピーダンス Ys′:単位長当りの自己アドミツタンス Ys1:点Sから故障点Fまでの単位長当りの自己
アドミツタンス Ys2:故障点Fから負荷端までの単位長当りの自
己アドミツタンス rs:点Sから故障点Fまでの抵抗 rs′:点Sから故障点Fまでの単位長当りの抵抗 ls:点Sから故障点Fまでの自己インダクタンス ls′:点Sから故障点Fまでの単位長当りの自己イ
ンダクタンス rn:点Sから故障点Fまでの相互抵抗 rn′:点Sから故障点Fまでの単位長当りの相互
抵抗 ln:点Sから故障点Fまでの相互インダクタンス ln′:点Sから故障点Fまでの単位長当りの相互
インダクタンス Cs1:点Sから故障点Fまでの静電容量 C′s1:点Sから故障点Fまでの単位長当りの静電
容量 ω:電源角周波数 この3相回路における1線地絡時、例えば第3
図Aに示すようにa相が故障点抵抗RFを持つて
地絡したとき、対象座標法による等価回路は第3
図Bに示すように零相回路Oと正相回路Pと逆相
回路Nと3RFの直列回路に零相電流Ipが流れるこ
とになり、故障点対象分としての零相電流Ip、正
相電流I1、逆相電流I2は夫々次のようになる。
Z s = r s + jωl s = Z′ s・x = (r′ s + jωl s ′)・x Z n = r n + jωl n = Z′ n・x = (r′ n + jωl n ′)・x Y s1 =jωC s1 =Y s1・x=jωC′ s1・x However, Z s ′: Self-impedance per unit length Z n ′: Mutual impedance per unit length Y s ′: Self-admittance per unit length Y s ' 1 : Self-admittance per unit length from point S to failure point F Y s ' 2 : Self-admittance per unit length from failure point F to the load end r s : Resistance from point S to failure point F r s ′: Resistance per unit length from point S to failure point F l s : Self-inductance from point S to failure point F l s ′: Self-inductance per unit length from point S to failure point F r n : Point Mutual resistance from S to failure point F r n ′: Mutual resistance per unit length from point S to failure point F l n : Mutual inductance from point S to failure point F l n ′: From point S to failure point F Mutual inductance per unit length C s1 : Capacitance per unit length from point S to fault point F C' s1 : Capacitance per unit length from point S to fault point ω : Power source angular frequency This three-phase circuit For example, when one wire is grounded in
As shown in Figure A, when phase a has a fault point resistance R F and is grounded, the equivalent circuit according to the object coordinate method is the third
As shown in Figure B, zero-sequence current I p flows through the series circuit of zero-sequence circuit O, positive-phase circuit P, negative-phase circuit N, and 3RF , and the zero-sequence current I p as the fault point target, The positive sequence current I 1 and the negative sequence current I 2 are as follows.

Ip=VFa/Zp+Z1+Z2+3RF I1=Ip I2=Ip 但し、 Zp:故障点より全系統を見た商用周波数に対する
零相インピーダンス Z1:正相インピーダンス Z2:逆相インピーダンス VFa:故障点における故障前のa相電圧 この等価回路と第2図の等価回路からa相地絡
時には以下の(1)〜(7)式が成立する。なお、 Zp=Zs−Zn=rp+jωls =(rp′+jωlp′)x Z1=Zs+2Zn=r1+jωl1 =(r1′+jωl1′)x 但し、 rp:零相抵抗 rp′:単位長当りの零相抵抗 lp′:単位長当りの零相インダクタンス r1:正相抵抗 r1′:単位長当りの正相抵抗 l1:正相インダクタンス l1′:単位長当りの正相インダクタンス Va=ZsIa1+Zn(Ib1+Ic1)+VFa =Z1Ia1+3Ip1Zp−Z1/3+VFa …(1) VFa=IF・RF =RF(3Ip2−△3Ipc) =RF{Ia2+Ib2+Ic2−Ys2 (VFa+VFb+VFc)} =RF(3Ip2−3VpF・Ys2) …(2) 3Ip1=3Ip−Ys1/2(Va+Vb+Vc) =3Ip−Ys1/2・3Vp 3Ip2=3Ip1−Ys1/2(VFa+VFb+VFc)=3Ip1−Ys1
23VpF=3Ip−Ys1/2(3Vp+3VpF)…(3) VFa=Va−Z1・Ia1−3Ip1・Zp−Z1/3 3VpF=3Vp−Z・3Ip1−3Ip1(Zp−Z1) =3Vp−Zp・3Ip1=3Vp−Zp (3Ip−Ys1/2・3Vp) =(1+ZpYs1/2)3Vp−Zp・3Ip …(4) (2)式と(3)式から VFa=RF{3Ip−Ys1/2(3Vp+3VpF)−3VpFYs2}=RF
{3Ip−Ys1/23Vp−3VpF(Ys1/2+Ys2}}…(5) (4)式と(5)式から VFa=RF〔3Ip−Ys1/2・3Vp−(Ys1/2+Ys2){(1
+ZpYs1/2)・3Vp−Zp3Ip}〕 =RF〔3Ip{1+Zp(Ys1/2+Ys2)}−3Vp{Ys1
2+(Ys1/2+Ys2)・(1+ZpYs1/2)}〕…(6) (1)式と(6)式から Va=Z1(Ia−VaYs1/2)+(3Ip−Ys1/2・3Vp)Zp
Z1/3+RF〔3Ip{1+Zp(Ys1/2+Ys2)} −3Vp{Ys1/2+(Ys1/2+Ys2)(1+ZpYs1/2
)}〕 ∴(1+Z1Ys1/2)Va=Z1Ia+3Ip〔Zp−Z1/3+{1
+Zp(Ys1/2+Ys2)}RF〕 −3Vp〔Ys1/2・Zp−Z1/3+{Ys1/2+(Ys1/2
+Ys2)・(1+ZpYs1/2)}RF〕…(7) なお、(1)〜(7)式中、VFa、VFb、VFcは事故点F
のa、b、c相の夫々の電圧、IFは事故点から大
地へ流れる零相電流、Ia1、Ib1、Ic1は第2図の点
A1を流れるa、b、c相の夫々の電流、Ia2
Ib2、Ic2は点A2を流れる各相電流、3Ip1、3Ip2
点A1,A2を夫々流れる零相電流、VpFは事故
点の零相電圧、△3IpCは事故点から負荷側に流れ
る零相電流であつて、 3Ip1=Ia1+Ib1+Ic1 3Ip2=Ia2+Ib2+Ic2 3VpF=VFa+VFb+VFc △3Ipc=Ys2(VFa+VFb+VFc) の関係にある。
I p = V Fa /Z p +Z 1 +Z 2 +3R F I 1 = I p I 2 = I p However, Z p : Zero-sequence impedance to the commercial frequency viewed from the failure point Z 1 : Positive-sequence impedance Z 2 : Anti-phase impedance V Fa : A-phase voltage before failure at the failure point From this equivalent circuit and the equivalent circuit of FIG. 2, the following equations (1) to (7) hold true when an a-phase ground fault occurs. Furthermore, Z p = Z s − Z n = r p + jωl s = (r p ′+jωl p ′) x Z 1 = Z s +2Z n = r 1 + jωl 1 = (r 1 ′+ jωl 1 ′) x However, r p : Zero-sequence resistance r p ′: Zero-sequence resistance per unit length l p ′: Zero-sequence inductance per unit length r 1 : Positive sequence resistance r 1 ′: Positive sequence resistance per unit length l 1 : Positive sequence inductance l 1 ′: Positive sequence inductance per unit length V a = Z s I a1 + Z n (I b1 + I c1 ) + V Fa = Z 1 I a1 +3I p1 Z p −Z 1 /3 + V Fa …(1) V Fa = I F・R F = R F (3I p2 −△3I pc ) = R F {I a2 + I b2 + I c2 −Y s2 (V Fa +V Fb +V Fc )} = R F (3I p2 −3V pF・Y s2 ) …(2) 3I p1 =3I p −Y s1 /2(V a +V b +V c ) =3I p −Y s1 /2・3V p 3I p2 =3I p1 −Y s1 /2(V Fa +V Fb +V Fc )=3I p1 −Y s1 /
23V pF =3I p −Y s1 /2 (3V p +3V pF )…(3) V Fa =V a −Z 1・I a1 −3I p1・Z p −Z 1 /3 3V pF =3V p −Z・3I p1 −3I p1 (Z p − Z 1 ) = 3V p −Z p・3I p1 = 3V p −Z p (3I p −Y s1 /2・3V p ) = (1+Z p Y s1 /2) 3V p −Z p・3I p …(4) From formulas (2) and (3), V Fa = R F {3I p −Y s1 /2 (3V p +3V pF )−3V pF Y s 2} = R F
{3I p −Y s1 /23V p −3V pF (Y s1 /2+Y s2 }}…(5) From equations (4) and (5), V Fa = R F [3I p −Y s1 /2・3V p −(Y s1 /2+Y s2 ) {(1
+Z p Y s1 /2)・3V p −Z p 3I p }] = R F [3I p {1+Z p (Y s1 /2+Y s2 )}−3V p {Y s1 /
2+(Y s1 /2+Y s2 )・(1+Z p Y s1 /2)}]...(6) From equations (1) and (6), V a =Z 1 (I a −V a Y s1 /2)+ (3I p −Y s1 /2・3V p )Z p
Z 1 /3+R F [3I p {1+Z p (Y s1 /2+Y s2 )} −3V p {Y s1 /2+ (Y s1 /2+Y s2 ) (1+Z p Y s1 /2
)}] ∴(1+Z 1 Y s1 /2)V a =Z 1 I a +3I p [Z p −Z 1 /3+{1
+Z p (Y s1 /2+Y s2 )}R F ] −3V p [Y s1 /2・Z p −Z 1 /3+{Y s1 /2+(Y s1 /2
+Y s2 )・(1+Z p Y s1 /2)}R F ]...(7) In equations (1) to (7), V Fa , V Fb , and V Fc are the accident point F
I F is the zero-sequence current flowing from the fault point to the ground, and I a1 , I b1 , I c1 are the voltages of the a, b, and c phases flowing at point A1 in Figure 2. The current, I a2 ,
I b2 and I c2 are the phase currents flowing through point A2, 3I p1 and 3I p2 are the zero-sequence currents flowing through points A1 and A2, respectively, V pF is the zero-sequence voltage at the fault point, and △3I pC is from the fault point to the load side 3I p1 = I a1 + I b1 + I c1 3I p2 = I a2 + I b2 + I c2 3V pF = V Fa + V Fb + V Fc △3I pc = Y s2 (V Fa + V Fb + V Fc ) There is a relationship between

上述の(7)式をベクトル展開すると、 Va{(1−ω2l1Cs1/2)+jωCs1/2r1}=Ia(r1
jωl1) +3Ip〔{rp−r13+(1−ω2lp(Cs1/2+Cs2))
RF}+jω(lp−l1/3+rp(Cs1/2+Cs2)RF}〕 −3Vp〔−ωCs1{ωlp−l1/3+rpω(Cs1/2+Cs2
)RF} +jω{Cs1/2・rp−r13+(Cs1/2+C(CS1/2s
2
・(1−ω2lpCs1/2)RF)}〕…(8) ここで、一般に次の関係から(8)式を整理する
と、 1−ω2l1Cs1/2≒1 1−ω2lpCs1/2≒1 Va=Ia(r1+jωl1)+3Ip〔rp−r1/3+RF+jω{lp
−l1/3+rp(Cs1/2+Cs2)RF}〕 −3Vp〔−ωCs1/2{ωlp−l1/3+rpω(Cs1/2
+Cs2)RF}+jω{Cs1/2・rp−r1/3+(Cs1+Cs2
)RF}〕…(9) また、(9)式中故障点抵抗RFが大きければ 3Ipの項では rp−r1/3+RF≫ω{lp−l1/3+rp(Cs1+Cs2)RF} 3Vpの項では ω{Cs1/2・rp−r1/3+(Cs1+Cs2)RF}≫ωCs1
2{ωlp−l1/3+rpω(Cs1/2+Cs2)RF} となるし、RFが小さければ 3Ipの項では rp−r1/3+RF≒ωlp−l1/3 3Vpの項では ωCs1/2・ωlp−l1/3≒ωCs1/2・rp−r1/3 となることから、(9)式は次の(10)式で表わされる。
Vector expansion of equation (7) above gives V a {(1−ω 2 l 1 C s1 /2) + jωC s1 /2r 1 }=I a (r 1 +
jωl 1 ) +3I p [{r p −r 1 3+(1−ω 2 l p (C s1 /2+C s2 ))
R F }+jω(l p −l 1 /3+r p (C s1 /2+C s2 )R F }] −3V p [−ωC s1 {ωl p −l 1 /3+r p ω(C s1 /2+C s2
) R F } +jω{C s1 /2・r p −r 1 3+(C s1 /2+C(C S1 /2 s
2
・(1−ω 2 l p C s1 /2)R F )}]…(8) Here, if we generally rearrange equation (8) from the following relationship, 1−ω 2 l 1 C s1 /2≒ 1 1−ω 2 l p C s1 /2≒1 V a =I a (r 1 +jωl 1 )+3I p [r p −r 1 /3+R F +jω{l p
−l 1 /3+r p (C s1 /2+C s2 )R F }] −3V p [−ωC s1 /2{ωl p −l 1 /3+r p ω(C s1 /2
+C s2 ) R F }+jω{C s1 /2・r p −r 1 /3+(C s1 +C s2
)R F }]...(9) Also, if the fault point resistance R F in equation (9) is large, then in the term 3I p , r p −r 1 /3 + R F ≫ω{l p −l 1 /3 + r p (C s1 +C s2 )R F } 3V In the p term, ω{C s1 /2・r p −r 1 /3 + (C s1 +C s2 )R F }≫ωC s1 /
2{ωl p −l 1 /3+r p ω(C s1 /2+C s2 )R F }, and if R F is small, in the term of 3I p , r p −r 1 /3+R F ≒ωl p −l 1 / 3 In the term of 3V p , ωC s1 /2・ωl p −l 1 /3≒ωC s1 /2・r p −r 1 /3, so equation (9) can be expressed as the following equation (10). .

Va=Ia(r1+jωl1)+3Ip{(rp−r1/3+RF)+jωl
p−l1/3} −3Vp〔−ωCs1/2・ω・lp−l1/3+jω{Cs1/2
・rp−r1/3+(Cs1+Cs2)・RF}〕…(10) この(10)式を一般の形に整理すると、 Va=Z1Ia+Zn・3Ip+3IpRF−1/2YsZn・3Vp−Ys′lRF
・3Vp =Z1Ia+Zn(3Ip−1/2Ys・3Vp)+RF(3Ip−Ys
l・3Vp)…(11) この(11)式から故障点抵抗RFに影響されない故
障点標定のために、夫々の実数部と虚数部を取つ
た次の(12−1)、(12−2)式からRFを消去し
た(12)式から求められる。なお、Z1=Z1′x、Zn
Zn′x、Ys=Ys′xの変換をしている。
V a = I a (r 1 + jωl 1 ) + 3I p {(r pr 1 /3 + R F ) + jωl
p −l 1 /3} −3V p [−ωC s1 /2・ω・l p −l 1 /3+jω{C s1 /2
・r p −r 1 /3+(C s1 +C s2 )・R F }]...(10) If we rearrange this equation (10) into a general form, V a =Z 1 I a +Z n・3I p +3I p R F −1/2Y s Z n・3V p −Y s ′lR F
・3V p =Z 1 I a +Z n (3I p −1/2Y s・3V p )+R F (3I p −Y s
l・3V p )...(11) From this equation (11), in order to locate the fault point that is not affected by the fault point resistance R F , the following (12-1) and (12 -2) It can be found from equation (12) by eliminating R F from equation. Note that Z 1 = Z 1 ′x, Z n =
The transformation is Z n ′x, Y s = Y s ′x.

Real〔Va−{Z1′xIa+Zn′x(3Ip−1/2Ys′x・3V
p)}〕=RF・Real(3Ip−Ys′l・3Vp)…(12−1) Imag〔Va−{Z1′xIa+Zn′x(3Ip−1/2Ys′x・3V
p)}〕=RF・Imag(3Ip−Ys′l・3Vp)…(12−2) Real〔A〕・Imag〔B〕−Imag〔A〕・Real〔B〕=
0 …(12) 但し、A及びBは A=Va−{Z1′xIa+Zn′x(3Ip−1/2Ys′x・3Vp
)} B=(3Ip−Ys′l・3Vp) 上述までのとおり、本発明による故障点標定
は、自端(点S)に流れる線路の各相電流、各相
電圧から零相電流Ip、零相電圧Vp及び故障相電流
Iaを求め、既知の線路の単位長当りの自己インピ
ーダンスZs′、相互インピーダンスZn′、自己アド
ミツタンスYs′と線路全長lを用いて(12)式の演算
をして故障点距離xを求める。
Real〔V a −{Z 1 ′xI a +Z n ′x(3I p −1/2Y s ′x・3V
p )}]=R F・Real(3I p −Y s ′l・3V p )…(12−1) Imag[V a −{Z 1 ′xI a +Z n ′x(3I p −1/2Y s 'x・3V
p )}] = R F・Imag(3I p −Y s ′l・3V p )…(12-2) Real [A]・Imag [B] − Imag [A]・Real [B] =
0 …(12) However, A and B are A=V a −{Z 1 ′xIa+Z n ′x(3I p −1/2Y s ′x・3V p
)} B=(3I p −Y s ′l・3V p ) As mentioned above, the fault point location according to the present invention is performed by calculating the zero-sequence current from each phase current and each phase voltage of the line flowing to its own end (point S). I p , zero-sequence voltage V p and fault phase current
I a is calculated using equation (12) using the known self-impedance Z s ′, mutual impedance Z n ′, self-admittance Y s ′ per unit length of the line, and total line length l, and the fault point distance x seek.

次に、(12)式を具体的に展開すると、 Vacosθ1=Ia(r1′cosθ2 −ωl1′SINθ2)x +3Vp(ωC′s1/2・ω・lp′−l1′/3cosθ3 +ωC′s1/2・rp′−r1′/3SINθ3)x2 +3Iprp′−r1′/3x +RF(3Ip+3Vp・ωCs1・lSINθ3) …(13−1) VaSINθ1=Ia(r1′SINθ2+ωl1′cosθ2)x +3Ipωlp′−l1′/3x +3Vp{(ωC′s1/2・ω・lp′−l1′/3・SINθ3 −ωC′s1/2・rp′−r1′/3cosθ3)x2+RFωCs
′l・ cosθ3} …(13−2) 但し、θ1はVaと3Ipの位相差、θ2はIaと3Ip、θ3
3Vpと3Ipの夫々の位相差 この両式から故障点距離xの二次式として次の
(13)式で求めることができる。
Next, when formula (12) is expanded specifically, V a cosθ 1 = I a (r 1 ′cosθ 2 −ωl 1 ′SINθ 2 )x +3V p (ωC′ s1 /2・ω・l p ′− l 1 3cosθ 3 + ωC s1 /2 r p ′−r 1 ′/ 3SINθ 3 ) 3 ) …(13-1) V a SINθ 1 = I a (r 1 ′SINθ 2 +ωl 1 ′cosθ 2 )x +3I p ωl p ′−l 1 ′/3x +3V p {(ωC′ s1 /2・ω・l p ′−l 1 ′/3・SINθ 3 −ωC′ s1 /2・r p ′−r 1 ′/3cosθ 3 )x 2 +R F ωC s
′l・cosθ 3 } …(13-2) However, θ 1 is the phase difference between V a and 3I p , θ 2 is I a and 3I p , and θ 3 is
Phase difference between 3V p and 3I p From these two equations, the following quadratic equation for the fault point distance x is given:
It can be obtained using equation (13).

A(1)x2+A(2)x+A(3)=0 …(13) 但し、A(1)、A(2)、A(3)は次の(14−1)、(14
−2)、(14−3)式とし、式中3Vp、3Ip、Ia、Va
は夫々の絶対値とする。
A(1)x 2 +A(2)x+A(3)=0 ...(13) However, A(1), A(2), A(3) are the following (14-1), (14
-2), (14-3), where 3V p , 3I p , I a , V a
are their respective absolute values.

A(1)=ωCs′/2〔3Vp・3Ip・SINθ3・ωlp′−l1
/3 −3Vp・3Ip・cosθ3・rp′−r1′/3+3Vp 2ωCs′l
・ωlp′−l1′/3〕…(14−1) A(2)=3Ip・Ia・SINθ2・r1′+3Ip・Iacosθ2ωl1
+3Ip 2ωlp′−l1′/3 +ωC′s・l〔3Vp・Iacos(θ3−θ2)r1′+3VpIaS
IN(θ3−θ2)ωl′1 +3Vp・3IpSINθ3・ωlp′−l1′/3+3Vp・3Ipcos
θ3rp′−r1′/3〕…(14-2) A(3)=−〔3Ip・Va・SINθ1+3Vp・Va・cos(θ3−θ1
)ωCs′・l〕…(14−3〕 次に、(13)式において、A(1)≪A(2)の場合にはA
(1)=0とした次の(15)式から故障点距離xを求める
ことができる。
A(1)=ωC s ′/2 [3V p・3I p・SINθ 3・ωl p ′−l 1
/3 −3V p・3I p・cosθ 3・r p ′−r 1 ′/3+3V p 2 ωC s ′l
・ωl p ′−l 1 ′/3〕…(14−1) A(2)=3I p・I a・SINθ 2・r 1 ′+3I p・I a cosθ 2 ωl 1
+3I p 2 ωl p ′−l 1 ′/3 +ωC′ s・l [3V p・I a cos(θ 3 −θ 2 ) r 1 ′+3V p I a S
IN(θ 3 −θ 2 )ωl′ 1 +3V p・3I p SINθ 3・ωl p ′−l 1 ′/3+3V p・3I p cos
θ 3 r p ′−r 1 ′/3]…(14-2) A(3)=−[3I p・V a・SINθ 1 +3V p・V a・cos(θ 3 −θ 1
) ωC s ′・l]…(14-3) Next, in equation (13), if A(1)≪A(2), then A
The fault point distance x can be found from the following equation (15) where (1)=0.

A(2)x+A(3)=0 …(15) また、架空系線路などアドミツタンスYs分が
小さい場合には前述の(11)式は Va=Z1′x・Ia+Zn′x・3Ip+RF・3Ip となり、(12)式の演算と同様にして Imag〔Va−(Z1′・Ia+Zn′・3Ip)x〕=0 …(16) の演算から故障点距離xの一次式として求めるこ
とができる。
A ( 2 ) _・3I p +R F・3I p , and in the same way as the calculation of equation (12), Imag[V a − (Z 1 ′・I a +Z n ′・3I p )x]=0 …From the calculation of (16) It can be obtained as a linear expression of the fault point distance x.

さらに、(16)式を(13)式と同様に展開して B(1)x+B(2)=0 …(17) から故障点距離xを求めることができる。式中B
(1)、B(2)は次のとおり。
Furthermore, the failure point distance x can be obtained from B(1)x+B(2)=0 (17) by expanding equation (16) in the same way as equation (13). B in the formula
(1) and B(2) are as follows.

B(1)=3Ip・Ia・SINθ2・r1′+3Ip・Ia・cosθ2・ωl
1′+3Ip 2・ω・lp′−l1′/3…(17−1) B(2)=−3Ip・Va・SINθ1 …(17−2) 第4図は本発明方法に基づいた標定装置構成を
示す。自端の各相電圧Va、Vb、Vc及び各相電流
Ia、Ib、Icを変圧器PT及び変流器CTで検出する。
この検出信号は標定装置Dの第1の回路D1に一
定周期のサンプリングデータとして取込み、これ
らデータを使つて第2の回路D2で零相電圧Vp
零相電流Vpから 3Ip=Ia+Ib+Ic 3Vp=Va+Vb+Ic から求め、第3の回路D5からは単位長当りの線
路定数Zs′、Zn′、Ys′あるいはZp′、Z1′、Ys′と全

lのデータを発生し、第4の回路D4によつて回
路D2及びD3からのデータから前述の(12)〜(17)式の
何れかの式に従つて故障点距離xの演算をする。
なお、(13)〜(17)式中、ベクトル内積、外積は VIcosθ=V(1)・I(1)+V(3)・I(3)+V(5)・I(5) VI SINθ=V(2)・{I(1)−I(3)} +V(4){I(3)−I(5)}+V(6){I(5)−I(7)} として求められる。但し、V(1)、V(2)、…V(6)及
びI(1)、I(2)、…I(7)は第5図に示すように30゜
間隔のサンプリングデータ列を示す。
B(1)=3I p・I a・SINθ 2・r 1 ′+3I p・I a・cosθ 2・ωl
1 ′+3I p 2・ω・l p ′−l 1 ′/3…(17−1) B(2)=−3I p・V a・SINθ 1 …(17−2) Figure 4 shows the method of the present invention The configuration of the orientation device based on the following is shown. Each phase voltage V a , V b , V c and each phase current at own end
I a , I b , and I c are detected by transformer PT and current transformer CT.
This detection signal is taken into the first circuit D 1 of the location device D as sampling data at a constant period, and using this data, the second circuit D 2 outputs the zero-phase voltage V p ,
From the zero-sequence current V p, 3I p = I a + I b + I c 3V p = V a + V b + I c , and from the third circuit D 5 , the line constants per unit length Z s ′, Z n ′, Y s ′ or Z p ′, Z 1 ′, Y s ′ and data of total length l are generated, and the above-mentioned (12) to (17) are generated from the data from circuits D 2 and D 3 by the fourth circuit D 4. ) Calculate the fault point distance x according to one of the following equations.
In equations (13) to (17), the vector inner product and outer product are VI cosθ=V(1)・I(1)+V(3)・I(3)+V(5)・I(5) VI SINθ=V (2) {I(1)-I(3)} +V(4){I(3)-I(5)}+V(6){I(5)-I(7)} However, V(1), V(2),...V(6) and I(1), I(2),...I(7) represent sampling data sequences at 30° intervals as shown in Figure 5. .

以上のとおり、本発明によれば自端のみの電
流、電圧情報と線路定数によつて故障点抵抗RF
及び故障点よりも遠方(負荷側)のアドミツタン
スYs分の影響を受けることなく高精度の故障点
標定が可能となる。
As described above, according to the present invention, the fault point resistance R
The failure point can be located with high precision without being affected by the admittance Ys located further away (on the load side) than the failure point.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は単相線路の等価回路図、第2図は3相
線路の等価回路、第3図Aは1線地絡の故障回路
図、第3図Bは第3図Aにおける対称座標法によ
る等価回路図、第4図は本発明方法に基づいた装
置構成図、第5図は第4図における電圧Vと電流
Iのサンプリングデータを説明するための波形図
である。 D……標定装置、PT……変圧器、CT……変流
器。
Figure 1 is an equivalent circuit diagram of a single-phase line, Figure 2 is an equivalent circuit of a three-phase line, Figure 3A is a fault circuit diagram of a single-line ground fault, and Figure 3B is the symmetrical coordinate method in Figure 3A. FIG. 4 is an equivalent circuit diagram based on the method of the present invention, and FIG. 5 is a waveform diagram for explaining sampling data of voltage V and current I in FIG. 4. D...Location equipment, PT...Transformer, CT...Current transformer.

Claims (1)

【特許請求の範囲】 1 送電線路の自端a,b,cの各相電流Ia
Ib、Icと各相電圧Va、Vb、Vcから求めた零相電流
Ip及び零相電圧Vpと、該送電線路の単位長当りの
自己インピーダンスZ′s、相互インピーダンス
Z′n、自己アドミツタンスY′s及び線路全長lから
次の式 Real〔A〕・Imag〔B〕 −Imag〔A〕・Real〔B〕=0 但し、 A=Va−{(Z′s−Z′n)X・Ia +Z′nX(3Ip−1/2Y′sX・3Vp)} B=3Ip−Y′sl・3Vp に従つてa相地絡時の自端から故障点までの距離
xを求めることを特徴とする送電線路の故障点標
定方法。 2 特許請求の範囲第1項において、次の式 A(1)x2+A(2)x+A(3)=0 但し、 A(1)=ωCs′/2〔3Vp・3Ip・SINθ3l′p−l′
1/3 −3Vp・3Ip・cosθ3・rp′−r′1/3+3Vp 2ωC
sl・ωlp′−l1′/3〕 A(2)=3Ip・IaSINθ2・r′1+3Ip・Iacosθ2ωl′1+3
I2 p・ωlp′−l1′/3 +ωCs′・l〔3Vp・IaCOS(θ3−θ2)r1′+3VpIaS
IN(θ3−θ2)ωl1′ +3Vp・3IpSINθ3・ωlp′−l′/3+3Vp・3Ipcosθ
3rp′−r1/3〕 A(3)=−〔3Ip・Va・SINθ1+3Vp・Va・cos(θ3−θ1
)ωCs′・l〕 であつてVp、Ip、Ia、Vaは夫々絶対値とし、ωは
電源角周波数とし、 Cs′:単位長当りの静電容量 lp′:単位長当りの自己インダクタンスls′と相互イ
ンダクタンスln′×2の和 l1′:ls′−ln′ rp′:単位長当りの抵抗rs′と相互抵抗rn′×2の和 r1′:rs′−rn′ θ1:Vaと3Ipの位相差 θ2:Iaと3Ipの位相差 θ3:3Vpと3Ipの位相差 に従つて故障点距離xを求めることを特徴とする
送電線路の故障点標定方法。 3 特許請求の範囲第1項又は第2項において、
次の式 A(2)x+A(3)=0 に従つて距離xを求めることを特徴とする送電線
路の故障点標定方法。 4 特許請求の範囲第1項において、アドミツタ
ンスYs′が小さい線路の距離xを次の式 Imag〔Va−(Z1′・x・Ia+Zn′ ・x・3Ip)〕=0 に従つて求めることを特徴とする送電線路の故障
点標定方法。 5 特許請求の範囲第4項において、次の式 B(1)x+B(2)=0 但し、 B(1)=3Ip・Ia・SINθ2・r1′ +3Ip・Ia・cosθ2・ωl1′ +3Ip 2・ω・lp′−l1′/3 B(2)=−3Ip・Va・SINθ1 に従つて距離xを求めることを特徴とする送電線
路の故障点標定方法。
[Claims] 1. Each phase current I a of the own ends a, b, c of the power transmission line,
Zero-sequence current calculated from I b , I c and each phase voltage V a , V b , V c
I p and zero-sequence voltage V p , self impedance Z′ s per unit length of the transmission line, mutual impedance
Z' n , self-admittance Y' s and total line length l, the following formula Real[A]・Imag[B] −Imag[A]・Real[B]=0 However, A=V a −{(Z′ s −Z n ) X・I a +Z′ n X(3I p −1/2Y′ s X・3V p )} A method for locating a fault point on a power transmission line, characterized by determining the distance x from the end to the fault point. 2 In the first claim, the following formula A(1)x 2 +A(2)x+A(3)=0 However, A(1)=ωC s ′/2 [3V p・3I p・SINθ 3 l′ p −l′
1 /3 −3V p・3I p・cosθ 3・r p ′−r′ 1 /3+3V p 2 ωC
sl・ωl p ′−l 1 ′/3] A(2)=3I p・I a SINθ 2・r′ 1 +3I p・I a cosθ 2 ωl′ 1 +3
I 2 p・ωl p ′−l 1 ′/3 +ωC s ′・l [3V p・I a COS (θ 3 −θ 2 ) r 1 ′+3V p I a S
IN(θ 3 −θ 2 )ωl 1 ′ +3V p・3I p SINθ 3・ωl p ′−l′/3+3V p・3I p cosθ
3 r p ′−r 1 /3] A(3)=−[3I p・V a・SINθ 1 +3V p・V a・cos (θ 3 −θ 1
)ωC s ′・l] where V p , I p , I a , and V a are each absolute value, ω is the power source angular frequency, C s ′: capacitance per unit length l p ′: unit Sum of self inductance per unit length l s ′ and mutual inductance l n ′ × 2 l 1 ′: l s ′−l n ′ r p ′: Resistance per unit length r s ′ and mutual resistance r n ′ × 2 Sum r 1 ′: r s ′−r n ′ θ 1 : Phase difference between V a and 3I p θ 2 : Phase difference between I a and 3I p θ 3 : Failure point according to the phase difference between 3V p and 3I p A method for locating a fault point on a power transmission line, characterized by determining a distance x. 3 In claim 1 or 2,
A fault point locating method for a power transmission line, characterized in that distance x is determined according to the following formula: A(2)x+A(3)=0. 4 In claim 1, the distance x of the line with small admittance Y s ' is calculated by the following formula Imag[V a - (Z 1 '・x・I a +Z n '・x・3I p )]=0 A fault point locating method for a power transmission line, characterized in that the fault point is determined according to the following. 5 In claim 4, the following formula B(1)x+B(2)=0 However, B(1)=3I p・I a・SINθ 2・r 1 ′ +3I p・I a・cosθ 2・ωl 1 ′ +3I p 2・ω・l p ′−l 1 ′/3 B(2)=−3I p・V a・SINθ 1 Fault point of a power transmission line characterized by finding distance x according to 1 Orientation method.
JP14305784A 1984-07-10 1984-07-10 Method for locating trouble point of transmission line Granted JPS6122264A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14305784A JPS6122264A (en) 1984-07-10 1984-07-10 Method for locating trouble point of transmission line

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14305784A JPS6122264A (en) 1984-07-10 1984-07-10 Method for locating trouble point of transmission line

Publications (2)

Publication Number Publication Date
JPS6122264A JPS6122264A (en) 1986-01-30
JPH0481145B2 true JPH0481145B2 (en) 1992-12-22

Family

ID=15329906

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14305784A Granted JPS6122264A (en) 1984-07-10 1984-07-10 Method for locating trouble point of transmission line

Country Status (1)

Country Link
JP (1) JPS6122264A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH065255B2 (en) * 1985-10-25 1994-01-19 東京電力株式会社 Fault location method for power transmission system
JPS63135877A (en) * 1986-11-28 1988-06-08 Fuji Electric Co Ltd Fault point locator
WO2016204052A1 (en) 2015-06-18 2016-12-22 株式会社三社電機製作所 Arc welding device

Also Published As

Publication number Publication date
JPS6122264A (en) 1986-01-30

Similar Documents

Publication Publication Date Title
US5446387A (en) Method and a device for determining a fault on a transmission line
US7999557B2 (en) Method for determining location of phase-to-earth fault
Liao et al. Optimal estimate of transmission line fault location considering measurement errors
CN105067950B (en) Two Terminal Fault Location method based on longitudinal impedance
CN111781462A (en) Power distribution network single-phase earth fault line selection method, system, medium and equipment
Girgis et al. Fault location techniques for radial and loop transmission systems using digital fault recorded data
Ranjbar et al. An improved method for the digital protection of high voltage transmission lines
Sadeh et al. Accurate fault location algorithm for transmission line in the presence of series connected FACTS devices
CN102570428B (en) Fault location and distance protection method based on differential output of electronic mutual inductor
CN102435851A (en) Method for measuring zero-sequence parameters of double-circuit transmission lines
EP1924863A1 (en) A method for fault location in electric power lines
CN105044551B (en) A kind of overhead line high-tension cable mixed line fault localization method
WO1995024014A2 (en) One-terminal data fault location system
CN111141995B (en) Line double-end steady-state distance measuring method and system based on amplitude comparison principle
Ramar et al. A new impedance-based fault location method for radial distribution systems
CN106802361A (en) A kind of capacitance current measurement method and system of distribution mixed connection ground connection operation
CN104122452A (en) Large grounded screen power-frequency grounding impedance measurement method based on multiple-synchronous different-frequency method
JPH0481145B2 (en)
Lien et al. A novel fault location algorithm for multi-terminal lines using phasor measurement units
CN109001589A (en) Line parameter circuit value time-domain calculation method based on open-phase operation fault recorder data
Lian et al. An overview of the digital fault location algorithms for the power transmission line protection based on the steady-state phasor approaches
Sefidpour et al. Factors affecting traveling wave protection
Filatova et al. Development of a fault location method on an overhead power line with a branch
CN110333428A (en) A kind of mixed power transmission line fault distance-finding method, device and computer storage medium
Brusilowicz et al. Transmission line modelling and simulating for transient analysis

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term