JPH0652428B2 - Photoconductor - Google Patents

Photoconductor

Info

Publication number
JPH0652428B2
JPH0652428B2 JP60042498A JP4249885A JPH0652428B2 JP H0652428 B2 JPH0652428 B2 JP H0652428B2 JP 60042498 A JP60042498 A JP 60042498A JP 4249885 A JP4249885 A JP 4249885A JP H0652428 B2 JPH0652428 B2 JP H0652428B2
Authority
JP
Japan
Prior art keywords
photoconductor
photoconductive layer
layer
group
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP60042498A
Other languages
Japanese (ja)
Other versions
JPS61201257A (en
Inventor
悦矢 武田
栄一郎 田中
慎司 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP60042498A priority Critical patent/JPH0652428B2/en
Publication of JPS61201257A publication Critical patent/JPS61201257A/en
Publication of JPH0652428B2 publication Critical patent/JPH0652428B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/08Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic

Description

【発明の詳細な説明】 (1)発明の目的 産業上の利用分野 本発明は導電性基板上に、周期律表Va族元素を含む非
晶質水素化シリコンからなる光導電層を設けた光導電体
で、特に1次元、2次元のイメージセンサ、電子写真感
光体として利用できるものに関する。
DETAILED DESCRIPTION OF THE INVENTION (1) Purpose of the invention Industrial field of application The present invention provides a photoconductive layer comprising a photoconductive layer made of amorphous silicon hydride containing a Group Va element of the periodic table on a conductive substrate. The present invention relates to a conductor that can be used as a one-dimensional or two-dimensional image sensor or an electrophotographic photosensitive member.

従来の技術 近年導電性基板上に非晶質水素化シリコンからなる光導
電層を設けた光導電体が、無公害であり、光感度も良好
で、耐熱性にすぐれ、分光感度も全可視光領域にわたっ
て高く、耐摩耗性も優れているため撮像管ターゲット、
固体撮像装置等のイメージセンサや電子写真感光体とし
てますます研究されている。
2. Description of the Related Art In recent years, a photoconductor having a photoconductive layer made of amorphous hydrogenated silicon on a conductive substrate is pollution-free, has good photosensitivity, excellent heat resistance, and spectral sensitivity of all visible light. It is high in the area and has excellent wear resistance, so it is a camera tube target,
It is being increasingly researched as an image sensor for a solid-state imaging device or an electrophotographic photosensitive member.

導電性基板上に非晶質水素化シリコンからなる光導電層
を形成する方法としては、(1)シランガスをプラズマ中
で分解することによるプラズマCVD法、(2)シリコン
をターゲットとし、不活性ガスと共に水素ガスを導入す
ることによる反応性スパッタ法、(3)シリコン蒸気を水
素プラズマ中で反応させることによるイオンプレーティ
ング法等がある。
As a method of forming a photoconductive layer made of amorphous silicon hydride on a conductive substrate, (1) plasma CVD method by decomposing silane gas in plasma, (2) targeting silicon, inert gas In addition, there are a reactive sputtering method by introducing hydrogen gas, and (3) an ion plating method by reacting silicon vapor in hydrogen plasma.

これらの方法の中、プラズマCVD法およびイオンプレ
ーティング法により形成した非晶質水素化シリコンから
なる光導電層は、イメージセンサや電子写真として用い
るには光導電層の抵抗が小さく、暗電流が大きいという
欠点を有する。このためプラズマCVD法で非晶質水素
化シリコンからなる光導電層を形成する場合には、光導
電層と導電性基板との間にブロッキング層を設けたり、
光導電層中に酸素もしくは窒素を導入することによって
高抵抗化を計っている。
Among these methods, the photoconductive layer made of amorphous silicon hydride formed by the plasma CVD method and the ion plating method has a low resistance of the photoconductive layer and has a dark current for use as an image sensor or electrophotography. It has the drawback of being large. Therefore, when a photoconductive layer made of amorphous hydrogenated silicon is formed by the plasma CVD method, a blocking layer is provided between the photoconductive layer and the conductive substrate,
High resistance is achieved by introducing oxygen or nitrogen into the photoconductive layer.

これに対し、反応性スパッタ法により非晶質水素化シリ
コン層を形成すると、プラズマCVD法により形成した
非晶質水素化シリコンの光導電層に比較して高抵抗の光
導電層が得られ、イメージセンサや電子写真感光体とし
ての応用が期待されるのであるが、この場合光感度が悪
いという欠点を有しており、研究はあまり多くない。
On the other hand, when the amorphous silicon hydride layer is formed by the reactive sputtering method, a photoconductive layer having a higher resistance than that of the amorphous silicon photoconductive layer formed by the plasma CVD method is obtained, Although it is expected to be applied as an image sensor or an electrophotographic photosensitive member, in this case, it has a drawback that the photosensitivity is poor, and there are not many studies.

発明が解決しようとする問題点 本発明はイメージセンサ及び電子写真感光体として応用
しうるように、従来の光導電層を改良し、さらに高抵抗
で光感度が高いという特性を満足するa-Si:H光導電体
を得ようとするものである。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention The present invention improves the conventional photoconductive layer so that it can be applied as an image sensor and an electrophotographic photoreceptor, and further satisfies the characteristics of high resistance and high photosensitivity a-Si. : H is to obtain a photoconductor.

特に電子写真感光体としては、上述したいずれの方法で
も単位膜厚当りの帯電電位即ち帯電能は40V/μmで
あり更に高耐圧化をはかり、膜厚を薄くでき製造コスト
の低減をはかることが商品化のために急務である。
In particular, as for the electrophotographic photosensitive member, the charging potential per unit film thickness, that is, the charging ability is 40 V / μm by any of the above-mentioned methods, and it is possible to further increase the withstand voltage, reduce the film thickness, and reduce the manufacturing cost. There is an urgent need for commercialization.

(2)発明の構成 問題点を解決するための手段 本発明は上記目的を達成するため、第1の発明として、
導電性基板上に、周期律表Va族元素を含む非晶質水素
化シリコンからなる光導電層を設けた光導電体におい
て、上記光導電層中の上記Va元素族及び水素の含有量
を上記光導電層の断面において導電性基板との界面付近
または上記光導電体の表面付近において、その他の部分
におけるよりも大とした光導電体とした。
(2) Structure of the Invention Means for Solving the Problems In order to achieve the above object, the present invention is as a first invention.
In a photoconductor in which a photoconductive layer made of amorphous silicon hydride containing a Va group element of the periodic table is provided on a conductive substrate, the content of the Va element group and hydrogen in the photoconductive layer is set to the above. In the cross section of the photoconductive layer, in the vicinity of the interface with the conductive substrate or in the vicinity of the surface of the photoconductor, the photoconductor was made larger than in other portions.

さらに第2の発明として、導電性基板上に周期律表Va
族元素を含む非晶質水素化シリコンからなる光導電層を
設けた光導電体において、前記導電性基板界面(または
光導電体表面)から光導電体表面(または導電性基板界
面)にむかって、Va族元素および水素の含有量の多い
非晶質水素化シリコン、Va族元素および水素の含有量
の少ない非晶質水素化シリコン、電子ブロッキング層を
設けた光導電体とした。
Further, as a second invention, the periodic table Va is formed on the conductive substrate.
In a photoconductor provided with a photoconductive layer made of amorphous silicon hydride containing a group element, from the interface of the conductive substrate (or the surface of the photoconductor) to the surface of the photoconductor (or the interface of the conductive substrate) , Amorphous hydrogenated silicon containing a large amount of Va group element and hydrogen, amorphous silicon containing a small amount of Va group element and hydrogen, and a photoconductor provided with an electron blocking layer.

作用 非晶質水素化シリコンからなる光導電層においてVa族
元素例えばN、P、As、Sb等はドナー性の不純物として
作用する。従って上記光導電層中でVa族元素の濃度分
布を、上述したように、導電性基板との界面付近または
その反対の表面付近で、他の部分より濃度において大に
して差を設けることによって、その部分をよりn型とす
るので、Va族元素の分布濃度に差をもたせることによ
るのみでn−i型のダイオードを構成するものと考えら
れる。しかもi層に微量のVa族元素を導入することに
より電子の移動度が大きくなり、動作電圧を低下させる
ことができる。
Action Va group elements such as N, P, As and Sb act as donor impurities in the photoconductive layer made of amorphous silicon hydride. Therefore, as described above, the concentration distribution of the Va group element in the photoconductive layer is increased near the interface with the conductive substrate or near the surface opposite thereto in the concentration as compared with other portions to provide a difference. Since that portion is made more n-type, it is considered that the n-i type diode is configured only by making the distribution concentration of the Va group element have a difference. In addition, the introduction of a small amount of Va group element into the i layer increases the mobility of electrons, thereby lowering the operating voltage.

また、上記Va族元素の含有量の多い非晶質水素化シリ
コンの光導電層中の水素含有量を他の部分よりも大にす
ると内部より禁止帯幅が大きくなり更に有効に正孔ブロ
ッキング層として作用し、より高耐圧にすることができ
る。従って均一に光導電層中にVa族元素及び水素が分
布している場合と比較してより高耐圧で光感度が大とな
る。
Further, if the hydrogen content in the photoconductive layer of amorphous silicon hydride having a large content of the above-mentioned Va group element is made larger than that in other portions, the band gap becomes larger than that in the inside, and the hole blocking layer becomes more effective. And can have a higher breakdown voltage. Therefore, compared with the case where the Va group element and hydrogen are uniformly distributed in the photoconductive layer, the breakdown voltage is higher and the photosensitivity is higher.

実施例 上述したことを具体的に図面を参照して説明する。第1
図、第2図は何れも導電性基板1(例えばアルミニウム
板)上に非晶質水素化シリコンの光導電層2を設けた光
導電体の構成を示してある。そして第1図の第1実施例
ではVa族元素及び水素の含有量の多い、即ち濃度が大
である非晶質水素化シリコンの光導電層3が導電性基板
1との界面近くに設けた場合を示し、第2図の第2実施
例では上記第1図の場合とは反対に非晶質水素化シリコ
ン層2の表面付近に非晶質水素化シリコンの光導電層3
が設けられている場合を示す。このようにすると上述し
たように、光導電体は禁止帯幅の異なるn−i型のダイ
オード構造となり、電子写真感光体として用いた時第1
図の場合には負の帯電電圧、第2図の場合には正の帯電
電圧を増大させることができる。
Example The above description will be specifically described with reference to the drawings. First
2 and FIG. 2 each show the structure of a photoconductor in which a photoconductive layer 2 of amorphous silicon hydride is provided on a conductive substrate 1 (for example, an aluminum plate). In the first embodiment shown in FIG. 1, the photoconductive layer 3 of amorphous hydrogenated silicon having a high Va group element and hydrogen content, that is, a high concentration, is provided near the interface with the conductive substrate 1. In the second embodiment shown in FIG. 2, contrary to the case shown in FIG. 1, the amorphous silicon hydride photoconductive layer 3 is formed near the surface of the amorphous hydrogenated silicon layer 2.
Is provided. By doing so, as described above, the photoconductor has an n-i type diode structure having a different forbidden band width, which is the first structure when used as an electrophotographic photoreceptor.
In the case of FIG. 2, the negative charging voltage can be increased, and in the case of FIG. 2, the positive charging voltage can be increased.

なお本発明においては、Va族元素及び水素の濃度分布
の差を上述したように段階的に明瞭な二つの層に分ける
必要はなく、一方から(光導電層3の方から)他方へ
(光導電層3に対し反対の側へ)少しづつVa族元素及
び水素濃度が減少するように濃度勾配をつけて変化させ
てもよい。
In the present invention, it is not necessary to divide the difference in the concentration distributions of the Va group element and hydrogen into two layers that are distinct in stages as described above, and from one (from the photoconductive layer 3) to the other (light The concentration may be changed by gradually increasing the concentration of the Va group element and the hydrogen concentration toward the side opposite to the conductive layer 3).

また、第1図および第2図においてVa族元素濃度の少
ない非晶質水素化シリコンの光導電層4に微量のVa族
元素が導入されると電子の移動度が大きくなり利点はあ
るがVa族元素が含まれない場合も本発明の意図と矛盾
しない。
In addition, in FIGS. 1 and 2, when a very small amount of a Va group element is introduced into the photoconductive layer 4 of amorphous hydrogenated silicon having a low Va group element concentration, the electron mobility becomes large, but there is an advantage. It does not contradict the intention of the present invention even when the group element is not contained.

上述したVa族元素と水素の濃度分布は必ずしも一致す
る必要はない。
The above-described Va group element and hydrogen concentration distribution do not necessarily have to match.

第1図および第2図において、Va族元素含有量の多い
非晶質水素化シリコンの光導電層3は正孔のブロッキン
グ層として作用するので、Va族元素含有量の少ない非
晶質水素化シリコンの光導電層4を挟んで、上記光導電
層3に対し反対側、即ち第1図では光導電層4の上に、
また第2図では導電性基板側に電子のブロッキング層を
設けると、n−i−p型ダイオードを構成して、更に高
耐圧化をはかることができる。このときの電子のブロッ
キング層としてはp−型の非晶質水素化シリコン層、非
晶質炭化シリコン層または窒化シリコン、酸化シリコ
ン、酸化アルミナ等の絶縁物層が使用できる。またVa
族元素の含有量の少ない非晶質水素化シリコン層にIIIa
族、例えばB、Al、Ga、In等、及びIIb族、例えば、Zn、C
d、Hg等のアクセプター性の不純物を添加すると上記層は
より真性の状態となり更に高耐圧にすることができる。
In FIGS. 1 and 2, since the amorphous silicon hydride photoconductive layer 3 having a high Va group element content acts as a hole blocking layer, the amorphous hydrogenation having a low Va group element content is performed. The silicon photoconductive layer 4 is sandwiched between the photoconductive layer 3 and the opposite side, that is, on the photoconductive layer 4 in FIG.
Further, in FIG. 2, if an electron blocking layer is provided on the side of the conductive substrate, an n-ip type diode can be constructed and the breakdown voltage can be further increased. As the electron blocking layer at this time, a p-type amorphous hydrogenated silicon layer, an amorphous silicon carbide layer, or an insulating layer such as silicon nitride, silicon oxide, or alumina oxide can be used. Also Va
IIIa was added to an amorphous hydrogenated silicon layer containing a small amount of group elements.
Group B, such as B, Al, Ga, In, etc., and Group IIb, such as Zn, C
When an acceptor impurity such as d or Hg is added, the above layer becomes more intrinsic and the breakdown voltage can be further increased.

以下に実施例を挙げて本発明を説明する。The present invention will be described below with reference to examples.

実施例1 本実施例は第3図に示した光導電体の例を示す。Example 1 This example shows an example of the photoconductor shown in FIG.

リン(P)ドープSi単結晶をマグネトロンスパッタ装置内
に配置し、装置内を2×10-6Torr以下に排気した後、
Siウエーハー上のMoを形成した導電性基板5を250℃
に保持し、次いで装置内にArを4.5×10-3Torr、H2
5×10-4Torr、1%のP2H6を含有するH2を5×10-4
Torrの分圧割合になるように導入し、放電電力200W
で厚さ0.2μmのPを含有する非晶質水素化シリコンの
光導電層6を形成した。その後上記P2H6を含有するH2
導入のみを止め、他は同一にして放電電力200Wで続
けて厚さ2μmの非晶質水素化シリコンの光導電層7を
形成した。かくして導電性基板5との界面にPを多く含
む光導電層6を設けた。このあと1mm平方の透明電極1
000Åの厚さに形成する後に真空中で300℃で20
分間熱処理を行った。熱処理前の抵抗は5×1012Ωcm
であるが、熱処理後は1×1013Ωcmとなった。光電流
は透明電極に−5V印加すると熱処理前後とも400〜
600nmの可視光領域で量子効率0.98と高感度であっ
た。この光導電膜を積層型固体撮像素子としてCCD上
に形成すると暗電流、光感度、光応答、解像度ともに十
分満足する特性の固体撮像装置が得られた。この微量不
純物Pの効果は、As、Sbでも同様であった。Nの場合、
動作電圧が他の元素の場合よりも大きかった。
After placing the phosphorus (P) -doped Si single crystal in the magnetron sputtering device and evacuating the device to 2 × 10 −6 Torr or less,
The conductive substrate 5 formed with Mo on the Si wafer is set to 250 ° C.
Held in, and then 4.5 × 10 -3 Torr and Ar in the device, H 2 and 5 × 10 -4 Torr, 1% of of H 2 containing P 2 H 6 5 × 10 -4
Introduced so that the partial pressure ratio of Torr, discharge power 200W
Then, a photoconductive layer 6 of amorphous hydrogenated silicon containing P having a thickness of 0.2 μm was formed. After that, only the introduction of H 2 containing P 2 H 6 was stopped, and the other conditions were the same and the photoconductive layer 7 of amorphous silicon hydride having a thickness of 2 μm was continuously formed at a discharge power of 200 W. Thus, the photoconductive layer 6 containing a large amount of P was provided at the interface with the conductive substrate 5. 1mm square transparent electrode 1
After forming to a thickness of 000Å, in vacuum at 300 ℃ 20
Heat treatment was performed for a minute. The resistance before heat treatment is 5 × 10 12 Ωcm
However, it became 1 × 10 13 Ωcm after the heat treatment. Photocurrent is 400 ~ before and after heat treatment when -5V is applied to the transparent electrode.
It had a high quantum efficiency of 0.98 in the visible light region of 600 nm. When this photoconductive film was formed on a CCD as a laminated solid-state image pickup element, a solid-state image pickup device having characteristics such that dark current, photosensitivity, optical response, and resolution were sufficiently satisfied was obtained. The effect of this trace impurity P was the same for As and Sb. If N,
The operating voltage was higher than that of other elements.

実施例2 次に第4図に示すように、Al基板8を250℃に保持
し、装置内を2×10-6Torr以下に排気した。次いで装
置内にArを4×10-3Torr、P2H65%を含むH2を1×1
-3Torrになるように導入し、放電電力100Wで第1
のSe含有非晶質水素化シリコンの光導電層9を0.2μm
の厚さで形成した。次にArを4.5×10-3Torr、50p
pmのP2H6を含むH2を0.5×10-3Torrに変え、放電電
力300Wにして第2のSe含有非晶質水素化シリコンの
光導電層10を6〜7μmの厚さで形成した。光導電層10
のP/Siを原子吸光法で測定すると2×10-3であっ
た。また光導電層9のP/Siの平均値は5×10-5であ
った。
Example 2 Next, as shown in FIG. 4, the Al substrate 8 was kept at 250 ° C., and the inside of the apparatus was evacuated to 2 × 10 −6 Torr or less. Next, Ar in the apparatus was 4 × 10 -3 Torr, and H 2 containing 5% of P 2 H 6 was 1 × 1.
It is introduced so that it becomes 0 -3 Torr, and the first with discharge power of 100W.
0.2 μm of the photoconductive layer 9 of amorphous silicon hydride containing Se
Formed with a thickness of. Next, Ar is 4.5 × 10 -3 Torr, 50p
H 2 containing pm of P 2 H 6 was changed to 0.5 × 10 −3 Torr and the discharge power was set to 300 W to form the second Se-containing amorphous hydrogenated silicon photoconductive layer 10 with a thickness of 6 to 7 μm. did. Photoconductive layer 10
The P / Si of was measured by an atomic absorption method and found to be 2 × 10 −3 . The average value of P / Si of the photoconductive layer 9 was 5 × 10 −5 .

赤外吸収による測定によると光導電層9の方が光導電層
10より水素含有量が大であることが確かめられている。
According to the measurement by infrared absorption, the photoconductive layer 9 is the photoconductive layer.
It has been confirmed that the hydrogen content is higher than 10.

かくして形成された全体としての非晶質水素化シリコン
の光導電層の断面方向のSi、H、Pの各元素の組成分布
をSIMSにより分析した。
The composition distribution of each element of Si, H, and P in the cross-sectional direction of the photoconductive layer of amorphous hydrogenated silicon as a whole thus formed was analyzed by SIMS.

導電性基板に隣接する非晶質水素化シリコンの光導電層
6、9でPが多く、水素も多くなっている。そして光導
電層7、10においては表面に向ってP濃度および水素濃
度が減少している。この場合光導電層は禁止帯幅の大き
い正孔ブロッキング層となり、より高耐圧となる。
The photoconductive layers 6 and 9 of amorphous hydrogenated silicon adjacent to the conductive substrate contain a large amount of P and a large amount of hydrogen. In the photoconductive layers 7 and 10, the P concentration and the hydrogen concentration decrease toward the surface. In this case, the photoconductive layer serves as a hole blocking layer having a large forbidden band and has a higher breakdown voltage.

上記非晶質水素化シリコンの光導電層をコロトロンで帯
電させると−350Vに帯電し、暗中での半減衰時間は
15秒であった。タングステンランプ3ルックスで照射
すると1秒以下で表面電位は0になった。
When the photoconductive layer of amorphous silicon hydride was charged with a corotron, it was charged to -350 V, and the half decay time in the dark was 15 seconds. Irradiation with a tungsten lamp 3 lux reduced the surface potential to 0 in less than 1 second.

実施例3 本実施例は実施例1、2で示したP濃度分布を有する非
晶質水素化シリコン層12、13の表面に電子ブロッキング
層14を設けた例で第5図に示す。
Example 3 This example is an example in which an electron blocking layer 14 is provided on the surface of the amorphous silicon hydride layers 12 and 13 having the P concentration distribution shown in Examples 1 and 2, and is shown in FIG.

実施例1、2で製造した光導電体の非晶質水素化シリコ
ン層12、13の上に、Al基板11の温度を150℃にし、装
置内にArを1×10-3Torr、N2を2×10-3Torrとなる
ように導入し、400Wの放電電力で厚さ600ÅのSi
Nxから成る電子ブロッキング層14を形成した。このSiNx
は、ESCAの分析によると化学量論比のSiNx即ちSi3N
4と極めて近いものであった。
On the amorphous hydrogenated silicon layers 12 and 13 of the photoconductors manufactured in Examples 1 and 2, the temperature of the Al substrate 11 is set to 150 ° C., and Ar is set to 1 × 10 −3 Torr, N 2 in the apparatus. Was introduced to obtain 2 × 10 −3 Torr, and a discharge power of 400 W was applied to produce Si with a thickness of 600 Å.
An electron blocking layer 14 made of Nx was formed. This SiNx
According to ESCA analysis, is the stoichiometric ratio of SiNx, that is, Si 3 N
It was very close to 4 .

かくして作った光導電体の初期帯電電位は−400V、
暗中での半減衰時間は30秒であり、残留電位は−5V
となった。
The initial charge potential of the photoconductor thus prepared is -400V,
Half-decay time in the dark is 30 seconds, residual potential is -5V
Became.

本実施例の場合、表面に電子ブロッキング層SiNx層を形
成したことにより、n−i−p型ダイオードと同様にな
り逆バイアス時の抵抗が大きくなるため、帯電電位の上
昇、および半減衰時間の増加を生じたものと考えられ
る。
In the case of the present embodiment, since the electron blocking layer SiNx layer is formed on the surface, it becomes similar to the nip type diode and the resistance at the time of reverse bias becomes large, so that the charging potential rises and the half decay time is reduced. It is considered that the increase occurred.

上記SiNx層の代りにp型非晶質水素化シリコン層、ある
いは非晶質SixC1-x層またはSiOx等の絶縁層を形成して
も同様の効果がある。
The same effect can be obtained by forming a p-type amorphous hydrogenated silicon layer, an amorphous SixC 1-x layer, or an insulating layer such as SiOx instead of the SiNx layer.

実施例4 実施例3に示したようにSiNx表面層をもつ電子写真感光
体を真空中250〜350℃で5〜100分間熱処理を
行なった。初期帯電電位は−480Vに達した。また熱
処理によって光感度も劣化しない。
Example 4 The electrophotographic photosensitive member having the SiNx surface layer as shown in Example 3 was heat-treated at 250 to 350 ° C. for 5 to 100 minutes in vacuum. The initial charging potential reached -480V. Also, the photosensitivity is not deteriorated by the heat treatment.

光導電体の膜構成で光導電層12が光導電層13同一のH濃
度及びP濃度をもつ、即ち均一な分布をもつ比較例
(1)、光導電層12が光導電層13よりH濃度のみが大き
く、H濃度は同一の比較例(2)、光導電層12が光導電層1
3よりP濃度のみが大きく、H濃度は同一の比較例(3)の
熱処理後の初期帯電電位を比較して表に示す。
Comparative example in which the photoconductive layer 12 has the same H concentration and P concentration as the photoconductive layer 13 in the film structure of the photoconductor, that is, has a uniform distribution.
(1), the photoconductive layer 12 has a higher H concentration than the photoconductive layer 13, and the H concentration is the same. (2), the photoconductive layer 12 is the photoconductive layer 1
Only the P concentration is larger than 3, and the H concentration is shown in the table by comparing the initial charging potentials after the heat treatment of the same Comparative Example (3).

P濃度分布、H濃度分布があった方が初期帯電電位は増
加する。また、真空中で熱処理をしても比較例及び本発
明実施例の初期帯電電位は向上したが、相対的には本発
明の実施例、即ちP濃度、H濃度が同時に変化させる例
がはやり特性は良い。真空中熱処理の効果はSiCx、SiOx
等の他の表面層でも同様に特性の向上があった。
The initial charging potential increases with the P concentration distribution and the H concentration distribution. Further, although the initial charging potential of the comparative example and the example of the present invention was improved even if the heat treatment was carried out in vacuum, the comparative example of the present invention, that is, the example in which the P concentration and the H concentration were changed at the same time, was relatively good. is good. The effect of heat treatment in vacuum is SiCx, SiOx
Other surface layers such as the above also improved the characteristics.

実施例5 実施例3で用いた熱処理前の試料を空気中で250〜4
00℃で5〜200分熱処理を行なった。真空中熱処理
より初期帯電電位は低いが、本発明実施例の特性が良い
ことがわかる。
Example 5 The sample before heat treatment used in Example 3 was heated to 250-4 in air.
Heat treatment was performed at 00 ° C. for 5 to 200 minutes. It can be seen that although the initial charging potential is lower than that in the heat treatment in vacuum, the characteristics of the examples of the present invention are good.

実施例6 実施例5で用いた熱処理前の試料を不活性ガス雰囲気、
水素雰囲気、窒素雰囲気中で250〜400℃で5〜2
00分熱処理を行なったところ真空中熱処理とほぼ同様
に初期帯電電位が得られた。
Example 6 The sample before the heat treatment used in Example 5 was treated with an inert gas atmosphere,
5-2 at 250-400 ° C in hydrogen atmosphere or nitrogen atmosphere
When the heat treatment was performed for 00 minutes, the initial charging potential was obtained almost similarly to the heat treatment in vacuum.

実施例7 本実施例は第1図の水素含有量が少ない非晶質水素化シ
リコンの光導電層に意図的にはVa族元素の不純物を導
入していない例を第6図に示す。
Example 7 This example shows an example in which impurities of a Va group element are not intentionally introduced into the photoconductive layer of amorphous hydrogenated silicon having a low hydrogen content shown in FIG.

鏡面研磨したステンレス鋼板15をRFマグネトロンスパ
ッタ装置内に配置し、装置内を1×10-6Torr以下に排
気し、基板温度を210℃に上温する。次いで、装置内
にAr3.5×10-3TorrP2H63%を含むH2を1.5×10-3To
rr導入し、放電電力800Wで0.4μm、第1の非晶質
水素化シリコンの光導電層16を形成した。続いてAr 4.0
×10-3Torr H2Seを含まないH2を1.0×10-3Torr導入
し、放電電力800Wで8.0μm、第2の非晶質水素化
シリコンの光導電層17を形成した。引きつづき、Arを1
×10-3Torr、N2を3×10-3Torr導入し、400Wで
1000ÅのSiNx層18を形成した。放電を停止し基板温
度を300℃に上昇し30分保持した。降温し、装置か
らこの光導電体を取り出し、その特性を測定したとこ
ろ、初期帯電電子−450Vもつ電子写真感光体が約2
時間で形成することができた。
The mirror-polished stainless steel plate 15 is placed in an RF magnetron sputtering apparatus, the apparatus is evacuated to 1 × 10 −6 Torr or less, and the substrate temperature is raised to 210 ° C. Next, H 2 containing Ar 3.5 × 10 −3 TorrP 2 H 6 3% was placed in the apparatus at 1.5 × 10 −3 To.
rr was introduced and 0.4 μm was formed at a discharge power of 800 W to form a first amorphous silicon hydride photoconductive layer 16. Then Ar 4.0
× 10 -3 Torr H 2 and H 2 containing no Se 1.0 × introduced 10 -3 Torr, 8.0 .mu.m in discharge power 800 W, thereby forming a second amorphous silicon hydride of the photoconductive layer 17. Continue to Ar 1
Introducing 3 × 10 −3 Torr of × 10 −3 Torr and N 2 to form a SiNx layer 18 of 1000 Å at 400 W. The discharge was stopped and the substrate temperature was raised to 300 ° C. and kept for 30 minutes. When the temperature was lowered, the photoconductor was taken out of the apparatus and its characteristics were measured.
Could be formed in time.

実施例8 実施例7は水素分圧を変化させて基板15付近の非晶質水
素化シリコンの光導電層16の水素濃度を内部の非晶質水
素化シリコンの光導電層17より大きくした例である。水
素分圧一定のまま放電電力を変化させることによっても
膜幅の水素濃度を変化させることができる。即ち水素分
圧一定の場合、放電電力が減少するにつれて非晶質水素
化シリコン中の水素濃度は増加するということを利用す
るものである。
Example 8 Example 7 is an example in which the hydrogen partial pressure is changed so that the hydrogen concentration of the amorphous silicon hydride photoconductive layer 16 in the vicinity of the substrate 15 is made larger than that of the internal amorphous silicon hydride photoconductive layer 17. Is. The hydrogen concentration in the film width can also be changed by changing the discharge power while keeping the hydrogen partial pressure constant. That is, it is utilized that the hydrogen concentration in the amorphous hydrogenated silicon increases as the discharge power decreases when the hydrogen partial pressure is constant.

実施例6と同様に排気後、基板温度を210℃に保つ。
装置内にArを4.0×10-3Torr P2H63%を含むH2を1.0
×10-3Torr導入、放電電力550Wで第1の非晶質水
素化シリコンの光導電16を0.4μm形成した。次に実施
例6と同様にAr圧力一定のまま、H2P2H6を含まないH2
切替えH2を1.0×10-3Torr導入し、放電電力を800
Wとし第2の非晶質水素化シリコンの光導電層17を形成
し、SiNx層18の形成と熱処理は実施例6と同様である。
このようにして形成した電子写真感光体は、実施例6と
ほぼ同様の特性となった。
After evacuation, the substrate temperature is maintained at 210 ° C. as in the sixth embodiment.
Ar containing 4.0 × 10 -3 Torr P 2 H 6 containing 3% H 2 at 1.0
A first amorphous silicon hydride photoconductive layer 16 of 0.4 μm was formed by introducing × 10 −3 Torr and discharging power of 550 W. Then, in the same manner as in Example 6, with Ar pressure kept constant, H 2 containing no H 2 P 2 H 6 was switched to introduce H 2 at 1.0 × 10 −3 Torr, and the discharge power was set to 800.
The second photoconductive layer 17 of amorphous hydrogenated silicon is formed with W, and the formation and heat treatment of the SiNx layer 18 are the same as in the sixth embodiment.
The electrophotographic photosensitive member thus formed had substantially the same characteristics as in Example 6.

実施例9 本実施例は第2に示す電子写真感光体の例を示し、第7
図にその断面図を示す。かつカルコゲン元素とアクセプ
ター性の不純物(硼素)を同時にカルコゲン元素含有量
の少ない層20中に導入した場合を示す。ドナー性の作用
をするカルコゲン元素とアクセプター性の不純物を同時
に導入すると非晶質水素化シリコン層はより真性の状態
となり、高抵抗となる、そして電子および正孔の移動を
容易になる。
Example 9 This example shows an example of the electrophotographic photosensitive member shown in the second example.
The cross-sectional view is shown in the figure. In addition, a case where a chalcogen element and an acceptor impurity (boron) are simultaneously introduced into the layer 20 having a small chalcogen element content is shown. When a chalcogen element acting as a donor and an acceptor impurity are introduced at the same time, the amorphous hydrogenated silicon layer becomes more intrinsic, has a high resistance, and facilitates the movement of electrons and holes.

マグネトロンスパッタ装置内を真空排気後、鏡面研磨し
たステンレス基板19を200℃に保持し、Arを4.0×1
-3Torr、50ppmのP2H6を含むH2を5×10-4Torr
装置内に導入し、更にB2H6を50ppm含むH2を5×1
-4Torr導入して全圧力を5×10-3Torrとした。Si単
結晶をターゲットとして放電電力400Wで厚さ20μ
mの非晶質水素化シリコン光導電層20を形成した。
After evacuation of the inside of the magnetron sputtering device, the mirror-polished stainless steel substrate 19 is kept at 200 ° C. and Ar is 4.0 × 1.
0 -3 Torr, 5 x 10 -4 Torr of H 2 containing 50 ppm of P 2 H 6
Introduced into the equipment, 5 × 1 of H 2 containing 50 ppm of B 2 H 6
A total pressure of 5 × 10 −3 Torr was introduced by introducing 0 −4 Torr. Target thickness of Si single crystal and discharge power of 400W and thickness of 20μ
m amorphous silicon hydride photoconductive layer 20 was formed.

次にB2H6を含むH2の導入を停止し、1%のP2H6を含むく
H2を2×10-3Torrとし、全圧力5×10-3Torrで非晶
質水素化シリコンの光導電層21を厚さ1μmに形成し
た。この光導電層21は表面のP、Hの濃度が内部より大
となり、内部の非晶質水素化シリコンの光導電層20には
PおよびBを同時に含有しているため、正負両方に帯電
可能な電子写真感光体を形成した。
Next, the introduction of H 2 containing B 2 H 6 was stopped and the content of 1% P 2 H 6 was reduced.
A photoconductive layer 21 of amorphous hydrogenated silicon was formed to a thickness of 1 μm at a total pressure of 5 × 10 −3 Torr with H 2 at 2 × 10 −3 Torr. The concentration of P and H on the surface of this photoconductive layer 21 is higher than that of the inside, and since the photoconductive layer 20 of amorphous hydrogenated silicon inside contains P and B at the same time, it can be charged both positively and negatively. An electrophotographic photosensitive member was formed.

以上説明した実施例では非晶質水素化シリコンからなる
例を示したが、これは非晶質水素化シリコンを主成分と
した層、例えばGe、Sn、C等を含有する層も使用できる。
In the embodiments described above, an example of amorphous hydrogenated silicon is shown, but a layer containing amorphous hydrogenated silicon as a main component, for example, a layer containing Ge, Sn, C or the like can also be used.

なお本発明による光導電体はプラズマCVD法およびイ
オンプレーティング法で製造することもでき、同様に耐
圧の上昇が得られる。しかしながら反応性スパッタ法を
使用すると上記他の二方法を比し、高耐圧の光導電体が
得られるので有利である。
The photoconductor according to the present invention can also be manufactured by the plasma CVD method and the ion plating method, and similarly, the breakdown voltage can be increased. However, the use of the reactive sputtering method is advantageous in that a photoconductor having a high breakdown voltage can be obtained as compared with the other two methods described above.

一般に光導電体の耐圧が高くなれば同一の表面電位を得
るのに必要な層の厚さを薄くすることができ、このため
製造時間の短縮を計ることができる利点を有する。また
反応性スパッタ法で形成した層は硬度が大であり基板へ
の付着も強力であり、このため寿命の長い電子写真感光
体が得られる。
Generally, if the withstand voltage of the photoconductor becomes high, the thickness of the layer required to obtain the same surface potential can be made thin, which has the advantage that the manufacturing time can be shortened. Further, the layer formed by the reactive sputtering method has a high hardness and is strongly attached to the substrate, so that an electrophotographic photoreceptor having a long life can be obtained.

発明の効果 以上説明した如く、本発明では非晶質水素化シリコンを
主成分とする光導電体において、周期律表Va族元素及
び水素をその断面において濃度分布に変化をもたせて導
入することにより、耐圧および光感度の優れた光導電体
を提供する。また本発明の光導電体を電子写真感光体と
して使用するとき単位膜厚当りの帯電能が高く、また同
一の表面電位を得るのに必要な膜厚を減少させることも
できる。
EFFECTS OF THE INVENTION As described above, according to the present invention, by introducing a group Va element of the periodic table and hydrogen into the photoconductor containing amorphous silicon hydride as a main component while changing the concentration distribution in its cross section, Provide a photoconductor having excellent withstand voltage and photosensitivity. Further, when the photoconductor of the present invention is used as an electrophotographic photoreceptor, it has a high charging ability per unit film thickness, and the film thickness necessary for obtaining the same surface potential can be reduced.

【図面の簡単な説明】[Brief description of drawings]

第1図、第2図は本発明の光導電体の断面略図、第3図
は本発明の実施例1を示す断面図、第4図は実施例2を
示す断面図、第5図は実施例3、4、5、6を示す断面
図、第6図は実施例7、8を示す断面図、第7図は実施
例9を示す断面図である。 1、5、8、11、15、19……導電性基板 2……非晶質水素化シリコンの光導電層 3、6、9、12、16、21……Va族元素及び水素含有量
の多い非晶質水素化シリコン層 4、7、10、13、17、20……Va族元素又は元素及び水
素含有量の少ない非晶質水素化シリコン層 14、18……電子ブロッキング層
1 and 2 are schematic sectional views of the photoconductor of the present invention, FIG. 3 is a sectional view showing Embodiment 1 of the present invention, FIG. 4 is a sectional view showing Embodiment 2 and FIG. 6 is a sectional view showing Examples 3, 4, 5, and 6, FIG. 6 is a sectional view showing Examples 7 and 8, and FIG. 7 is a sectional view showing Example 9. 1, 5, 8, 11, 15, 19 ... Conductive substrate 2 ... Amorphous hydrogenated silicon photoconductive layer 3, 6, 9, 12, 16, 21 ... Va group element and hydrogen content Amorphous silicon hydride layer 4, 7, 10, 13, 17, 20, ... Amorphous silicon hydride layer 14, 18 ... Electron blocking layer containing a small amount of Va group element or element and hydrogen

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭57−105745(JP,A) 特開 昭58−115442(JP,A) 特開 昭56−65142(JP,A) 実開 昭56−153946(JP,U) ─────────────────────────────────────────────────── --Continued from the front page (56) References JP-A-57-105745 (JP, A) JP-A-58-115442 (JP, A) JP-A-56-65142 (JP, A) Actual development Sho-56- 153946 (JP, U)

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】導電性基板上に、周期律表Va族元素を含
む非晶質水素化シリコンからなる光導電層を設けた光導
電体において、上記光導電層中の上記Va元素族及び水
素の含有量を上記光導電層の断面において導電性基板と
の界面付近または上記光導電体の表面付近において、そ
の他の部分におけるよりも大としたことを特徴とする光
導電体。
1. A photoconductor in which a photoconductive layer made of amorphous silicon hydride containing a Va group element of the periodic table is provided on a conductive substrate, wherein the Va element group and hydrogen in the photoconductive layer are provided. In the cross section of the photoconductive layer in the vicinity of the interface with the conductive substrate or in the vicinity of the surface of the photoconductor, which is larger than in other portions.
【請求項2】Va族元素及び水素の含有量の少ない他の
部分に周期律表IIb族元素又はIIIa族元素を添加した
特許請求の範囲第1項記載の光導電体。
2. The photoconductor according to claim 1, wherein a Group IIb group element or a IIIa group element of the periodic table is added to the Va group element and other portions having a low hydrogen content.
【請求項3】導電性基板上に周期律表Va族元素を含む
非晶質水素化シリコンからなる光導電層を設けた光導電
体において、前記導電性基板界面(または光導電体表
面)から光導電体表面(または導電性基板界面)にむか
って、Va族元素および水素の含有量の多い非晶質水素
化シリコン、Va族元素および水素の含有量の少ない非
晶質水素化シリコン、電子ブロッキング層を設けたこと
を特徴とする光導電体。
3. A photoconductor in which a photoconductive layer made of amorphous silicon hydride containing a group Va element of the periodic table is provided on a conductive substrate, from the interface of the conductive substrate (or the surface of the photoconductor). Amorphous silicon hydride having a large content of Va group elements and hydrogen, amorphous hydrogenated silicon having a small content of Va group elements and hydrogen, and electrons toward the surface of the photoconductor (or the interface of the conductive substrate) A photoconductor provided with a blocking layer.
【請求項4】電子のブロッキング層が絶縁層であること
を特徴とする特許請求の範囲第3項記載の光導電体。
4. The photoconductor according to claim 3, wherein the electron blocking layer is an insulating layer.
【請求項5】電子のブロッキング層が酸化シリコン、窒
化シリコン、炭化シリコンのいずれかであることを特徴
とする特許請求の範囲第3項記載の光導電体。
5. The photoconductor according to claim 3, wherein the electron blocking layer is any one of silicon oxide, silicon nitride and silicon carbide.
JP60042498A 1985-03-04 1985-03-04 Photoconductor Expired - Fee Related JPH0652428B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60042498A JPH0652428B2 (en) 1985-03-04 1985-03-04 Photoconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60042498A JPH0652428B2 (en) 1985-03-04 1985-03-04 Photoconductor

Publications (2)

Publication Number Publication Date
JPS61201257A JPS61201257A (en) 1986-09-05
JPH0652428B2 true JPH0652428B2 (en) 1994-07-06

Family

ID=12637726

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60042498A Expired - Fee Related JPH0652428B2 (en) 1985-03-04 1985-03-04 Photoconductor

Country Status (1)

Country Link
JP (1) JPH0652428B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2565314B2 (en) * 1986-09-26 1996-12-18 京セラ株式会社 Electrophotographic photoreceptor
JPH0412804Y2 (en) * 1986-12-23 1992-03-26
JPH0412805Y2 (en) * 1986-12-23 1992-03-26
JPH0421859A (en) * 1990-05-16 1992-01-24 Matsushita Electric Ind Co Ltd Electrophotographic sensitive body
EP1938390A4 (en) * 2005-10-20 2010-03-10 Univ California Nanocrystal solar cells processed from solution

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55154726A (en) * 1979-05-22 1980-12-02 Shunpei Yamazaki Manufacture of semiconductor device
JPS5665142A (en) * 1979-11-01 1981-06-02 Fuji Photo Film Co Ltd Manufacture of electrophotographic receptor
JPS56153946U (en) * 1980-04-16 1981-11-17
JPS57105745A (en) * 1980-12-23 1982-07-01 Canon Inc Photoconductive member
JPS58115442A (en) * 1981-12-28 1983-07-09 Canon Inc Photoconductive member
JPS58136037A (en) * 1982-02-08 1983-08-12 Hitachi Ltd Electrophotographic receptor
JPS58182642A (en) * 1982-04-20 1983-10-25 Mitsubishi Chem Ind Ltd Electrophotographic receptor
JPS5945445A (en) * 1982-09-09 1984-03-14 Toshiba Corp Electrophotographic receptor

Also Published As

Publication number Publication date
JPS61201257A (en) 1986-09-05

Similar Documents

Publication Publication Date Title
EP0038221B1 (en) Electrophotographic member
US4849797A (en) Thin film transistor
US4329699A (en) Semiconductor device and method of manufacturing the same
EP0094224B1 (en) A photoreceptor
JP2003324209A (en) Photovoltaic device and its manufacturing method
JPS628781B2 (en)
JPH0652428B2 (en) Photoconductor
JPS6258552B2 (en)
JPH07101598B2 (en) Camera tube
WO1985002691A1 (en) Photosensitive member for electrophotography
Oda et al. Electrophotographic studies of glow-discharge amorphous silicon
Shimizu et al. Photoreceptor of a‐Si: H with diodelike structure for electrophotography
US4722880A (en) Photoconductor having amorphous silicon hydride
KR101540527B1 (en) Process for producing radiation detector, and radiation detector
JPS6335026B2 (en)
JPS59143379A (en) Photoconductor and manufacture thereof
US4704343A (en) Electrophotographic photosensitive member containing amorphous silicon and doped microcrystalline silicon layers
JPS6334580B2 (en)
EP0300807A2 (en) Electrophotographic photosensitive member
JPS6273275A (en) Photoconductive body
JP3449208B2 (en) Amorphous carbon nitride composition and method for producing the same
JPH0685446B2 (en) Photoelectric conversion device using amorphous silicon
JP3020563B2 (en) Solid-state imaging device
JPS59188965A (en) Original reading element
Tao et al. Large Area Digital X‐ray Imaging

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees