JPS6273275A - Photoconductive body - Google Patents

Photoconductive body

Info

Publication number
JPS6273275A
JPS6273275A JP60212229A JP21222985A JPS6273275A JP S6273275 A JPS6273275 A JP S6273275A JP 60212229 A JP60212229 A JP 60212229A JP 21222985 A JP21222985 A JP 21222985A JP S6273275 A JPS6273275 A JP S6273275A
Authority
JP
Japan
Prior art keywords
layer
germanium
mainly composed
gas
photoconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60212229A
Other languages
Japanese (ja)
Other versions
JPH0715585B2 (en
Inventor
Koji Akiyama
浩二 秋山
Eiichiro Tanaka
栄一郎 田中
Akio Takimoto
昭雄 滝本
Masanori Watanabe
正則 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP60212229A priority Critical patent/JPH0715585B2/en
Publication of JPS6273275A publication Critical patent/JPS6273275A/en
Publication of JPH0715585B2 publication Critical patent/JPH0715585B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/08Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic
    • G03G5/082Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic and not being incorporated in a bonding material, e.g. vacuum deposited
    • G03G5/08214Silicon-based
    • G03G5/08235Silicon-based comprising three or four silicon-based layers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/08Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic
    • G03G5/082Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic and not being incorporated in a bonding material, e.g. vacuum deposited
    • G03G5/08214Silicon-based
    • G03G5/08221Silicon-based comprising one or two silicon based layers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/08Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic
    • G03G5/082Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic and not being incorporated in a bonding material, e.g. vacuum deposited
    • G03G5/08292Germanium-based

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Photoreceptors In Electrophotography (AREA)
  • Light Receiving Elements (AREA)

Abstract

PURPOSE:To obtain the titled body having a low dark current and a low operating voltage by constituting the titled body from the 1st layer composed of one of 3 kinds of specific films or a combination thereof and the 2nd layer mainly composed of a germanium nitride provided on at least one of the interfaces of the 1st layer. CONSTITUTION:The titled body is prepared by forming the 1st layer of any one selected among the film mainly composed of the noncrystalline silicon contg. a hydrogen atom or a halogen atom, a film mainly composed of a noncrystalline silicon and germanium, and a film mainly composed of a noncrystalline germanium or the combination thereof, and the 2nd layer mainly composed of the germanium nitride provided on at least one of the interfaces of the 1st layer. For example, the 2nd layer of GeNx is prepared by using a polycrystalline of Ge as a target, and introducing 1-3mTorr an Ar gas and 2-6mTorr an N2 gas into an apparatus, and by impressing a high frequency electric power of 300-500W. The 3rd layer of a-Si:H is prepared by using a polycrystalline of Si as a target, and by introducing 1-10mTorr an Ar gas and 0.3-4 mTorr H2 gas into an apparatus, and by impressing a discharge electric power of 200-800W. Further a transparent electrode 4 composed of ITO is formed by a sputtering method.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、シリコン原子またはゲルマニウム原子を主成
分とする非晶質材料と窒化ゲルマニウムから構成される
光導電体に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a photoconductor composed of an amorphous material containing silicon atoms or germanium atoms as a main component and germanium nitride.

(従来の技術) 非晶質水素化シリコン(以下a−8iHと略す)は光導
電性、耐熱性に優れ、しかも無公害であることから撮像
デバイスや電子写真感光体への利用の開発研究が活発で
ある。これらの撮像デバイスに要求される高感度、低暗
電流を実現する方法として、電荷注入阻止層を光導電層
の界面に形成したブロッキング構成が有効である。たと
えば、光導電層へ正孔の流入を阻止する正孔のブロッキ
ング層の場合、従来ではAt205や5iOXなどの酸
化物やポリカーブネートのような有機高分子5INxが
提案されている。
(Prior art) Amorphous silicon hydride (hereinafter abbreviated as a-8iH) has excellent photoconductivity and heat resistance, and is also non-polluting, so it has been researched and developed for use in imaging devices and electrophotographic photoreceptors. Active. A blocking structure in which a charge injection blocking layer is formed at the interface of a photoconductive layer is effective as a method for realizing the high sensitivity and low dark current required for these imaging devices. For example, in the case of a hole blocking layer that prevents holes from flowing into the photoconductive layer, oxides such as At205 and 5iOX, and organic polymers 5INx such as polycarnate have been proposed.

(参考文献:特開昭56−24356号、特開昭57−
581.61号) (発明が解決しようとする問題点) 正孔のブロッキング層を従来の5iNX、SiOx、A
t206および有機高分子などで構成すると、光導電層
中の電子に対しても障壁を形成し、動作電圧の低減(撮
像デバイスや電子写真感光体においては残像の低減)化
に問題を生じていた。
(References: JP-A-56-24356, JP-A-57-
No. 581.61) (Problem to be solved by the invention) The hole blocking layer is replaced with conventional 5iNX, SiOx, A
When composed of T206 and organic polymers, it also forms a barrier against electrons in the photoconductive layer, causing problems in reducing operating voltage (reducing afterimages in imaging devices and electrophotographic photoreceptors). .

本発明の目的は、従来の欠点を解消し、窒化ゲルマニウ
ムを主成分とする層を正孔のブロッキング層とし、低暗
電流、低動作電圧を可能とする光導電体を提供すること
である。
SUMMARY OF THE INVENTION An object of the present invention is to provide a photoconductor which eliminates the conventional drawbacks, uses a layer containing germanium nitride as a main component as a hole blocking layer, and enables low dark current and low operating voltage.

(問題点を解決するための手段) 本発明の光導電体は、水素原子またはハロゲン原子を含
有する非晶質シリコンを主成分とする膜、非晶質シリコ
ンゲルマニウムを主成分とする膜、および非晶質ゲルマ
ニウムを主成分とする膜のうち何れか1つ、あるいはそ
れらの組合せからなる第1の層と、その第1の層の少な
くとも一方の界面上に窒化ゲルマニウムを主成分とする
第2の層を形成するものである。
(Means for Solving the Problems) The photoconductor of the present invention includes a film mainly composed of amorphous silicon containing hydrogen atoms or halogen atoms, a film mainly composed of amorphous silicon germanium, and A first layer consisting of any one of films mainly composed of amorphous germanium or a combination thereof, and a second layer mainly composed of germanium nitride on the interface of at least one of the first layers. It forms a layer of

また、第1の層が、酸素原子、窒素原子、炭素原子のう
ち、何れか1つ、またはそれらの組合せを含有するもの
であり、第1の層が、硼素原子または燐原子を少なくと
も1つ含有するものであシ、第2の層である窒化ゲルマ
ニウムが酸素原子または炭素原子のいずれか1つ、また
は両方を含有するものであり、さらに第2の層である窒
化ゲルマニウムを形成した第1の層の他方の界面上に、
窒化シリコンあるいは硼素を含有し、かつ少なくとも水
素原子またはハロゲン原子を含有する非晶質シリコン、
非晶質シリコンゲルマニウムおよび非晶’lゲルマニウ
ムのいずれか1つを形成するものである。
Further, the first layer contains any one of oxygen atoms, nitrogen atoms, and carbon atoms, or a combination thereof, and the first layer contains at least one boron atom or phosphorus atom. The second layer of germanium nitride contains one or both of oxygen atoms and carbon atoms, and the second layer of germanium nitride contains oxygen atoms, carbon atoms, or both. on the other interface of the layer of
Amorphous silicon containing silicon nitride or boron and containing at least hydrogen atoms or halogen atoms;
Either one of amorphous silicon germanium and amorphous germanium is formed.

(作 用) 窒化ゲルマニウムは、窒素の組成比にかかわらずn型伝
導を示すため、光導電層である非晶質シリコンへの正孔
の流入を阻止し、しかも非晶質シリコン中の電子に対し
て障壁を形成し々いことから、暗電流が減少し、動作電
圧が低下する。また光導電層が禁止帯幅の狭い非晶質シ
リコンゲルマニウム、または非晶質ゲルマニウムで構成
されている場合においても、空化ゲルマニウムの窒素の
組成比率を減少させることによシ、窒化ゲルマニウムの
禁止帯幅を減少させることが容易であるため、窒化ゲル
マニウムは正孔のブロッキング層トして有効に働き、光
導電層が非晶質シリコンの場合と同様な効果を得る。
(Function) Because germanium nitride exhibits n-type conductivity regardless of the nitrogen composition ratio, it prevents holes from flowing into the amorphous silicon that is the photoconductive layer, and also prevents the electrons in the amorphous silicon from flowing into the amorphous silicon. Since a barrier is often formed, the dark current decreases and the operating voltage decreases. Furthermore, even when the photoconductive layer is composed of amorphous silicon germanium, which has a narrow bandgap, or amorphous germanium, it is possible to inhibit germanium nitride by reducing the nitrogen composition ratio of vacated germanium. Since it is easy to reduce the band width, germanium nitride acts effectively as a hole blocking layer, achieving the same effect as when the photoconductive layer is made of amorphous silicon.

(実施例) 本発明の実施例を第1図ないし第5図に基づいて説明す
る。
(Example) An example of the present invention will be described based on FIGS. 1 to 5.

空化ゲルマニウム(以下G eNxと略す)膜の作成に
は、GeH4、Ge2H6、Ge6H8、GeF4、G
eHF3、GeH2F2、G eHsF 、 Ge C
Z、s 、 Ge HCLs、GeH2Ct2、Ge 
H3CI−、G e F 2 、 Ge CZ2などの
Ge原子の原料ガスおよびN2、NH3、H2NNH2
、HN3、NH4N3、F3N、F4N2などのN原子
の原料ガスを用いたプラズマCVD法と、ターゲットを
GeまたはG e 5N4とし、Ar、H2、N2、N
H6中での反応スAツタリング法や蒸着法が使用される
。また、光導電層の非晶質シリコンは、S r H4、
S i2 Ht、、S 13 Ha、S t F 4、
S t HF s、SiH2F2、SiH3F 、 5
ict4、S I HCLs、5iH2Ct2、S 1
H3CZなどのSt原子の原料ガスあるいはこれらのガ
スをH2、Ar 、 Heなどのガスで希釈したガスを
用いたプラズマCVD法または、Stをターゲットとし
、Ar 、H2中での反応性スパッタリング法や蒸着法
で形成できる。非晶質ゲルマニウムは、上記のGe原子
の原料ガス、あるいはこれらのガスをH2、Ar、He
などで希釈したガスを用いたプラズマCVD法または、
GeをターゲットとしたA2、H2中での反応性スA?
ツタリング法や蒸着法で形成できる。非晶質ゲルマニウ
ムは、Ge原子の原料ガス、あるいはこれらの原料ガス
をN2、Ar 、 Heなどで希釈した原料ガスを用い
たプラズマCVD法、またはGeをターゲットとしたA
r 、 N2中での反応性スパッタリング法や蒸着法で
形成され、非晶質シリコンゲルマニウムも同様に、Ge
原子の原料ガスとSt原子の原料ガスの混合ガス、ある
いはこの混合ガスをN2、Ar 、 Heなどの原料ガ
スで希釈したガスを用いたプラズマCVD法またはSt
とGeの混合されたターゲットあるいはSlとGeの2
枚のターゲットを用いたAr 、 N2中での反応性ス
パッタリング法や蒸着法で形成される。
GeH4, Ge2H6, Ge6H8, GeF4, G
eHF3, GeH2F2, GeHsF, GeC
Z, s, Ge HCLs, GeH2Ct2, Ge
Ge atom source gas such as H3CI-, G e F 2 , Ge CZ2 and N2, NH3, H2NNH2
, HN3, NH4N3, F3N, F4N2, etc., and the target is Ge or Ge 5N4, Ar, H2, N2, N
A reaction scattering method in H6 or a vapor deposition method is used. Moreover, the amorphous silicon of the photoconductive layer is S r H4,
S i2 Ht,, S 13 Ha, S t F 4,
S t HF s, SiH2F2, SiH3F, 5
ict4, S I HCLs, 5iH2Ct2, S 1
Plasma CVD method using a raw material gas of St atoms such as H3CZ or gas diluted with gas such as H2, Ar, He, etc., or reactive sputtering method or vapor deposition in Ar or H2 using St as a target. It can be formed by law. Amorphous germanium is produced by using the above-mentioned Ge atom raw material gas or by combining these gases with H2, Ar, or He.
Plasma CVD method using gas diluted with
A2 targeting Ge, reactivity in H2 A?
It can be formed using the vine ring method or vapor deposition method. Amorphous germanium can be produced using a plasma CVD method using a raw material gas of Ge atoms or a raw material gas obtained by diluting these raw material gases with N2, Ar, He, etc., or by using an A method using Ge as a target.
r, is formed by reactive sputtering or vapor deposition in N2, and amorphous silicon germanium is similarly formed by Ge.
Plasma CVD method or St
and Ge mixed target or 2 of Sl and Ge
It is formed by reactive sputtering or vapor deposition in Ar or N2 using a single target.

実施例1および実施例2では反応性スパッタリング法を
用いた例について、実施例3および実施例4ではプラズ
マCVD法を用いた例について説明する。
Examples 1 and 2 will be described using a reactive sputtering method, and Examples 3 and 4 will be described using a plasma CVD method.

実施例1 第1図は本発明の光導電体の断面図である。同図におい
て、鏡面研磨したAt基板1をマグネトロンスパッタリ
ング装置内に配置し、2X10  Torr以下に排気
したのち、基板温度を250℃に上昇させる。Ge多結
晶をターゲットとし、Ar : 1ないし3 mTor
r 、 N2 : 2ないし6 mTorrを装置内に
導入し、周波数13.56 MHzの高周波電力300
ないし500WによりGeNx層2を0.2μm形成す
る。
Example 1 FIG. 1 is a sectional view of a photoconductor of the present invention. In the figure, a mirror-polished At substrate 1 is placed in a magnetron sputtering device, and after exhausting to 2×10 Torr or less, the substrate temperature is raised to 250° C. Targeting Ge polycrystal, Ar: 1 to 3 mTor
r, N2: 2 to 6 mTorr was introduced into the device, and a high frequency power of 300 MHz with a frequency of 13.56 MHz was applied.
A GeNx layer 2 having a thickness of 0.2 μm is formed by applying 500 W to 500 W.

続いてAr: 1ないし10 mTorr 、 N2:
 0.3ないし4 mTorrを導入し、St多結晶を
ターゲットとし、放電電力200ないしsoowでa−
8t : H層3を8μm形成する。さらにスミ9ツタ
リング法でITO透明電極4を形成する。
Then Ar: 1 to 10 mTorr, N2:
Introducing 0.3 to 4 mTorr, targeting St polycrystal, and discharging power of 200 to soow.
8t: H layer 3 is formed to have a thickness of 8 μm. Furthermore, an ITO transparent electrode 4 is formed by a sumi9 tuttering method.

第1図に示すように基板1が正、上部のITO透明電極
4が負となるように電圧を印加した場合の暗電流および
波長435 nmの光に対する光電流の電圧依存性を第
3図に示す。比較のため従来例として第2図に示すよう
に、Ar:2ないし4mTorr 。
Figure 3 shows the voltage dependence of the dark current and the photocurrent for light with a wavelength of 435 nm when voltage is applied so that the substrate 1 is positive and the upper ITO transparent electrode 4 is negative as shown in Figure 1. show. As shown in FIG. 2 as a conventional example for comparison, Ar: 2 to 4 mTorr.

N2:1ないし2 mTorrでSt多結晶をターゲッ
トとし放電型、力300ないし500Wで製作したS 
iNxNSO2,2μmをブロッキング層として用いた
構造での電圧−電流特性を第3図に示す。同図から明ら
か々ように、本発明の実施例は、低電圧動作で高感度、
しかも低暗電流である。
N2: S manufactured at 1 to 2 mTorr with St polycrystal as a target, discharge type, and power of 300 to 500 W.
FIG. 3 shows the voltage-current characteristics in a structure using iNxNSO2, 2 μm, as a blocking layer. As is clear from the figure, the embodiment of the present invention has low voltage operation, high sensitivity,
Moreover, it has a low dark current.

SiNxは、GeNxと同様に正孔のブロワキング層と
して働いているが、a−8t:H中の電子に対して障壁
となっており、障壁を作らないGeNxに対して動作電
圧が高くなっている。
SiNx works as a hole blowing layer like GeNx, but it acts as a barrier to the electrons in a-8t:H, and the operating voltage is higher than that of GeNx, which does not create a barrier. There is.

また、第1図の光導電体を電子写真感光体(第1図でI
TO透明電極4および外部回路を除去した状態)として
負帯電で使用した場合、飽和表面電位は440V、残留
電位は5v以下であった。本発明の実施例は電荷受容量
が大きく、残留電位の小さい電子写真感光体を提供する
ことがわかる。
In addition, the photoconductor shown in Figure 1 was replaced with an electrophotographic photoreceptor (I
When used with negative charging (with the TO transparent electrode 4 and external circuit removed), the saturated surface potential was 440 V and the residual potential was 5 V or less. It can be seen that the examples of the present invention provide an electrophotographic photoreceptor with a large charge acceptance capacity and a small residual potential.

実施例2 第4図は本発明の第2実施例による光導電体の断面図で
ある。同図において、ITO透明電極10を表面に形成
したガラス基板11をマグネトロンスパッタリング装置
内に配置し、基板温度250℃でGe多結晶をターゲッ
トとし、Ar: 1ないし3mTorr 、 N2: 
2ないし6 mTorr 、放電電力300ないし50
0WでGeNx層12全1200ないし3000X形成
する。次に、St多結晶をターゲットとし、Ar:1な
いし10 mTorr 、水素で希釈した20ppm濃
度のB2H6:0.3ないしQ、 4 mTorr 、
 放電電力200ないし800Wで硼素添加したa−8
t : H層13を2ないし3μm形成し、続いて、A
r: 1ないし3 mTorr 、 N2: 2ないし
5 mTorr 、放電電力300ないし500WでS
iNx層14を1000ないし3oooi形成する。さ
らに電子ビームランディング層5b2S315を100
OX蒸着して撮像管ターゲットを製作する。ITO電極
10はカソード16に対して正にバイアスされているた
め、ガラス基板11側からの入射光によって生成された
電子正孔対は膜中の電界により分離する。正孔は硼素添
加したa−8t:)I層13中を上部の表面ヘトリフト
し、電子は下部ITO透明電極10に集る。SiNx層
14はX値が大きく正孔が走行しやすく、電子のブロッ
キング層として働き、GeNx層には正孔のブロッキン
グ層として働く。また硼素添加によJa−8t:H層1
3中の正孔は動き易くなる。したがって本実施例におい
ては、動作電圧が低く、焼付けおよび残像の少ない良好
な特性が得られる。
Embodiment 2 FIG. 4 is a sectional view of a photoconductor according to a second embodiment of the present invention. In the figure, a glass substrate 11 with an ITO transparent electrode 10 formed on its surface is placed in a magnetron sputtering device, a Ge polycrystalline target is set at a substrate temperature of 250° C., Ar: 1 to 3 mTorr, N2:
2 to 6 mTorr, discharge power 300 to 50
At 0W, the GeNx layer 12 is formed to have a total thickness of 1200 to 3000X. Next, using St polycrystal as a target, Ar: 1 to 10 mTorr, B2H diluted with hydrogen at a concentration of 20 ppm: 0.3 to Q, 4 mTorr,
Boron-doped a-8 with discharge power of 200 to 800 W
t: H layer 13 is formed to a thickness of 2 to 3 μm, and then A
r: 1 to 3 mTorr, N2: 2 to 5 mTorr, S at discharge power 300 to 500W
1000 to 3000 iNx layers 14 are formed. Furthermore, the electron beam landing layer 5b2S315 is
An image pickup tube target is manufactured by OX vapor deposition. Since the ITO electrode 10 is positively biased with respect to the cathode 16, electron-hole pairs generated by incident light from the glass substrate 11 side are separated by the electric field in the film. Holes are lifted into the boron-doped a-8t:)I layer 13 to the upper surface, and electrons are collected at the lower ITO transparent electrode 10. The SiNx layer 14 has a large X value, allows holes to travel easily, and acts as an electron blocking layer, and the GeNx layer acts as a hole blocking layer. In addition, by adding boron, Ja-8t:H layer 1
The holes in 3 become more mobile. Therefore, in this embodiment, the operating voltage is low, and good characteristics with little burn-in and afterimage can be obtained.

実施例3 第5図は本発明の第3実施例による光導電体の断面図で
ある。同図において、鏡面研摩したAAドラム20を容
量結合方式でプラズマCVD装置内に配置し、反応容器
内を5X10  Torr以下に排気したのち、基板を
150ないし250℃に加熱する。
Embodiment 3 FIG. 5 is a sectional view of a photoconductor according to a third embodiment of the present invention. In the figure, a mirror-polished AA drum 20 is placed in a plasma CVD apparatus using a capacitive coupling method, and after the inside of the reaction vessel is evacuated to 5×10 Torr or less, the substrate is heated to 150 to 250° C.

GeF:1ないし5 secm −NHs : 190
ないし200BCQm導入し、反応容器内の圧力を0.
2ないし1.0Torrに調整後、高周波電力300な
いし800WでGeNx層21全212ないしI 11
m形成し、Ge F4;0、5ないし10 secm、
 5jH4: 100ないし200Beam、水素希釈
した1 0 ppm濃度のPH3:5ないし10 se
cm導入し、0.2ないし2.0 Torr 、高周波
電力150ないし500Wで燐添加した非晶質シリコン
ダルマニウム層22を1ないし3μm形成し、続いて5
IH4: 100ないし200 secm 、 0.2
ないし2. Q Torr 、高周波電力150ないし
500Wの製作条件で、a−8t : H層23を10
ないし15μm形成する。さらに5IH4: 5ないし
10 secm 、 NH3:100ないし200 s
ecm導入し、圧力0.2ないし1、 Q Torr放
電電力150ないし600WでS I NX層24を1
000ないし2000X形成して光導電体を得る。
GeF: 1 to 5 secm -NHs: 190
~200 BCQm is introduced, and the pressure inside the reaction vessel is reduced to 0.
After adjusting to 2 to 1.0 Torr, the GeNx layer 21 total 212 to I 11 is heated with high frequency power of 300 to 800 W.
m formed, Ge F4; 0, 5 to 10 sec,
5jH4: 100 to 200 Beam, 10 ppm concentration of PH3 diluted with hydrogen: 5 to 10 se
A phosphorus-doped amorphous silicon dalmanium layer 22 of 1 to 3 μm is formed at 0.2 to 2.0 Torr and a high frequency power of 150 to 500 W, and then
IH4: 100 to 200 sec, 0.2
Or 2. Under the manufacturing conditions of Q Torr and high frequency power of 150 to 500 W, the a-8t: H layer 23 is
to 15 μm. Furthermore, 5IH4: 5 to 10 sec, NH3: 100 to 200 s
ECM is introduced, and the SINX layer 24 is heated at a pressure of 0.2 to 1 and a Q Torr discharge power of 150 to 600 W.
000 to 2000X formation to obtain a photoconductor.

この光導電体の負帯電における分光感度は400ないし
85 Q nmの範囲にわたって高感度であり、非晶質
シリコンゲルマニウム層22を光導電層としてa−8i
H層23に付加したことによる赤外線領域の光感度の向
上を確認できた。この感光体を800 nmの半導体レ
ーザを光源とするレーザービームプリンタに実装し、鮮
明な印字を確認した。
The spectral sensitivity of this photoconductor when negatively charged is high over the range of 400 to 85 Q nm, and the a-8i
It was confirmed that the addition to the H layer 23 improved the photosensitivity in the infrared region. This photoreceptor was mounted on a laser beam printer using an 800 nm semiconductor laser as a light source, and clear printing was confirmed.

この場合のG eNXNX層上1禁止帯幅を狭くしてあ
り、正孔のブロッキング層として働いているだけでなく
、レーザー光の吸収層として、AAドラム20の表面で
レーザー光が反射して解像度が低下するのを防止してい
る。さらに、感光体の安定化、高抵抗化を図るため、非
晶質シリコンゲルマニウム層22およびa−8t : 
H層23に炭素原子、酸素原子あるいは窒素原子を添加
してもよく、また、G eNx層21とAtドラム20
と接着を良くするため、酸素原子あるいは炭・素原子を
GeNx層21全21してもよい。
In this case, the forbidden band width on the GeNXNX layer is narrowed, and it not only functions as a hole blocking layer, but also acts as a laser beam absorption layer, reflecting the laser beam on the surface of the AA drum 20 and improving the resolution. is prevented from decreasing. Furthermore, in order to stabilize the photoreceptor and increase its resistance, an amorphous silicon germanium layer 22 and a-8t:
Carbon atoms, oxygen atoms, or nitrogen atoms may be added to the H layer 23, and the GeNx layer 21 and the At drum 20
In order to improve adhesion to the GeNx layer 21, oxygen atoms or carbon/carbon atoms may be added to the entire GeNx layer 21.

実施例4 実施例3と同様にプラズマCVD法により、15゜ない
し250℃に加熱したAtドラム上に5IH4:】00
ないし200sccm、水素希釈した4 0 ppm濃
度BF3: 100ないし200secm、ガス圧力0
.2ないし1. OTorr 、放電電力100ないし
400Wで硼素添加したP型a−8t:H膜を0.2な
いし1.0μm形成し、さらに5IH4: 100ない
し200 secm、水素希釈した4 0 ppm 、
濃度BF3:1ないしlQsccm。
Example 4 5IH4:]00 was deposited on an At drum heated to 15° to 250°C by the plasma CVD method in the same manner as in Example 3.
~200sccm, 40 ppm concentration BF3 diluted with hydrogen: 100~200sec, gas pressure 0
.. 2 to 1. OTorr, a boron-doped P-type a-8t:H film of 0.2 to 1.0 μm was formed at a discharge power of 100 to 400 W, and further 5IH4: 100 to 200 sec, hydrogen diluted to 40 ppm,
Concentration BF3:1 to 1Qsccm.

ガス圧力0.2ないし1.0 Torr 、放電電力1
00ないし400Wで硼酸添加したa−8t:H膜を1
0ないし20μm形成する。さらに、GeHa : o
、 5ないし1.0secm 、 N2 : 150な
いし200 secm 、ガス圧力0.2ないし1. 
OTorr 、放電電力300ないし600WでGeN
x層100oないし5000X形成し、電子写真感光体
を得る。
Gas pressure 0.2 to 1.0 Torr, discharge power 1
A-8T:H film doped with boric acid at 00 to 400W
The thickness is 0 to 20 μm. Furthermore, GeHa: o
, 5 to 1.0 sec, N2: 150 to 200 sec, gas pressure 0.2 to 1.
OTorr, GeN with discharge power 300 to 600W
An x layer of 100 to 5000 x is formed to obtain an electrophotographic photoreceptor.

この電子写真感光体を市販の複写機に実装したら、正帯
電で50万枚の耐刷性と良好な画像が得られることが確
認できた。
When this electrophotographic photoreceptor was installed in a commercially available copying machine, it was confirmed that it could print 500,000 sheets with positive charging and produce good images.

(発明の効果) 本発明による光導電体は、低暗電流、低動作電圧で、電
子写真感光体としても使用できる。特にレーザービーム
プリンタ用の感光体として使用する場合、Ge Nxの
禁止帯幅を小さくすることによシ、正孔のブロッキング
層だけでなく、レーザー光ヲ有効に吸収するため、実用
上の効果は犬である。
(Effects of the Invention) The photoconductor according to the present invention has a low dark current and a low operating voltage, and can be used as an electrophotographic photoreceptor. In particular, when used as a photoconductor for laser beam printers, by reducing the forbidden band width of GeNx, it not only acts as a hole blocking layer but also effectively absorbs laser light, so it has no practical effect. It's a dog.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明における一実施例の光導電体の断面図、
第2図は従来例の光導電体の断面図、第3図はそれらの
暗電流と光電流の電圧依存性を示すチャー1−  、第
4図は本発明における光導電体の撮像管ターゲットへの
一応用例の断面図、第5図は本発明における光導電体の
電子写真感光体への一応用例の断面図である。 1 ・At基板、2,12,21・・・GeNX層、3
.13゜23−a−8t : H層、4 、10−IT
O透明電極、5゜14.24・・・5iNX層、11・
・・ガラス基板、15・・・Sb2S3層、16・・・
カン−P122・・・非晶質シリコンゲルマニウム層。 第1図 第2図 第3図 りν戸d竜広(Vl
FIG. 1 is a cross-sectional view of a photoconductor according to an embodiment of the present invention;
Fig. 2 is a cross-sectional view of a conventional photoconductor, Fig. 3 is a diagram showing the voltage dependence of dark current and photocurrent, and Fig. 4 is a cross-sectional view of a photoconductor according to the present invention. FIG. 5 is a sectional view of an example of application of the photoconductor to an electrophotographic photoreceptor according to the present invention. 1 ・At substrate, 2, 12, 21... GeNX layer, 3
.. 13゜23-a-8t: H layer, 4, 10-IT
O transparent electrode, 5°14.24...5iNX layer, 11.
...Glass substrate, 15...Sb2S3 layer, 16...
Can-P122...Amorphous silicon germanium layer. Figure 1 Figure 2 Figure 3 Plan νdo d Tatsuhiro (Vl

Claims (5)

【特許請求の範囲】[Claims] (1)水素原子またはハロゲン原子を含有する非晶質シ
リコンを主成分とする膜、非晶質シリコンゲルマニウム
を主成分とする膜、および非晶質ゲルマニウムを主成分
とする膜のうち、何れか1つ、あるいはそれらの組合せ
からなる第1の層と、該第1の層の少なくとも一方の界
面上に窒化ゲルマニウムを主成分とする第2の層を形成
することを特徴とする光導電体。
(1) Any of the following: a film mainly composed of amorphous silicon containing hydrogen atoms or halogen atoms, a film mainly composed of amorphous silicon germanium, and a film mainly composed of amorphous germanium. A photoconductor characterized in that a first layer consisting of one layer or a combination thereof and a second layer containing germanium nitride as a main component are formed on the interface of at least one of the first layers.
(2)第1の層が、酸素原子、窒素原子、炭素原子のう
ち、何れか1つまたはそれらの組合せを含有することを
特徴とする特許請求の範囲第(1)項記載の光導電体。
(2) The photoconductor according to claim (1), wherein the first layer contains any one of oxygen atoms, nitrogen atoms, and carbon atoms, or a combination thereof. .
(3)第1の層が硼素原子または燐原子を少なくとも1
つ含有することを特徴とする特許請求の範囲第(1)項
または第(2)項記載の光導電体。
(3) The first layer contains at least one boron atom or phosphorus atom.
A photoconductor according to claim (1) or (2), characterized in that the photoconductor contains:
(4)第2の層である窒化ゲルマニウムが酸素原子また
は炭素原子のいずれか1つまたは両方を含有することを
特徴とする特許請求の範囲第(1)項ないし第(3)項
の何れか1つに記載の光導電体。
(4) Any one of claims (1) to (3), characterized in that the second layer of germanium nitride contains one or both of oxygen atoms and carbon atoms. 1. The photoconductor according to claim 1.
(5)第2の層である窒化ゲルマニウムを形成した第1
の層の他方の界面上に、窒化シリコンあるいは硼素を含
有し、かつ少なくとも水素原子またはハロゲン原子を含
有する非晶質シリコン、非晶質シリコンゲルマニウムお
よび非晶質ゲルマニウムのいずれか1つを形成すること
を特徴とする特許請求の範囲第(1)項ないし第(4)
項の何れか1つに記載の光導電体。
(5) The first layer formed with germanium nitride, which is the second layer.
On the other interface of the layer, one of amorphous silicon, amorphous silicon germanium, and amorphous germanium containing silicon nitride or boron and at least a hydrogen atom or a halogen atom is formed. Claims (1) to (4) are characterized in that:
The photoconductor according to any one of paragraphs.
JP60212229A 1985-09-27 1985-09-27 Photoconductor Expired - Lifetime JPH0715585B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60212229A JPH0715585B2 (en) 1985-09-27 1985-09-27 Photoconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60212229A JPH0715585B2 (en) 1985-09-27 1985-09-27 Photoconductor

Publications (2)

Publication Number Publication Date
JPS6273275A true JPS6273275A (en) 1987-04-03
JPH0715585B2 JPH0715585B2 (en) 1995-02-22

Family

ID=16619094

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60212229A Expired - Lifetime JPH0715585B2 (en) 1985-09-27 1985-09-27 Photoconductor

Country Status (1)

Country Link
JP (1) JPH0715585B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012160564A (en) * 2011-01-31 2012-08-23 Nippon Hoso Kyokai <Nhk> Image pickup device and image pickup tube using the same
JP2016121403A (en) * 2013-04-11 2016-07-07 エア プロダクツ アンド ケミカルズ インコーポレイテッドAir Products And Chemicals Incorporated Method of making multicomponent film

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6075841A (en) * 1983-09-13 1985-04-30 Canon Inc Photoconductive member
JPS6148866A (en) * 1984-08-17 1986-03-10 Mitsubishi Chem Ind Ltd Electrophotographic sensitive body
JPS61288076A (en) * 1985-06-14 1986-12-18 Canon Inc Formation of deposited film

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6075841A (en) * 1983-09-13 1985-04-30 Canon Inc Photoconductive member
JPS6148866A (en) * 1984-08-17 1986-03-10 Mitsubishi Chem Ind Ltd Electrophotographic sensitive body
JPS61288076A (en) * 1985-06-14 1986-12-18 Canon Inc Formation of deposited film

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012160564A (en) * 2011-01-31 2012-08-23 Nippon Hoso Kyokai <Nhk> Image pickup device and image pickup tube using the same
JP2016121403A (en) * 2013-04-11 2016-07-07 エア プロダクツ アンド ケミカルズ インコーポレイテッドAir Products And Chemicals Incorporated Method of making multicomponent film

Also Published As

Publication number Publication date
JPH0715585B2 (en) 1995-02-22

Similar Documents

Publication Publication Date Title
US4510224A (en) Electrophotographic photoreceptors having amorphous silicon photoconductors
JPH0150904B2 (en)
JPS6410069B2 (en)
JP2933177B2 (en) Non-single-crystal silicon carbide semiconductor, method for manufacturing the same, and semiconductor device using the same
JPS639219B2 (en)
JPH0373859B2 (en)
US4882252A (en) Electrophotographic sensitive member with amorphous silicon carbide
JPS6273275A (en) Photoconductive body
JP2855300B2 (en) Non-single-crystal germanium semiconductor
JPH0652428B2 (en) Photoconductor
JP2835798B2 (en) Non-single-crystal silicon semiconductor
US4704343A (en) Electrophotographic photosensitive member containing amorphous silicon and doped microcrystalline silicon layers
JP2528283B2 (en) Photoreceptive member having ultra-thin layered structure
JPS6298361A (en) Photoconductive body
JPS6280664A (en) Photoconductive body
JPS6410066B2 (en)
JPS628782B2 (en)
JPS6194048A (en) Photosensitive body
JPS6261056A (en) Photoconductor
JPS6410067B2 (en)
JPS6410064B2 (en)
JPH0715584B2 (en) Electrophotographic photoreceptor
JPS6346409B2 (en)
JPS59149371A (en) Photodetecting surface
JPS62134653A (en) Electrophotographic sensitive body