JPH0652249B2 - Biosensor - Google Patents

Biosensor

Info

Publication number
JPH0652249B2
JPH0652249B2 JP63312302A JP31230288A JPH0652249B2 JP H0652249 B2 JPH0652249 B2 JP H0652249B2 JP 63312302 A JP63312302 A JP 63312302A JP 31230288 A JP31230288 A JP 31230288A JP H0652249 B2 JPH0652249 B2 JP H0652249B2
Authority
JP
Japan
Prior art keywords
electrode
electron acceptor
biosensor
layer
electrode system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63312302A
Other languages
Japanese (ja)
Other versions
JPH02157646A (en
Inventor
真理子 河栗
真由美 藤田
史郎 南海
孝志 飯島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP63312302A priority Critical patent/JPH0652249B2/en
Publication of JPH02157646A publication Critical patent/JPH02157646A/en
Publication of JPH0652249B2 publication Critical patent/JPH0652249B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、種々の微量の生体試料中の特定成分につい
て、試料液を希釈することなく迅速かつ簡便に定量する
ことのできるバイオセンサに関する。
TECHNICAL FIELD The present invention relates to a biosensor capable of quickly and simply quantifying a specific component in various trace amounts of a biological sample without diluting the sample solution.

従来の技術 従来、血液などの生体試料中の特定成分について、試料
液の希釈や攪拌などの操作を行うことなく高精度に定量
する方式としては、第3図に示す様なバイオセンサがあ
る。このバイオセンサは、絶縁基板11上にスクリーン
印刷等の方法で電極系12,13を形成し、前記電極上
に親水性高分子層15を形成するとともに該親水性高分
子層15上にと酸化還元酵素および電子受容体からなる
酵素反応層18を形成したものである。試料液を前記酵
素反応層18へ滴下すると、試料液に前記酵素反応層1
8中の酸化還元酵素と電子受容体が溶解し、試料液中の
基質との間で酵素反応が進行し電子受容体が還元され
る。酵素反応終了後、この還元された電子受容体を電気
化学的に酸化し、このとき得られる酸化電流値から試料
液中の基質濃度を求めるものである。
2. Description of the Related Art Conventionally, there is a biosensor as shown in FIG. 3 as a method for quantifying a specific component in a biological sample such as blood with high precision without performing operations such as dilution and stirring of a sample solution. In this biosensor, electrode systems 12 and 13 are formed on an insulating substrate 11 by a method such as screen printing, a hydrophilic polymer layer 15 is formed on the electrodes, and the hydrophilic polymer layer 15 is oxidized. The enzyme reaction layer 18 composed of a reductase and an electron acceptor is formed. When the sample solution is dropped onto the enzyme reaction layer 18, the enzyme reaction layer 1 is added to the sample solution.
The oxidoreductase in 8 and the electron acceptor are dissolved, an enzymatic reaction proceeds with the substrate in the sample solution, and the electron acceptor is reduced. After the completion of the enzymatic reaction, this reduced electron acceptor is electrochemically oxidized, and the concentration of the substrate in the sample solution is determined from the oxidation current value obtained at this time.

発明が解決しようとする課題 この様な従来のバイオセンサによれば、酵素反応層中の
酸化還元酵素と電子受容体が接しているため、水分の存
在がある両者の間で反応が起こり応答がばらつくため、
安定した応答が得にくく、製造時や保存中の水分管理が
必要となった。
Problems to be Solved by the Invention According to such a conventional biosensor, since the oxidoreductase and the electron acceptor in the enzyme reaction layer are in contact with each other, a reaction occurs between the two in the presence of water and a response is generated. To vary,
It was difficult to obtain a stable response, and it became necessary to control the water content during manufacturing and storage.

課題を解決するための手段 本発明は上記課題を解決するために、少なくとも測定極
と対極からなる電極系を設けた絶縁性基板を備え、前記
電極系の表面に親水性高分子層を設け、その上部に電子
受容体と酸化還元酵素を互いに独立させて含有した酸素
反応層を形成し、前記酵素と電子受容体と試料液の反応
に際しての物質濃度変化を電気化学的に前記電極系で検
知し前記試料液中の基質濃度を測定することを特徴と
し、望ましくは、電極系および親水性高分子層と酸素反
応層がそれぞれスクリーン印刷で形成されたことを特徴
とする。
Means for Solving the Problems In order to solve the above problems, the present invention includes an insulating substrate provided with an electrode system consisting of at least a measurement electrode and a counter electrode, and a hydrophilic polymer layer is provided on the surface of the electrode system. An oxygen reaction layer containing an electron acceptor and a redox enzyme independently of each other is formed on top of it, and a change in the substance concentration during the reaction between the enzyme, the electron acceptor and the sample solution is detected electrochemically by the electrode system. Then, the substrate concentration in the sample solution is measured, and preferably, the electrode system and the hydrophilic polymer layer and the oxygen reaction layer are respectively formed by screen printing.

試料液の酸素反応層に添加することにより、試料液中の
基質濃度を測定するにあたって、反応層中の酸化還元酵
素と電子受容体が互いに独立しており、水分により相互
作用が起こることがないため、応答がばらつくことな
く、安定した応答が得られ測定精度が向上する。また、
製造時や存在中の水分管理が必要でなく、スクリーン印
刷でセンサの製造が可能であるから、電極系をも含めた
ディスポーザブルタイプのバイオセンサを大量生産でき
る。
When added to the oxygen reaction layer of the sample solution, the oxidoreductase and electron acceptor in the reaction layer are independent of each other when measuring the substrate concentration in the sample solution, and no interaction occurs due to water. Therefore, the response does not vary and a stable response is obtained, and the measurement accuracy is improved. Also,
Since it is possible to manufacture the sensor by screen printing without the need to control the water content at the time of manufacture or during the existence, it is possible to mass-produce disposable biosensors including the electrode system.

実施例 以下、本発明の一実施例について説明する。Example One example of the present invention will be described below.

バイオセンサの一例として、グルコースセンサの一実施
例を第1図に基づいて説明する。
As an example of a biosensor, an example of a glucose sensor will be described with reference to FIG.

ポリエチレンテレフタレートからなる絶縁性基板1に、
スクリーン印刷により導電性カーボンペーストを印刷
し、加熱乾燥することにより、対極2aと測定極3aか
らなる電極系を形成する。次に、電極系を部分的に覆
い、各々の電極の電気化学的に作用する部分となる電極
系2bと3bを残すように、絶縁性ペーストを前記と同
様に印刷し、加熱処理をして絶縁層4を形成する。この
電極系2bと3bの表面を覆うようにセルロース系の親
水性高分子の一種であるCMC(カルボキシメチルセル
ロース)の水溶液をスクリーン印刷により印刷し、45
℃で1時間乾燥することによりCMC層5を形成した。
得られたCMC層5の上に酸化還元酵素6としてグルコ
ースオキシダーゼ(GOD)を水に溶解したものをスク
リーン印刷により第2図の様に形成し、室温で乾燥し
た。さらに、フェリシアン化カリウムの微結晶をレシチ
ンとともにエタノールに混ぜたものを電子受容体7とし
て前記CMC層5上にスクリーン印刷により形成し、室
温で放置してエタノールを気化させることによりフェリ
シアン化カリウムをグルコースオキシダーゼと分離した
酸素反応層8を形成した。フェリシアン化カリウムはエ
タノールには溶けないため、そのままでは分散できない
が、レシチンが存在するとその両親媒性構造によりフェ
リシアン化カリウムの微粒子のまま分散でき、しかも、
エタノールが速やかに気化するため、均一で溶解速度の
速い層が形成できた。従来例のようにグルコースオキシ
ダーゼの上にフェリシアン化カリウムを形成した場合、
そのまま放置すると、応答が高くバタついてしまうため
シリカゲルなど用いて乾燥状態を保持する必要があった
が、本発明のように酸化還元酵素6と電子受容体7を分
離することにより水分の影響を考慮しなくても、安定し
た応答が得られた。
On the insulating substrate 1 made of polyethylene terephthalate,
An electrically conductive carbon paste is printed by screen printing and dried by heating to form an electrode system composed of the counter electrode 2a and the measurement electrode 3a. Next, an insulating paste is printed in the same manner as above so as to cover the electrode system partially and leave the electrode systems 2b and 3b which become the electrochemically acting portions of the respective electrodes, and heat-treated. The insulating layer 4 is formed. An aqueous solution of CMC (carboxymethyl cellulose), which is a kind of cellulosic hydrophilic polymer, is printed by screen printing so as to cover the surfaces of the electrode systems 2b and 3b.
CMC layer 5 was formed by drying at C for 1 hour.
On the obtained CMC layer 5, glucose oxidase (GOD) as a redox enzyme 6 dissolved in water was formed by screen printing as shown in FIG. 2, and dried at room temperature. Furthermore, fine crystals of potassium ferricyanide mixed with ethanol together with lecithin are formed as an electron acceptor 7 on the CMC layer 5 by screen printing, and the ferricyanide is converted into glucose oxidase by allowing it to stand at room temperature to vaporize ethanol. The separated oxygen reaction layer 8 was formed. Since potassium ferricyanide is insoluble in ethanol, it cannot be dispersed as it is, but when lecithin is present, it can be dispersed as fine particles of potassium ferricyanide due to its amphipathic structure, and
Since ethanol rapidly vaporized, a uniform layer having a high dissolution rate could be formed. When potassium ferricyanide is formed on glucose oxidase as in the conventional example,
If left as it is, the response will be high and it will flutter, so it was necessary to maintain the dry state using silica gel or the like, but by considering the effect of water by separating the oxidoreductase 6 and the electron acceptor 7 as in the present invention. Even without it, a stable response was obtained.

上記のように構成したグルコースセンサに試料液として
グルコース標準液を10μ滴下し、滴下2分後に測定
極にアノード方向へ+0.6Vのパルス電圧を印加し5秒
後の電流を測定する。グルコース標準液により酸素反応
層8中のフェリシアン化カリウムとグルコースオキシダ
ーゼが溶解し、グルコースが酸化され、このときフェリ
シアン化カリウムがフェロシアン化カリウムに還元され
る。そこで、上記のパルス電圧の印加により、生成した
フェロシアン化カリウムの濃度に基づく酸化電流が得ら
れ、この電流値は基質であるグルコースの濃度に対応す
る。グルコースの標準液を滴下し応答電流を測定したと
ころ700mg/dという高濃度まで良好な直線性が得
られた。上記のグルコースセンサに血液サンプルを10
μ滴下して2分後の応答電流を測定すると、非常に再
現性のよい応答が得られた。酸素反応層を直接電極上へ
形成すると、血球等が電極表面に吸着されて応答がかな
り低く、バラついたが、CMC層5を形成することで、
吸着を防ぐことができた。親水性高分子としてCMCの
他にもゼラチンやメチルセルロースなども使用でき、で
んぷん系、カルボキシメチルセルロール系、ゼラチン
系、アクリル酸塩系、ビニルアルコール系、ビニルピロ
リドン系、無水マレイン酸系のものが好ましい。これら
の高分子は容易に水溶液とすることができるので、適当
な濃度の水溶液を印刷、乾燥することにより、必要な厚
さの薄膜を電極上に形成することができる。
A glucose standard solution (10 μm) was dropped as a sample solution onto the glucose sensor configured as described above, and a pulse voltage of +0.6 V was applied to the measurement electrode in the anode direction 2 minutes after the dropping, and the current was measured 5 seconds later. The glucose standard solution dissolves potassium ferricyanide and glucose oxidase in the oxygen reaction layer 8 to oxidize glucose, at which time potassium ferricyanide is reduced to potassium ferrocyanide. Then, by applying the above-mentioned pulse voltage, an oxidation current based on the concentration of the produced potassium ferrocyanide is obtained, and this current value corresponds to the concentration of glucose as a substrate. When a standard solution of glucose was dropped and the response current was measured, good linearity was obtained up to a high concentration of 700 mg / d. Add 10 blood samples to the above glucose sensor
When the response current was measured 2 minutes after μ was dropped, a very reproducible response was obtained. When the oxygen-reactive layer was formed directly on the electrode, blood cells and the like were adsorbed on the electrode surface, and the response was considerably low, and there were variations. However, by forming the CMC layer 5,
It was possible to prevent adsorption. In addition to CMC, gelatin, methyl cellulose, etc. can be used as the hydrophilic polymer, and starch-based, carboxymethylcellulose-based, gelatin-based, acrylate-based, vinyl alcohol-based, vinylpyrrolidone-based, maleic anhydride-based ones can be used. preferable. Since these polymers can be easily made into an aqueous solution, a thin film having a required thickness can be formed on the electrode by printing and drying an aqueous solution having an appropriate concentration.

レシチンの他にも両親媒性構造を有する高分子として
は、グリセロリン脂質、スフィゴリン脂質、脂肪酸など
が使用でき、たとえばステアリン酸やスフィンゴミエリ
ン、シクロデキストリンなどが使用できた。溶媒として
は、GOD活性および印刷電極への影響の少ないものが
好ましく、トルエンや石油エーテルなどが適当である。
In addition to lecithin, glycerophospholipids, sphigophospholipids, fatty acids and the like can be used as the polymer having an amphipathic structure, and stearic acid, sphingomyelin, cyclodextrin and the like can be used. As the solvent, those which have little effect on the GOD activity and the printed electrode are preferable, and toluene, petroleum ether and the like are suitable.

センサ部を形成する方法としてのスクリーン印刷は、均
一な特性を有するディスポーザブルタイプのバイオセン
サを安価に製造することができ、特に、価格が安く、し
かも安定した電極材料であるカーボンを用いて電極を形
成するのに好都合な方法である。
Screen printing as a method for forming the sensor portion can inexpensively produce a disposable type biosensor having uniform characteristics, and in particular, the electrode is formed using carbon, which is a cheap and stable electrode material. It is a convenient method to form.

また、スクリーン印刷を用いることで、自由にCMC層
や酸素反応層の形が形成できるため、酸化還元酵素と電
子受容体を容易に独立させて担持することができた。上
記実施例においては電極系として2電極方式の場合につ
いて述べたが、対極と測定極および参照極からなる3電
極でも測定は可能である。また、フェリシアン化カリウ
ムとグルコースオキシダーゼの担持場所は第2図(a)
(b)に示す以外にもスクリーン印刷で、自由に変えら
れるが、なるべく酸化還元酵素と電子受容体を近くに担
持する方が反応が速やかに行なわれるため応答が安定し
ていた。担持のパターンについては実施例に限定されな
い。
Moreover, since the shapes of the CMC layer and the oxygen reaction layer can be freely formed by using screen printing, the oxidoreductase and the electron acceptor could be easily and independently carried. In the above embodiment, the case of the two-electrode system as the electrode system has been described, but the measurement can be performed with three electrodes including the counter electrode, the measurement electrode, and the reference electrode. The places where potassium ferricyanide and glucose oxidase are carried are shown in Fig. 2 (a).
Although it can be freely changed by screen printing in addition to that shown in (b), the reaction was more rapid when the oxidoreductase and the electron acceptor were carried closer to each other, so that the response was stable. The carrying pattern is not limited to the examples.

なお、本発明のバイオセンサは上記実施例に示したグル
コースセンサに限らず、アルコールセンサやコレステロ
ールセンサなど、酸化還元酵素の関与する系に用いるこ
とができる。酸化還元酵素として実施例ではグルコース
オキシダーゼを用いたが、他の酵素、たとえばアルコー
ルオキシダーゼ、コレステロールオキシダーゼ、キサン
チンオキシダーゼ、等を用いることができる。また、電
子受容体として、上記実施例に用いたフェリシアン化カ
リウムが安定に反応するので適しているがP−ベンゾキ
ノンを使えば、反応速度が大きいので高速化に適してい
る。更に、2.6−ジクロロフェノールインドフェノー
ル、メチレンブルー、フェナジンメトサルフェート、β
−ナフトキノン4−スルホン酸カリウム、フェロセン等
が使用できる。
The biosensor of the present invention is not limited to the glucose sensor shown in the above examples, but can be used in systems involving oxidoreductase such as alcohol sensor and cholesterol sensor. Glucose oxidase was used as the oxidoreductase in the examples, but other enzymes such as alcohol oxidase, cholesterol oxidase, xanthine oxidase and the like can be used. Further, as the electron acceptor, potassium ferricyanide used in the above-mentioned examples is suitable because it reacts stably, but when P-benzoquinone is used, the reaction rate is high, and therefore it is suitable for speeding up. Furthermore, 2.6-dichlorophenol indophenol, methylene blue, phenazine methosulfate, β
-Naphthoquinone 4-sulfonate potassium, ferrocene and the like can be used.

発明の効果 このように本発明のバイオセンサは、絶縁性基板上に電
極系と親水性高分子層を形成し、その上に、酸化還元酵
素と電子受容体を互いに独立して含有した酸素反応層を
形成したので、水分に相互作用が起こることがないた
め、応答がばらつくことなく、安定した応答が得られ
る。したがって、生体試料中の基質濃度を正確かつ容易
に測定することができ、さらに、保存性も簡易となる。
しかも、スクリーン印刷でセンサが製造できるため、大
量生産が容易になるなど利点がある。
EFFECTS OF THE INVENTION As described above, the biosensor of the present invention has the oxygen reaction in which the electrode system and the hydrophilic polymer layer are formed on the insulating substrate, and the oxidoreductase and the electron acceptor are independently contained on the electrode system. Since the layer is formed, the interaction does not occur in water, so that the response does not vary and a stable response can be obtained. Therefore, the substrate concentration in the biological sample can be measured accurately and easily, and storage stability is also simplified.
Moreover, since the sensor can be manufactured by screen printing, there are advantages such as easy mass production.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例のバイオセンサの斜視図、第
2図(a)は同バイオセンサの要部を上からみた模式
図、第2図(b)は同バイオセンサの要部を側面からみ
た模式図、第3図は従来例のバイオセンサの縦断面図で
ある。 1……絶縁性基板、2……対極、3……測定極、4……
絶縁層、5……CMC層、6……酸化還元酵素、7……
電子受容体、8……酵素反応層。
FIG. 1 is a perspective view of a biosensor according to an embodiment of the present invention, FIG. 2 (a) is a schematic view of an essential part of the biosensor from above, and FIG. 2 (b) is an essential part of the biosensor. FIG. 3 is a schematic view of the side view of FIG. 3, and FIG. 3 is a vertical sectional view of a conventional biosensor. 1 ... Insulating substrate, 2 ... Counter electrode, 3 ... Measuring electrode, 4 ...
Insulating layer, 5 ... CMC layer, 6 ... Redox enzyme, 7 ...
Electron acceptor, 8 ... Enzyme reaction layer.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】少なくとも測定極と対極からなる電極系を
設けた絶縁性基板を備え、前記電極系の表面に親水性高
分子層を設け、その上部に電子受容体と酸化還元酵素を
互いに独立させて含有した酸素反応層を形成し、前記酵
素と電子受容体と試料液の反応に際しての物質濃度変化
を電気化学的に前記電極系で検知し前記試料液中の基質
濃度を測定することを特徴とするバイオセンサ。
1. An insulating substrate provided with an electrode system comprising at least a measurement electrode and a counter electrode, a hydrophilic polymer layer provided on the surface of the electrode system, and an electron acceptor and a redox enzyme independent from each other on the upper side thereof. To form an oxygen-reactive layer containing it, and electrochemically detect the change in the substance concentration during the reaction of the enzyme, electron acceptor and sample solution with the electrode system to measure the substrate concentration in the sample solution. Characteristic biosensor.
【請求項2】電極系および親水性高分子層と酸素反応層
がスクリーン印刷で形成された請求項1に記載のバイオ
センサ。
2. The biosensor according to claim 1, wherein the electrode system, the hydrophilic polymer layer and the oxygen reactive layer are formed by screen printing.
JP63312302A 1988-12-09 1988-12-09 Biosensor Expired - Lifetime JPH0652249B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63312302A JPH0652249B2 (en) 1988-12-09 1988-12-09 Biosensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63312302A JPH0652249B2 (en) 1988-12-09 1988-12-09 Biosensor

Publications (2)

Publication Number Publication Date
JPH02157646A JPH02157646A (en) 1990-06-18
JPH0652249B2 true JPH0652249B2 (en) 1994-07-06

Family

ID=18027616

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63312302A Expired - Lifetime JPH0652249B2 (en) 1988-12-09 1988-12-09 Biosensor

Country Status (1)

Country Link
JP (1) JPH0652249B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5547555A (en) * 1993-02-22 1996-08-20 Ohmicron Technology, Inc. Electrochemical sensor cartridge
KR970010981B1 (en) * 1993-11-04 1997-07-05 엘지전자 주식회사 Alcohol concentration measuring bio-sensor, manufacturing method and related apparatus
US5759364A (en) * 1997-05-02 1998-06-02 Bayer Corporation Electrochemical biosensor
EP1353169B1 (en) 2001-01-17 2012-06-13 Panasonic Corporation Biosensor
KR100554649B1 (en) 2003-06-09 2006-02-24 주식회사 아이센스 Electrochemical biosensor

Also Published As

Publication number Publication date
JPH02157646A (en) 1990-06-18

Similar Documents

Publication Publication Date Title
JP2502666B2 (en) Biosensor and manufacturing method thereof
JP2517153B2 (en) Biosensor and manufacturing method thereof
CA2068475C (en) Biosensor and its manufacture
JP2502635B2 (en) Biosensor
JPH02310457A (en) Biosensor
JPS63317757A (en) Glucose sensor
WO1989009397A1 (en) Biosensor and process for its production
JP2671693B2 (en) Biosensor and manufacturing method thereof
JP2960265B2 (en) Biosensor and measurement method using the same
JPH0354447A (en) Biosensor and manufacture thereof
JP3024394B2 (en) Biosensor and measurement method using the same
JP3267933B2 (en) Substrate quantification method
JP3437016B2 (en) Biosensor and method of quantifying substrate using the same
JPH0652249B2 (en) Biosensor
JP2502665B2 (en) Biosensor
JPH0820400B2 (en) Biosensor
JP3070818B2 (en) Biosensor and manufacturing method thereof
JP3214188B2 (en) Biosensor and manufacturing method thereof
JP2702818B2 (en) Biosensor and manufacturing method thereof
JPH07114705B2 (en) Biosensor
JPH0814562B2 (en) Biosensor
JP3611268B2 (en) Biosensor and manufacturing method thereof
JPH0652248B2 (en) Biosensor
JP3370414B2 (en) Manufacturing method of biosensor
JP3222985B2 (en) Biosensor

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070706

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080706

Year of fee payment: 14

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090706

Year of fee payment: 15

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090706

Year of fee payment: 15