JP3437016B2 - Biosensor and method of quantifying substrate using the same - Google Patents

Biosensor and method of quantifying substrate using the same

Info

Publication number
JP3437016B2
JP3437016B2 JP19489395A JP19489395A JP3437016B2 JP 3437016 B2 JP3437016 B2 JP 3437016B2 JP 19489395 A JP19489395 A JP 19489395A JP 19489395 A JP19489395 A JP 19489395A JP 3437016 B2 JP3437016 B2 JP 3437016B2
Authority
JP
Japan
Prior art keywords
electrode
substrate
silver
reaction layer
potential
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP19489395A
Other languages
Japanese (ja)
Other versions
JPH0943189A (en
Inventor
信 池田
俊彦 吉岡
史朗 南海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP19489395A priority Critical patent/JP3437016B2/en
Publication of JPH0943189A publication Critical patent/JPH0943189A/en
Application granted granted Critical
Publication of JP3437016B2 publication Critical patent/JP3437016B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、試料中の基質につ
いて、迅速かつ高精度な定量を簡便に実施するためのバ
イオセンサおよび同バイオセンサを用いた基質の定量方
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a biosensor and a method for quantifying a substrate using the biosensor for easily and rapidly quantifying a substrate in a sample.

【0002】[0002]

【従来の技術】基質の定量法の一例として、グルコ−ス
の定量法について説明する。電気化学的なグルコ−スの
定量法としては、グルコ−スオキシダ−ゼ(EC1.
1.3.4:以下GODと略す)と酸素電極あるいは過
酸化水素電極とを組み合わせた方式が一般的に知られて
いる(例えば、鈴木周一編「バイオセンサ−」講談
社)。GODは、酸素を電子受容体として基質であるβ
−D−グルコ−スをD−グルコノ−δ−ラクトンに選択
的に酸化する。この反応に伴い、酸素は過酸化水素に還
元される。この時の酸素消費量を酸素電極によって測定
するか、もしくは過酸化水素の生成量を過酸化水素電極
によって測定することでグルコ−スの定量が行われる。
2. Description of the Related Art A glucose quantification method will be described as an example of a substrate quantification method. As an electrochemical quantification method of glucose, glucose oxidase (EC1.
1.3.4: Hereinafter, a method in which an oxygen electrode or a hydrogen peroxide electrode is combined with an oxygen electrode or a hydrogen peroxide electrode is generally known (for example, Shuichi Suzuki "Biosensor" Kodansha). GOD is a substrate β using oxygen as an electron acceptor.
-D-glucose is selectively oxidized to D-glucono-δ-lactone. With this reaction, oxygen is reduced to hydrogen peroxide. Glucose is quantified by measuring the oxygen consumption at this time with an oxygen electrode or by measuring the amount of hydrogen peroxide produced with a hydrogen peroxide electrode.

【0003】しかしながら上記方法では、その反応過程
からも推測できるように、測定結果は溶存酸素濃度の影
響を大きく受け、酸素のない条件下では測定が不可能と
なる。そこで、酸素を電子受容体として用いず、フェリ
シアン化カリウム、フェロセン誘導体、キノン誘導体等
の有機化合物や金属錯体を電子受容体として用いる新し
いタイプのグルコ−スセンサが開発されてきた。このタ
イプのセンサでは、酵素反応の結果生じた電子受容体の
還元体を電極で酸化することにより、その酸化電流から
グルコ−ス濃度を求めることができる。
However, in the above method, as can be inferred from the reaction process, the measurement result is greatly affected by the dissolved oxygen concentration, and the measurement becomes impossible under the condition of no oxygen. Therefore, a new type glucose sensor has been developed which does not use oxygen as an electron acceptor but uses an organic compound such as potassium ferricyanide, a ferrocene derivative, a quinone derivative or a metal complex as an electron acceptor. In this type of sensor, the glucose concentration can be obtained from the oxidation current by oxidizing the reduced form of the electron acceptor generated as a result of the enzymatic reaction at the electrode.

【0004】さらに、このような電子受容体を酸素の代
わりに用いることで、既知量のGODと電子受容体を安
定な状態で正確に電極上に担持させることが可能となる
場合があり、この場合電極系と反応層を乾燥状態に近い
状態で一体化することができる。この技術に基づいた使
い捨て型グルコ−スセンサは、測定器に挿入されたセン
サチップに検体試料を導入するだけで容易にグルコ−ス
濃度を測定することができるので、近年多くの注目を集
めている。このような手法は、グルコ−スの定量評価だ
けに限らず、他の基質の定量評価にも応用可能であり、
現在多くの研究対象となっている。
Further, by using such an electron acceptor in place of oxygen, it may be possible to accurately carry a known amount of GOD and electron acceptor on the electrode in a stable state. In this case, the electrode system and the reaction layer can be integrated in a state close to a dry state. Disposable glucose sensors based on this technology have attracted much attention in recent years because glucose concentrations can be easily measured simply by introducing a specimen sample into a sensor chip inserted in a measuring instrument. . Such a method is applicable not only to the quantitative evaluation of glucose but also to the quantitative evaluation of other substrates,
It is currently the subject of many studies.

【0005】[0005]

【発明が解決しようとする課題】上記のように電子受容
体を用い、さらに電極系と反応層を一体化する技術によ
り、基質の簡便な電気化学的定量評価が可能となった。
また、三電極式の導入に伴い、さらに高精度な評価が可
能となってきた。しかしながら、三電極式使い捨て型セ
ンサにて定量を行う際、用いる参照極の電極材料および
作製方法の選定に起因して、測定結果に誤差およびばら
つきが生じることがあった。
As described above, the technique of using the electron acceptor and further integrating the electrode system and the reaction layer has enabled a simple electrochemical quantitative evaluation of the substrate.
Moreover, with the introduction of the three-electrode system, it has become possible to perform evaluation with higher accuracy. However, when performing quantitative determination with a three-electrode type disposable sensor, an error and variation may occur in the measurement result due to the selection of the electrode material of the reference electrode to be used and the manufacturing method.

【0006】[0006]

【課題を解決するための手段】本発明は、絶縁性の基板
上に形成された作用極、対極および銀からなる参照極を
有する電極系と、少なくとも酵素を含む反応層とを具備
するバイオセンサを用いて、前記酵素と試料中の基質と
の反応に際しての物質濃度変化を、作用極に電位を印加
することで得られる電気化学的応答に基づいて検知する
ことにより、前記基質を定量する方法において、作用極
に電位を印加する前に、参照極にアノード電位を印加す
ることにより試料中に含まれる水溶性塩化物またはセン
サに備える水溶性塩化物と反応させて、参照極上に銀/
塩化銀電極を作製するものである。
The present invention provides a biosensor comprising an electrode system having a working electrode, a counter electrode and a reference electrode made of silver formed on an insulating substrate, and a reaction layer containing at least an enzyme. A method for quantifying the substrate by detecting a change in the substance concentration during the reaction of the enzyme with the substrate in the sample based on the electrochemical response obtained by applying a potential to the working electrode using In the above, before applying the potential to the working electrode, the anode potential is applied to the reference electrode to react with the water-soluble chloride contained in the sample or the water-soluble chloride provided in the sensor, and silver /
A silver chloride electrode is produced.

【0007】また、ここに用いるバイオセンサは、絶縁
性の基板上に形成された作用極、対極および参照極を有
する電極系と、少なくとも酵素を含む反応層とを具備
し、参照極が銀からなり、反応層が水溶性塩化物を含ん
でいる。反応層は、電子受容体を含むことが好ましい。
また、反応層は、親水性高分子を含むことが好ましい。
Further, the biosensor used here comprises an electrode system having a working electrode, a counter electrode and a reference electrode formed on an insulating substrate, and a reaction layer containing at least an enzyme, and the reference electrode is made of silver. Therefore, the reaction layer contains water-soluble chloride. The reaction layer preferably contains an electron acceptor.
Further, the reaction layer preferably contains a hydrophilic polymer.

【0008】三電極式使い捨て型センサの参照極にカー
ボン、銀、白金などの分極性電極を単独で導入する場
合、その電極界面で生ずる電極電位、すなわち基準とな
る電位は試料中に含まれるイオンの活量に大きく依存す
る。故に、試料中の溶存種、および濃度の違いによりそ
の電極電位が大きく変化する場合がある。そこで、本発
明では、理想非分極性電極として、通常よく用いられる
銀/塩化銀電極をセンサの参照極に導入することによ
り、参照極電位を安定させ、センサ応答特性を向上する
ものである。
When a polarizable electrode such as carbon, silver, or platinum is independently introduced into the reference electrode of a three-electrode type disposable sensor, the electrode potential generated at the electrode interface, that is, the reference potential is the ion contained in the sample. Greatly depends on the activity of. Therefore, the electrode potential may change greatly depending on the dissolved species in the sample and the difference in concentration. Therefore, in the present invention, a commonly used silver / silver chloride electrode is introduced as the ideal non-polarizing electrode into the reference electrode of the sensor to stabilize the reference electrode potential and improve the sensor response characteristic.

【0009】[0009]

【発明の実施の形態】以下、本発明の実施の形態を具体
例により説明する。 [実施例1]定量法の一例として、グルコ−スの定量に
ついて説明する。本実施例において用いた電極系の構成
を図1に示す。ポリエチレンテレフタレ−トからなる絶
縁性の基板1上に、スクリ−ン印刷により銀ペ−ストを
印刷しリ−ド2、3、および4を形成した。次に、樹脂
バインダ−を含む導電性カ−ボンペ−ストを印刷して作
用極5、および対極8を形成した。作用極5は、リ−ド
2と接触しており、対極8はリード4と接触している。
次に、絶縁性ペ−ストを印刷して絶縁層6を形成した。
絶縁層6は、作用極5の外周部を覆っており、これによ
って作用極5の露出部分の面積を一定に保っている。ま
た、リード3の先端を露出させることにより、参照極7
を形成した。さらに、絶縁層6は、リ−ド2、3、およ
び4を部分的に覆っている。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to specific examples. [Example 1] As an example of a quantification method, quantification of glucose will be described. The structure of the electrode system used in this example is shown in FIG. On an insulating substrate 1 made of polyethylene terephthalate, silver paste was printed by screen printing to form leads 2, 3 and 4. Next, a conductive carbon paste containing a resin binder was printed to form a working electrode 5 and a counter electrode 8. The working electrode 5 is in contact with the lead 2 and the counter electrode 8 is in contact with the lead 4.
Next, the insulating layer 6 was formed by printing an insulating paste.
The insulating layer 6 covers the outer peripheral portion of the working electrode 5, thereby keeping the area of the exposed portion of the working electrode 5 constant. Further, by exposing the tips of the leads 3, the reference electrode 7
Was formed. Further, the insulating layer 6 partially covers the leads 2, 3, and 4.

【0010】次に、前記電極系上にカルボキシメチルセ
ルロース(以下CMCと略す)の水溶液を滴下し、乾燥
させることでCMC層を形成した。さらに、前記電極系
上に、酵素としてGOD、電子受容体としてフェリシア
ン化カリウムを含有する水溶液を滴下し、乾燥させるこ
とで反応層を形成した。次に、反応層上に試料液の供給
をより一層円滑にするために、レシチンの有機溶媒溶
液、例えばトルエン溶液を試料供給部(センサ先端部)
から反応層上にわたって広げ、乾燥させることでレシチ
ン層を形成した。次いで、カバ−9およびスペ−サ10
を図1中、一点鎖線で示すような位置関係をもって基板
1に接着してグルコ−スセンサを作製した。
Next, an aqueous solution of carboxymethyl cellulose (hereinafter abbreviated as CMC) was dropped onto the electrode system and dried to form a CMC layer. Further, an aqueous solution containing GOD as an enzyme and potassium ferricyanide as an electron acceptor was dropped on the electrode system and dried to form a reaction layer. Next, in order to make the supply of the sample solution onto the reaction layer smoother, an organic solvent solution of lecithin, such as a toluene solution, is added to the sample supply section (the tip of the sensor).
To a lecithin layer by spreading over the reaction layer and drying. Then, the cover 9 and the spacer 10
In FIG. 1, the glucose sensor was manufactured by adhering to the substrate 1 in the positional relationship shown by the one-dot chain line.

【0011】このセンサに、試料液として人血液3μl
を試料供給孔11より供給した。試料液は、空気孔12
部分まで達し、電極系上の反応層が溶解した。試料液の
供給と同時に、参照極7に、対極8を基準にして一定の
アノード電位を印加した。これにより参照極の銀の表面
には、人血液中に含まれる塩素イオンと反応して生成し
た塩化銀が析出し、銀/塩化銀電極が形成される。所定
時間経過後、参照極7への電位印加を停止した。さらに
所定時間経過後、作用極5に参照極7を基準にして一定
の電位を印加し、5秒後の電流値を測定した。フェリシ
アン化イオン、GOD、および人血液中のグルコ−スが
反応し、グルコースがグルコノラクトンに酸化され、フ
ェリシアン化イオンがフェロシアン化イオンに還元され
る。このフェロシアン化イオンを作用極5にて酸化する
ことで電流応答が得られる。その結果、試料液中のグル
コ−ス濃度に依存した電流応答が得られた。この応答の
変動係数は2.4%であった。一方、参照極7に塩化銀
を析出させないで測定した比較例では4。0%であっ
た。このように、本発明によれば、より小さい変動係
数、すなわち、センサ応答のばらつきの減少が確認され
た。
3 μl of human blood was used as a sample solution in this sensor.
Was supplied from the sample supply hole 11. The sample solution has air holes 12
The reaction layer on the electrode system was dissolved up to the portion. Simultaneously with the supply of the sample liquid, a constant anode potential was applied to the reference electrode 7 with reference to the counter electrode 8. As a result, silver chloride produced by reacting with chlorine ions contained in human blood is deposited on the surface of silver of the reference electrode, and a silver / silver chloride electrode is formed. After the lapse of a predetermined time, the potential application to the reference electrode 7 was stopped. After a lapse of a predetermined time, a constant potential was applied to the working electrode 5 with reference to the reference electrode 7, and the current value after 5 seconds was measured. The ferricyanide ion, GOD, and glucose in human blood react to oxidize glucose to gluconolactone and reduce the ferricyanide ion to ferrocyanide ion. A current response is obtained by oxidizing this ferrocyanide ion at the working electrode 5. As a result, a current response depending on the glucose concentration in the sample solution was obtained. The coefficient of variation of this response was 2.4%. On the other hand, it was 4.0% in the comparative example measured without depositing silver chloride on the reference electrode 7. As described above, according to the present invention, it was confirmed that the coefficient of variation was smaller, that is, the variation in sensor response was reduced.

【0012】[実施例2]実施例1と同様に、絶縁性基
板上に電極系を作製した。次に、前記電極系上にCMC
の水溶液を滴下し、乾燥させることでCMC層を形成し
た。さらに、前記電極系上に、酵素としてGOD、塩化
物として塩化ナトリウムをそれぞれ含有する水溶液を滴
下し、乾燥させることで反応層を形成した。次に、反応
層上に試料液の供給をより一層円滑にするために、レシ
チンの有機溶媒溶液、例えばトルエン溶液を試料供給部
(センサ先端部)から反応層上にわたって広げ、乾燥さ
せることでレシチン層を形成した後、カバ−9およびス
ペ−サ10を図1中、一点鎖線で示すような位置関係を
もって基板に接着してグルコ−スセンサを作製した。
[Example 2] Similar to Example 1, an electrode system was prepared on an insulating substrate. Next, CMC is placed on the electrode system.
The CMC layer was formed by dropping the aqueous solution of and dropping it. Further, an aqueous solution containing GOD as an enzyme and sodium chloride as a chloride was dropped on the electrode system and dried to form a reaction layer. Next, in order to more smoothly supply the sample solution onto the reaction layer, an organic solvent solution of lecithin, such as a toluene solution, is spread over the reaction layer from the sample supply section (sensor tip) and dried to lecithin. After forming the layers, the cover 9 and the spacer 10 were adhered to the substrate in the positional relationship shown by the one-dot chain line in FIG. 1 to produce a glucose sensor.

【0013】このセンサに試料液としてグルコース水溶
液3μlを試料供給孔11より供給した。試料液は空気
孔12部分まで達し、電極系上の反応層が溶解した。試
料液の供給と同時に、参照極7に、対極8を基準にして
一定のアノード電位を印加した。これにより反応層から
溶出した塩素イオンと銀が反応して塩化銀が析出し、銀
/塩化銀電極が参照極7上に形成される。所定時間経過
後、参照極7への電位印加を停止した。さらに所定時間
経過後、作用極5に参照極7を基準にして一定の電位を
印加し、5秒後の電流値を測定した。GOD、酸素およ
びグルコ−スが反応し、グルコースがグルコノラクトン
に酸化され、酸素が過酸化水素に還元される。この過酸
化水素を作用極5にて酸化することで電流応答が得られ
る。その結果、試料液中のグルコ−ス濃度に依存した電
流応答が得られた。
3 μl of an aqueous glucose solution as a sample solution was supplied to this sensor through the sample supply hole 11. The sample solution reached the air holes 12 and the reaction layer on the electrode system was dissolved. Simultaneously with the supply of the sample liquid, a constant anode potential was applied to the reference electrode 7 with reference to the counter electrode 8. As a result, chlorine ions eluted from the reaction layer react with silver to deposit silver chloride, and a silver / silver chloride electrode is formed on the reference electrode 7. After the lapse of a predetermined time, the potential application to the reference electrode 7 was stopped. After a lapse of a predetermined time, a constant potential was applied to the working electrode 5 with reference to the reference electrode 7, and the current value after 5 seconds was measured. GOD, oxygen and glucose react to oxidize glucose to gluconolactone and reduce oxygen to hydrogen peroxide. A current response is obtained by oxidizing this hydrogen peroxide at the working electrode 5. As a result, a current response depending on the glucose concentration in the sample solution was obtained.

【0014】この応答の変動係数は2.4%であった。
一方、参照極7に塩化銀を析出させないで測定した比較
例では4.0%であった。このように反応層に塩化物と
して塩化ナトリウムを含ませることによって、試料液に
塩化物を含まない場合においても実施例1と同様の測定
を行うことができた。また、塩化ナトリウムをカバーも
しくは基板上に担持した場合においても、同様の結果が
得られた。
The coefficient of variation of this response was 2.4%.
On the other hand, it was 4.0% in the comparative example measured without depositing silver chloride on the reference electrode 7. By thus containing sodium chloride as a chloride in the reaction layer, the same measurement as in Example 1 could be performed even when the sample solution did not contain chloride. Similar results were obtained when sodium chloride was carried on the cover or the substrate.

【0015】上記実施例では、CMC層を有するセンサ
について記述したが、CMC層を除いたセンサにおいて
も、グルコース濃度に依存するセンサ応答が得られた。
また親水性高分子としてCMCを用いたが、これに限定
されることはなく、ポリリジン等のポリアミノ酸、ポリ
ビニルアルコール、ポリスチレンスルホン酸なども使用
できる。また、電子受容体としてフェリシアン化カリウ
ムを用いたセンサについて記述したが、フェリシアン化
カリウム以外に、p−ベンゾキノン、フェナジンメトサ
ルフェート、メチレンブルー、フェロセン誘導体なども
使用できる。酸素を電子受容体とした場合にもセンサ応
答が得られる。
In the above examples, the sensor having the CMC layer was described, but the sensor response which depends on the glucose concentration was obtained also in the sensor excluding the CMC layer.
Although CMC is used as the hydrophilic polymer, the hydrophilic polymer is not limited thereto, and polyamino acids such as polylysine, polyvinyl alcohol, and polystyrene sulfonic acid can also be used. Further, although the sensor using potassium ferricyanide as the electron acceptor is described, p-benzoquinone, phenazine methosulfate, methylene blue, ferrocene derivative and the like can be used in addition to potassium ferricyanide. A sensor response is also obtained when oxygen is the electron acceptor.

【0016】また、酵素としては、上記実施例に示した
グルコースオキシダーゼ以外に、乳酸オキシダーゼ、コ
レステロールオキシダーゼ、キサンチンオキシダーゼな
ども使用できる。一方、添加する塩化物としては、実施
例に示した塩化ナトリウム以外に、塩化カリウム、塩化
リチウム、塩化カルシウムなども用いることができる。
上記実施例では、電極系の一例を図1に示したが、電
極、リードの配置はこれらに限定されるものではない。
さらに、上記実施例ではカバー部材を接着させたセンサ
について述べたが、これに限定されることはなく、カバ
ー部材がないセンサにおいても、グルコース濃度に依存
するセンサ応答が得られる。上記実施例においては、試
料液に反応層を溶解させる方式について示したが、これ
に制限されることはなく、固定化によって試料液に不溶
化させた場合にも適用することができる。
In addition to glucose oxidase shown in the above examples, lactate oxidase, cholesterol oxidase, xanthine oxidase and the like can be used as the enzyme. On the other hand, as the chloride to be added, potassium chloride, lithium chloride, calcium chloride or the like can be used in addition to sodium chloride shown in the examples.
In the above embodiment, an example of the electrode system is shown in FIG. 1, but the arrangement of electrodes and leads is not limited to these.
Further, in the above-mentioned embodiment, the sensor having the cover member adhered has been described, but the present invention is not limited to this, and a sensor response having a glucose concentration can be obtained even in a sensor having no cover member. Although the method of dissolving the reaction layer in the sample solution has been described in the above embodiment, the method is not limited to this and can be applied to the case where the reaction layer is insolubilized in the sample solution.

【0017】[0017]

【発明の効果】以上のように本発明によると、高い信頼
性を有する基質の定量を行なうことができる。
As described above, according to the present invention, it is possible to quantify a substrate with high reliability.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例に用いたグルコ−スセンサの
反応層を除いた分解斜視図である。
FIG. 1 is an exploded perspective view of a glucose sensor used in an embodiment of the present invention, excluding a reaction layer.

【符号の説明】[Explanation of symbols]

1 絶縁性の基板 2、3、4 リ−ド 5 作用極 6 絶縁層 7 参照極 8 対極 9 カバー 10 スペーサ 11 試料供給孔 12 空気孔 1 Insulating substrate 2, 3, 4 leads 5 Working pole 6 insulating layers 7 reference pole 8 opposite poles 9 cover 10 Spacer 11 Sample supply hole 12 air holes

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平6−174679(JP,A) 特開 平6−130023(JP,A) 特開 平4−319658(JP,A) 特開 平2−19758(JP,A) 特開 平8−50112(JP,A) (58)調査した分野(Int.Cl.7,DB名) G01N 27/327 G01N 27/30 311 G01N 27/416 ─────────────────────────────────────────────────── ─── Continuation of the front page (56) Reference JP-A-6-174679 (JP, A) JP-A-6-130023 (JP, A) JP-A-4-319658 (JP, A) JP-A-2- 19758 (JP, A) JP-A-8-50112 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) G01N 27/327 G01N 27/30 311 G01N 27/416

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 絶縁性の基板上に形成された作用極、対
極および参照極を有する電極系と、少なくとも酵素を含
む反応層とを具備し、前記酵素と試料中の基質との反応
に際しての物質濃度変化を、前記作用極に電位を印加す
ることで得られる電気化学的応答に基づいて、前記電極
系で電気化学的に検知するバイオセンサにおいて、前記
参照極が銀からなり、前記反応層が水溶性塩化物を含
み、前記作用極に電位を印加する前に、前記参照極にア
ノード電位を印加することにより、前記参照極と前記反
応層に備える水溶性塩化物とが反応して、前記参照極上
に銀/塩化銀電極が作製されることを特徴とするバイオ
センサ。
1. An electrode system having a working electrode, a counter electrode and a reference electrode formed on an insulative substrate, and a reaction layer containing at least an enzyme, which is used for the reaction of the enzyme with the substrate in the sample. Apply a potential to the working electrode to change the substance concentration
In the biosensor that electrochemically detects with the electrode system based on the obtained electrochemical response, the reference electrode is made of silver and the reaction layer contains water-soluble chloride.
Before applying a potential to the working electrode, the reference electrode is
By applying a node potential, the reference electrode and the counter electrode
Reacts with the water-soluble chloride provided in the reaction layer,
A biosensor, characterized in that a silver / silver chloride electrode is produced on .
【請求項2】 反応層が、電子受容体を含む請求項1に
記載のバイオセンサ。
2. The biosensor according to claim 1, wherein the reaction layer contains an electron acceptor.
【請求項3】 反応層が、親水性高分子を含む請求項1
または2に記載のバイオセンサ。
3. The reaction layer contains a hydrophilic polymer.
Or the biosensor according to 2.
【請求項4】 絶縁性の基板上に形成された作用極、対
極および銀からなる参照極を有する電極系と、少なくと
も酵素を含む反応層とを具備するバイオセンサを用い
て、前記酵素と試料中の基質との反応に際しての物質濃
度変化を、作用極に電位を印加することで得られる電気
化学的応答に基づいて検知することにより、前記基質を
定量する方法において、作用極に電位を印加する前に、
参照極にアノード電位を印加することにより試料中に含
まれる水溶性塩化物またはセンサに備える水溶性塩化物
と反応させて、参照極上に銀/塩化銀電極を作製する工
程を設けたことを特徴とする基質の定量方法。
4. An enzyme and a sample using a biosensor comprising an electrode system having a working electrode, a counter electrode and a reference electrode made of silver formed on an insulating substrate, and a reaction layer containing at least an enzyme. In the method for quantifying the substrate, a potential is applied to the working electrode by detecting a change in the substance concentration during the reaction with the substrate in the substrate based on the electrochemical response obtained by applying the potential to the working electrode. Before
The method is characterized in that a step of producing a silver / silver chloride electrode on the reference electrode is provided by reacting the water-soluble chloride contained in the sample or the water-soluble chloride contained in the sensor by applying an anode potential to the reference electrode. Substrate quantification method.
JP19489395A 1995-07-31 1995-07-31 Biosensor and method of quantifying substrate using the same Expired - Fee Related JP3437016B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19489395A JP3437016B2 (en) 1995-07-31 1995-07-31 Biosensor and method of quantifying substrate using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19489395A JP3437016B2 (en) 1995-07-31 1995-07-31 Biosensor and method of quantifying substrate using the same

Publications (2)

Publication Number Publication Date
JPH0943189A JPH0943189A (en) 1997-02-14
JP3437016B2 true JP3437016B2 (en) 2003-08-18

Family

ID=16332088

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19489395A Expired - Fee Related JP3437016B2 (en) 1995-07-31 1995-07-31 Biosensor and method of quantifying substrate using the same

Country Status (1)

Country Link
JP (1) JP3437016B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3494398B2 (en) * 1997-04-14 2004-02-09 松下電器産業株式会社 Biosensor
US6599406B1 (en) * 1997-07-22 2003-07-29 Kyoto Daiichi Kagaku Co., Ltd. Concentration measuring apparatus, test strip for the concentration measuring apparatus, biosensor system and method for forming terminal on the test strip
JP4627911B2 (en) * 2000-03-29 2011-02-09 パナソニック株式会社 Biosensor
US6726818B2 (en) * 2000-07-21 2004-04-27 I-Sens, Inc. Biosensors with porous chromatographic membranes
US20030175946A1 (en) * 2001-04-16 2003-09-18 Hiroyuki Tokunaga Biosensor
AU2003277509A1 (en) * 2002-10-25 2004-05-13 Arkray, Inc. Analytical tool
JP4735833B2 (en) * 2006-01-13 2011-07-27 セイコーエプソン株式会社 Biochip and biosensor
JP6853194B2 (en) * 2015-06-15 2021-03-31 エフ.ホフマン−ラ ロシュ アーゲーF. Hoffmann−La Roche Aktiengesellschaft Methods and test elements for electrochemically detecting at least one analyte in a body fluid sample
JP6783109B2 (en) * 2015-10-15 2020-11-11 アークレイ株式会社 Biosensor

Also Published As

Publication number Publication date
JPH0943189A (en) 1997-02-14

Similar Documents

Publication Publication Date Title
JP3375040B2 (en) Substrate quantification method
JP3297630B2 (en) Biosensor
JP3267936B2 (en) Biosensor
JP2760234B2 (en) Substrate concentration measurement method
JP2001183330A (en) Biosensor
JPWO2002097418A1 (en) Biosensor
JPH02310457A (en) Biosensor
JP2001330581A (en) Substrate concentration determination method
JP3267933B2 (en) Substrate quantification method
JP3024394B2 (en) Biosensor and measurement method using the same
JP3437016B2 (en) Biosensor and method of quantifying substrate using the same
JP4352108B2 (en) Substrate quantification method
JPH0820400B2 (en) Biosensor
JP2001249103A (en) Biosensor
JP3267907B2 (en) Biosensor and Substrate Quantification Method Using It
JP3214188B2 (en) Biosensor and manufacturing method thereof
JPH09297121A (en) Cholesterol sensor
JP2004226358A (en) Biosensor
JP3611268B2 (en) Biosensor and manufacturing method thereof
JP3370414B2 (en) Manufacturing method of biosensor
JPH02157646A (en) Biosensor
JP3245103B2 (en) Biosensor and Substrate Quantification Method Using It
JP3078966B2 (en) Lactic acid sensor
JP3487064B2 (en) Substrate quantification method
JP3297623B2 (en) Biosensor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees