JP2001330581A - Substrate concentration determination method - Google Patents

Substrate concentration determination method

Info

Publication number
JP2001330581A
JP2001330581A JP2000147688A JP2000147688A JP2001330581A JP 2001330581 A JP2001330581 A JP 2001330581A JP 2000147688 A JP2000147688 A JP 2000147688A JP 2000147688 A JP2000147688 A JP 2000147688A JP 2001330581 A JP2001330581 A JP 2001330581A
Authority
JP
Japan
Prior art keywords
electrode
liquid
junction
counter electrode
detecting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000147688A
Other languages
Japanese (ja)
Inventor
Makoto Ikeda
信 池田
Shiro Nankai
史朗 南海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2000147688A priority Critical patent/JP2001330581A/en
Publication of JP2001330581A publication Critical patent/JP2001330581A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a substrate concentration determination method capable of determining the supply state of sample liquid easily and surely, and having high precision and little dispersion. SOLUTION: This substrate concentration determination method includes a process for judging the necessity of execution of a substrate concentration determination process, based on a period of time from the contact of the sample liquid with a working electrode 5 and a counter electrode 8 until the contact thereof with a liquid junction detection electrode 7, by using a biosensor in which the working electrode 5, the counter electrode 8, the liquid junction detection electrode 7, a reagent layer and a sample liquid supply opening 11 are provided and the liquid junction detection electrode 7 is arranged on the position separated from the sample liquid supply opening 11 furthermore than the working electrode 5 and the counter electrode 8.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、バイオセンサを用
いた基質濃度定量法に関する。
[0001] The present invention relates to a method for quantifying a substrate concentration using a biosensor.

【0002】[0002]

【従来の技術】スクロース、グルコースなど糖類の定量
分析法として、施光度計法、比色法、還元滴定法および
各種クロマトグラフィーを用いた方法等が開発されてい
る。しかし、これらの方法はいずれも、糖類に対する特
異性があまり高くないので精度が悪い。また、これらの
方法のうち施光度計法は、操作は簡便ではあるが、操作
時の温度の影響を大きく受ける。従って、施光度計法
は、一般の人々が家庭などで簡易に糖類を定量する方法
としては適切でない。
2. Description of the Related Art As a quantitative analysis method for saccharides such as sucrose and glucose, a photometric method, a colorimetric method, a reductive titration method, and a method using various types of chromatography have been developed. However, all of these methods are not accurate because the specificity for saccharides is not very high. Of these methods, the photometer method is easy to operate, but is greatly affected by the temperature during operation. Therefore, the photometer method is not suitable as a method for ordinary people to easily determine saccharides at home or the like.

【0003】ところで、近年、酵素の有する特異的触媒
作用を利用した種々のタイプのバイオセンサが開発され
ている。
[0003] In recent years, various types of biosensors utilizing the specific catalytic action of enzymes have been developed.

【0004】以下に、試料液中の基質の定量法の一例と
してグルコースの定量法について説明する。電気化学的
なグルコースの定量法としては、グルコースオキシダー
ゼ(EC1.1.3.4:以下GODと略す)と酸素電
極あるいは過酸化水素電極とを使用して行う方法が一般
に知られている(例えば、鈴木周一編「バイオセンサ
ー」講談社)。
[0004] A method for quantifying glucose will be described below as an example of a method for quantifying a substrate in a sample solution. As an electrochemical glucose quantification method, a method using glucose oxidase (EC 1.1.3.4; hereinafter abbreviated as GOD) and an oxygen electrode or a hydrogen peroxide electrode is generally known (eg, for example). , Shuichi Suzuki, "Biosensor" Kodansha).

【0005】GODは、酸素を電子伝達体として、基質
であるβ−D−グルコースをD−グルコノ−δ−ラクト
ンに選択的に酸化する。酸素の存在下で、GODによる
酸化反応過程において、酸素が過酸化水素に還元され
る。酸素電極によって、この酸素の減少量を計測する
か、あるいは過酸化水素電極によって過酸化水素の増加
量を計る。酸素の減少量及び過酸化水素の増加量は、試
料液中のグルコースの含有量に比例するので、酸素の減
少量または過酸化水素の増加量からグルコースの定量が
行われる。
GOD selectively oxidizes β-D-glucose as a substrate to D-glucono-δ-lactone using oxygen as an electron carrier. In the presence of oxygen, oxygen is reduced to hydrogen peroxide during the oxidation reaction process by GOD. The oxygen electrode measures the decrease in oxygen, or the hydrogen peroxide electrode measures the increase in hydrogen peroxide. Since the amount of decrease in oxygen and the amount of increase in hydrogen peroxide are proportional to the content of glucose in the sample solution, the amount of glucose is determined from the amount of decrease in oxygen or the amount of increase in hydrogen peroxide.

【0006】上記方法では、その反応過程からも推測で
きるように、測定結果は試料液に含まれる酸素濃度の影
響を大きく受ける欠点があり、また試料液に酸素が存在
しない場合では測定が不可能となる。
[0006] In the above method, as can be inferred from the reaction process, the measurement result has a drawback that it is greatly affected by the concentration of oxygen contained in the sample solution, and the measurement cannot be performed if oxygen does not exist in the sample solution. Becomes

【0007】そこで、酸素を電子伝達体として用いず、
フェリシアン化カリウム、フェロセン誘導体、キノン誘
導体等の有機化合物や金属錯体を電子伝達体として用い
る新しいタイプのグルコースセンサが開発されてきた。
このタイプのセンサでは、酵素反応の結果生じた電子伝
達体の還元体を電極上で酸化することにより、その酸化
電流量から試料液中に含まれるグルコース濃度が求めら
れる。このような有機化合物や金属錯体を酸素の代わり
に電子伝達体として用いることで、既知量のGODとそ
れらの電子伝達体を安定な状態で正確に電極上に担持さ
せて試薬層を形成することが可能となる。この場合、試
薬層を乾燥状態に近い状態で電極系と一体化させること
もできるので、この技術に基づいた使い捨て型のバイオ
センサが近年多くの注目を集めている。その代表的な例
が、特許第2517153号公報に示されるバイオセン
サである。このバイオセンサにおいては、測定器に着脱
可能に接続されたセンサに試料液を導入するだけで容易
にグルコース濃度を測定器で測定することができる。こ
のような手法は、グルコースの定量だけに限らず、試料
液中に含まれる他の基質の定量にも応用可能である。
Therefore, without using oxygen as an electron carrier,
A new type of glucose sensor using an organic compound such as potassium ferricyanide, a ferrocene derivative, a quinone derivative or a metal complex as an electron carrier has been developed.
In this type of sensor, the concentration of glucose contained in the sample solution is obtained from the amount of oxidation current by oxidizing the reduced form of the electron carrier generated as a result of the enzyme reaction on the electrode. By using such an organic compound or metal complex as an electron carrier instead of oxygen, a reagent layer can be formed by accurately supporting a known amount of GOD and the electron carrier in a stable state on an electrode. Becomes possible. In this case, since the reagent layer can be integrated with the electrode system in a state close to a dry state, a disposable biosensor based on this technology has attracted much attention in recent years. A typical example is a biosensor disclosed in Japanese Patent No. 2517153. In this biosensor, the glucose concentration can be easily measured by the measuring device simply by introducing the sample liquid into the sensor detachably connected to the measuring device. Such a technique is applicable not only to the quantification of glucose but also to the quantification of other substrates contained in a sample solution.

【0008】[0008]

【発明が解決しようとする課題】上記のようなバイオセ
ンサでは、二電極間(作用極と対極間)の抵抗値の変化
に基づいて試料液の供給を検知し、検知をトリガーとし
て基質の測定を開始する場合が多い。しかしながらこの
ような検知法の場合、二電極間に試料液が達すれば、試
料液の供給量が不十分で、両電極が十分に試料液に接し
ていない状態でも基質の測定が開始する場合があり、測
定結果にばらつきが生ずる場合があった。
In the above-described biosensor, the supply of a sample liquid is detected based on a change in resistance between two electrodes (between a working electrode and a counter electrode), and the detection is used as a trigger to measure a substrate. Often start. However, in the case of such a detection method, if the sample liquid reaches between the two electrodes, the supply of the sample liquid is insufficient, and the measurement of the substrate may start even when both electrodes are not sufficiently in contact with the sample liquid. In some cases, the measurement results varied.

【0009】また、作用極及び対極が、空間部を介して
相互に対向する位置に配置されている場合、目視によっ
ても、試料液のセンサへの供給が判別し難く、上記と同
様の問題が生じる場合があった。
Further, when the working electrode and the counter electrode are arranged at positions facing each other via the space, it is difficult to visually determine the supply of the sample liquid to the sensor, and the same problem as described above occurs. May have occurred.

【0010】これらの問題を解決するため、作用極及び
対極に加えて、液絡検知用電極として使用される第3の
電極を、作用極及び対極よりも試料液供給口から離れた
位置に備えたバイオセンサ及びそれを用いた基質の定量
法が、特開平8−320304号公報に開示されてい
る。これによると、試料液の反応層への供給によって生
じた、対極と第3の電極との間の電気的変化を検知する
ことにより、試料液の供給を確実に検知することができ
る。
In order to solve these problems, in addition to the working electrode and the counter electrode, a third electrode used as a liquid-junction detecting electrode is provided at a position farther from the sample liquid supply port than the working electrode and the counter electrode. A biosensor and a method for quantifying a substrate using the same are disclosed in JP-A-8-320304. According to this, the supply of the sample liquid can be reliably detected by detecting the electrical change between the counter electrode and the third electrode caused by the supply of the sample liquid to the reaction layer.

【0011】しかし、このバイオセンサ及びそれを用い
た基質の定量法では、試料量不足を補うために再度試料
の供給を実施した場合であっても測定が開始するので、
正確な測定結果が得られないことがあった。
However, in this biosensor and the method for quantifying a substrate using the biosensor, the measurement is started even if the sample is supplied again to compensate for the shortage of the sample.
In some cases, accurate measurement results could not be obtained.

【0012】さらに、妨害物質の影響や、参照極を用い
ないことにより生ずる印加電圧の摂動を抑制することが
要望されていた。
Further, it has been desired to suppress the influence of interfering substances and the perturbation of the applied voltage caused by not using a reference electrode.

【0013】そこで本発明は、上記の問題点に鑑み、試
料液の供給状態を容易に判別することができ、高精度
で、ばらつきが少ない基質濃度定量法を提供することを
目的とする。
In view of the above problems, an object of the present invention is to provide a method for quantitatively determining the concentration of a substrate, which can easily determine the supply state of a sample solution, and has high accuracy and little variation.

【0014】[0014]

【課題を解決するための手段】上記の課題を解決するた
めに、本発明による基質濃度定量法は、作用極、対極、
液絡検知電極、少なくとも酵素及び電子伝達体を包含す
る試薬層、並びに試料液供給口を備え、前記液絡検知電
極が、前記作用極及び前記対極よりも前記試料液供給口
から離れた位置に配置されているバイオセンサを用い、
前記作用極に前記電子伝達体を酸化する電位を印加する
工程(A)及び前記作用極と前記対極間の電流値を測定
する工程(B)を有する基質濃度定量工程において得ら
れた前記電流値に基づいて試料液中の基質濃度を定量す
る基質濃度定量法であって、少なくとも、前記試料液供
給口から前記試料液を供給する工程(C)、前記試料液
が前記作用極及び前記対極に接触したことを検知する工
程(D)、前記試料液が前記液絡検知電極に接触したこ
とを検知する工程(E)、前記試料液が前記作用極及び
前記対極に接触してから、前記試料液が前記液絡検知電
極に接触するまでの時間(T1)を計測する工程
(F)、前記T1に基づいて前記基質濃度定量工程の実
施または中止を決定する工程(G)、及び前記決定に基
づいて前記基質濃度定量工程を実施または中止する工程
(H)を含むことを特徴とする。
Means for Solving the Problems To solve the above problems, the method for determining the concentration of a substrate according to the present invention comprises a working electrode, a counter electrode,
A liquid-junction detecting electrode, a reagent layer containing at least an enzyme and an electron carrier, and a sample liquid supply port, wherein the liquid-junction detection electrode is located farther from the sample liquid supply port than the working electrode and the counter electrode. Using the placed biosensor,
The current value obtained in the substrate concentration quantification step including a step (A) of applying a potential for oxidizing the electron carrier to the working electrode and a step (B) of measuring a current value between the working electrode and the counter electrode. A substrate concentration quantifying method for quantifying a substrate concentration in a sample liquid based on the method (C) of supplying the sample liquid from the sample liquid supply port at least, wherein the sample liquid is supplied to the working electrode and the counter electrode. Detecting the contact (D), detecting that the sample liquid has contacted the liquid junction detection electrode (E), and contacting the sample liquid with the working electrode and the counter electrode; A step (F) of measuring a time (T1) until the liquid comes into contact with the liquid junction detection electrode, a step (G) of determining whether or not to perform the substrate concentration quantification step based on the T1 (G); The substrate concentration based on Characterized in that it comprises a step (H) to implement or discontinue extent.

【0015】ここで、工程(D)において、作用極と対
極間の電気的信号の変化により、試料液が前記作用極及
び前記対極に接触したことを検知し、工程(E)におい
て、前記作用極と液絡検知電極間、または前記対極と前
記液絡検知電極間の電気的信号の変化により、前記試料
液が前記液絡検知電極に接触したことを検知し、工程
(F)において、前記作用極と前記対極間の電気的信号
の変化を検知してから、前記作用極と前記液絡検知電極
間、または前記対極と前記液絡検知電極間の電気的信号
の変化を検知するまでの時間(T2)を計測し、前記T
2をT1とすることが好ましい。
Here, in the step (D), it is detected that the sample liquid has contacted the working electrode and the counter electrode by a change in an electric signal between the working electrode and the counter electrode. A change in an electrical signal between the electrode and the liquid-junction detecting electrode or between the counter electrode and the liquid-junction detecting electrode detects that the sample liquid has contacted the liquid-junction detecting electrode, and in step (F), From detecting a change in the electric signal between the working electrode and the counter electrode, and then detecting a change in the electric signal between the working electrode and the liquid-junction detection electrode or between the counter electrode and the liquid-junction detection electrode. Time (T2) is measured, and T
2 is preferably T1.

【0016】また、少なくとも工程(D)の前に、作用
極と対極間に電圧を印加する工程を有し、かつ少なくと
も工程(E)の前に、前記作用極と液絡検知電極間、ま
たは前記対極と前記液絡検知電極間に電圧を印加する工
程を有することが好ましい。
In addition, at least before the step (D), a step of applying a voltage between the working electrode and the counter electrode, and at least before the step (E), between the working electrode and the liquid-junction detecting electrode, or It is preferable that the method further includes a step of applying a voltage between the counter electrode and the liquid junction detection electrode.

【0017】また、少なくとも工程(D)の前に、作用
極、対極及び液絡検知電極に電位を印加する工程を有し
ていてもよい。
At least before the step (D), a step of applying a potential to the working electrode, the counter electrode and the liquid-junction detecting electrode may be provided.

【0018】また、作用極、対極及び液絡検知電極が同
一基板上に配置されているバイオセンサを用いてもよ
い。
Further, a biosensor in which the working electrode, the counter electrode and the liquid-junction detecting electrode are arranged on the same substrate may be used.

【0019】また、作用極及び対極が、空間部を介して
相互に対向する位置に配置されているバイオセンサを用
いてもよい。
Further, a biosensor may be used in which the working electrode and the counter electrode are arranged at positions facing each other via a space.

【0020】また、試薬層及び液絡検知電極が、空間部
を介して相互に対向する位置に配置されているバイオセ
ンサを用い、対極と前記液絡検知電極間の電流値を測定
することにより妨害物質の検知を行う工程を有すること
が好ましい。
Further, by using a biosensor in which the reagent layer and the liquid-junction detection electrode face each other via a space, a current value between the counter electrode and the liquid-junction detection electrode is measured. It is preferable to include a step of detecting an interfering substance.

【0021】また、液絡検知電極が参照極として機能す
ることが好ましい。
Further, it is preferable that the liquid junction detecting electrode functions as a reference electrode.

【0022】[0022]

【発明の実施の形態】以下、本発明の実施の形態を説明
する。
Embodiments of the present invention will be described below.

【0023】上記の課題を解決するために、本発明によ
る基質濃度定量法は、作用極、対極、液絡検知電極、少
なくとも酵素及び電子伝達体を包含する試薬層、並びに
試料液供給口を備え、前記液絡検知電極が、前記作用極
及び前記対極よりも前記試料液供給口から離れた位置に
配置されているバイオセンサを用い、前記作用極に前記
電子伝達体を酸化する電位を印加する工程(A)及び前
記作用極と前記対極間の電流値(以下、応答電流値と略
称する)を測定する工程(B)を有する基質濃度定量工
程において得られた前記応答電流値に基づいて試料液中
の基質濃度を定量する基質濃度定量法であって、少なく
とも、前記試料液供給口から前記試料液を供給する工程
(C)、前記試料液が前記作用極及び前記対極に接触し
たことを検知する工程(D)、前記試料液が前記液絡検
知電極に接触したことを検知する工程(E)、前記試料
液が前記作用極及び前記対極に接触してから、前記試料
液が前記液絡検知電極に接触するまでの時間(T1)を
計測する工程(F)、前記T1に基づいて前記基質濃度
定量工程の実施または中止を決定する工程(G)、及び
前記決定に基づいて前記基質濃度定量工程を実施または
中止する工程(H)を含むことを特徴とする。
In order to solve the above-mentioned problems, a method for quantifying a substrate concentration according to the present invention comprises a working electrode, a counter electrode, a liquid junction detecting electrode, a reagent layer containing at least an enzyme and an electron carrier, and a sample liquid supply port. Using a biosensor in which the liquid junction detection electrode is disposed farther from the sample liquid supply port than the working electrode and the counter electrode, and applying a potential for oxidizing the electron carrier to the working electrode. A sample is prepared based on the response current value obtained in the substrate concentration determination step including the step (A) and the step (B) of measuring a current value between the working electrode and the counter electrode (hereinafter, abbreviated as a response current value). A substrate concentration determination method for determining a substrate concentration in a liquid, wherein at least a step (C) of supplying the sample liquid from the sample liquid supply port, the sample liquid being in contact with the working electrode and the counter electrode. Detect Step (D): detecting that the sample liquid has contacted the liquid junction detection electrode (E), and after the sample liquid has contacted the working electrode and the counter electrode, the sample liquid is detected by the liquid junction detection. A step (F) of measuring a time (T1) until contact with the electrode, a step (G) of determining whether or not to perform the substrate concentration determination step based on the T1, and a determination of the substrate concentration based on the determination A step (H) of performing or stopping the step.

【0024】この方法によると、T1に基づいて試料液
の供給状態を容易かつ確実に判別することができ、試料
液が適切に供給された場合のみ、基質濃度定量工程が実
施されるので、高精度でばらつきの少ない測定を行うこ
とができる。
According to this method, the supply state of the sample liquid can be easily and reliably determined based on T1, and the substrate concentration quantification step is performed only when the sample liquid is appropriately supplied. Measurements can be performed with high accuracy and little variation.

【0025】本発明の好ましい態様においては、工程
(D)において、作用極と対極間の電気的信号の変化に
より、試料液が前記作用極及び前記対極に接触したこと
を検知し、工程(E)において、前記作用極と液絡検知
電極間、または前記対極と前記液絡検知電極間の電気的
信号の変化により、前記試料液が前記液絡検知電極に接
触したことを検知し、工程(F)において、前記作用極
と前記対極間の電気的信号の変化を検知してから、前記
作用極と前記液絡検知電極間、または前記対極と前記液
絡検知電極間の電気的信号の変化を検知するまでの時間
(T2)を計測し、前記T2をT1とする。
In a preferred embodiment of the present invention, in the step (D), it is detected that the sample solution has contacted the working electrode and the counter electrode by detecting a change in an electric signal between the working electrode and the counter electrode. ), Detecting that the sample liquid has contacted the liquid-junction detecting electrode by detecting a change in an electrical signal between the working electrode and the liquid-junction detecting electrode or between the counter electrode and the liquid-junction detecting electrode; In F), after detecting a change in an electric signal between the working electrode and the counter electrode, a change in an electric signal between the working electrode and the liquid-junction detection electrode or between the counter electrode and the liquid-junction detection electrode is detected. (T2) is measured until T is detected, and T2 is defined as T1.

【0026】この方法によると、試料液が各電極に接触
したことを電気的信号の変化から容易に検知することが
でき、かつ、T2をT1として用い、T2に基づいて試
料液の供給状態を容易かつ確実に判別することができ、
試料液が適切に供給された場合のみ、基質濃度定量工程
が実施されるので、高精度でばらつきの少ない測定を行
うことができる。
According to this method, the contact of the sample liquid with each electrode can be easily detected from a change in the electric signal, and T2 is used as T1, and the supply state of the sample liquid is determined based on T2. Can be easily and reliably determined,
Only when the sample liquid is appropriately supplied, the substrate concentration quantification step is performed, so that measurement with high accuracy and little variation can be performed.

【0027】また、本発明による基質濃度定量法は、少
なくとも工程(D)の前に、作用極と対極間に電圧を印
加する工程を有し、かつ少なくとも工程(E)の前に、
前記作用極と液絡検知電極間、または前記対極と前記液
絡検知電極間に電圧を印加する工程を有することが好ま
しい。
Further, the method for determining a substrate concentration according to the present invention has a step of applying a voltage between the working electrode and the counter electrode at least before the step (D), and at least before the step (E).
It is preferable that the method further includes a step of applying a voltage between the working electrode and the liquid-junction detecting electrode or between the counter electrode and the liquid-junction detecting electrode.

【0028】また、少なくとも工程(D)の前に、作用
極、対極及び液絡検知電極に電位を印加する工程を有し
ていてもよい。このようにすると、電圧または電位を印
加する工程が少なくなり、工程数を低減することができ
る。
At least before the step (D), a step of applying a potential to the working electrode, the counter electrode and the liquid-junction detecting electrode may be provided. In this case, the number of steps for applying a voltage or a potential is reduced, and the number of steps can be reduced.

【0029】本発明の基質濃度定量法において、作用
極、対極及び液絡検知電極が同一基板上に配置されてい
るバイオセンサを用いても良い。
In the substrate concentration determination method of the present invention, a biosensor in which a working electrode, a counter electrode, and a liquid-junction detecting electrode are arranged on the same substrate may be used.

【0030】また、作用極及び対極が、空間部を介して
相互に対向する位置に配置されているバイオセンサを用
いても良い。
Further, a biosensor may be used in which the working electrode and the counter electrode are arranged at positions facing each other via a space.

【0031】また、試薬層及び液絡検知電極が、空間部
を介して相互に対向する位置に配置されているバイオセ
ンサを用い、対極と前記液絡検知電極間の電流値を測定
することにより妨害物質の検知を行う工程を有すること
が好ましい。ここで、妨害物質とは、基質濃度定量工程
において、作用極または対極上で電気化学的に反応する
ことにより、応答電流値に影響を与えて基質濃度の測定
結果に誤差を生じさせる物質のことであり、例えば、ア
スコルビン酸、尿酸等の易酸化性物質が挙げられる。こ
のようにすると、試料液中の基質と試薬層中の酵素及び
電子伝達体との反応により生じた反応物質が液絡検知電
極に到達する前に、試料液が液絡検知電極に接触するの
で、試料液が液絡検知電極に接触してから、前記反応物
質が液絡検知電極に到達するまでの間に、対極と液絡検
知電極間の電流値を測定することにより、容易に妨害物
質の検知を行うことができる。従って、試薬層妨害物質
検知用に新たに電極を追加することなく、測定結果から
妨害物質の影響を除くことができるので、センサ構成を
複雑にしたり製造工程を煩雑にしたりすることなく、高
精度な基質濃度の定量を行うことができる。
Further, by using a biosensor in which the reagent layer and the liquid-junction detecting electrode are arranged opposite to each other via a space, the current value between the counter electrode and the liquid-junction detecting electrode is measured. It is preferable to include a step of detecting an interfering substance. Here, the interfering substance is a substance that causes an error in the measurement result of the substrate concentration by affecting the response current value by electrochemically reacting on the working electrode or the counter electrode in the substrate concentration determination step. Examples thereof include easily oxidizable substances such as ascorbic acid and uric acid. In this case, the sample liquid comes into contact with the liquid junction detection electrode before the reactant generated by the reaction between the substrate in the sample liquid and the enzyme and the electron carrier in the reagent layer reaches the liquid junction detection electrode. By measuring the current value between the counter electrode and the liquid-junction detection electrode between the time when the sample liquid comes into contact with the liquid-junction detection electrode and the time when the reactant reaches the liquid-junction detection electrode, the interference substance can be easily detected. Can be detected. Therefore, the effect of the interfering substance can be removed from the measurement result without adding a new electrode for detecting the interfering substance in the reagent layer, so that high accuracy can be achieved without complicating the sensor configuration or complicating the manufacturing process. Quantitative determination of the substrate concentration can be performed.

【0032】また、液絡検知電極が参照極として機能す
ることが好ましい。このようにすると参照極用に新たに
電極を追加することなく、作用極の電位を安定させるこ
とができるため、センサ構成を複雑にしたり製造工程を
煩雑にしたりすることなく、基質濃度に対して良好な直
線性を有する応答電流値が得られるので、高精度な基質
濃度の定量を行うことができる。
It is preferable that the liquid junction detecting electrode functions as a reference electrode. In this way, the potential of the working electrode can be stabilized without adding a new electrode for the reference electrode, so that the sensor concentration can be reduced without complicating the sensor configuration or complicating the manufacturing process. Since a response current value having good linearity can be obtained, it is possible to quantitatively determine the substrate concentration with high accuracy.

【0033】本発明において、試薬層に含有される酵素
としては、試料液に含まれる基質に応じて適切なものが
選択される。酵素としては、例えば、フルクトースデヒ
ドロゲナーゼ、グルコースオキシダーゼ、アルコールオ
キシダーゼ、乳酸オキシダーゼ、コレステロールオキシ
ダーゼ、キサンチンオキシダーゼ、アミノ酸オキシダー
ゼなどがあげられる。
In the present invention, as the enzyme contained in the reagent layer, an appropriate enzyme is selected according to the substrate contained in the sample solution. Examples of the enzyme include fructose dehydrogenase, glucose oxidase, alcohol oxidase, lactate oxidase, cholesterol oxidase, xanthine oxidase, and amino acid oxidase.

【0034】また、電子伝達体としては、フェリシアン
化カリウム、p−ベンゾキノン、フェナジンメトサルフ
ェート、メチレンブルー、フェロセン誘導体などがあげ
られる。また、酸素を電子伝達体とした場合にも電流応
答が得られる。電子伝達体は、これらの一種または二種
以上が使用される。
Examples of the electron carrier include potassium ferricyanide, p-benzoquinone, phenazine methosulfate, methylene blue, and a ferrocene derivative. Also, a current response can be obtained when oxygen is used as the electron carrier. One or more of these electron carriers are used.

【0035】[0035]

【実施例】以下、本発明の実施例を、図1〜3を用いて
説明する。図1〜3は本発明の実施例におけるグルコー
スセンサの試薬層を除去した状態の分解斜視図である。
Embodiments of the present invention will be described below with reference to FIGS. 1 to 3 are exploded perspective views of a glucose sensor according to an embodiment of the present invention in a state where a reagent layer is removed.

【0036】(実施例1)バイオセンサの一例として、
グルコースセンサについて説明する。本実施例では図1
に示すグルコースセンサを使用した。このグルコースセ
ンサは、ポリエチレンテレフタレートからなる絶縁性の
基板1と、カバー9と、基板1およびカバー9の間に挟
まれるスペーサ10とを有する。これらは図1の中の一
点鎖線で示すような位置関係をもって接着されてグルコ
ースセンサが構成される。
Example 1 As an example of a biosensor,
The glucose sensor will be described. In this embodiment, FIG.
Was used. This glucose sensor has an insulating substrate 1 made of polyethylene terephthalate, a cover 9, and a spacer 10 sandwiched between the substrate 1 and the cover 9. These are adhered in a positional relationship as shown by a dashed line in FIG. 1 to constitute a glucose sensor.

【0037】スペーサ10には試料液供給口11が形成
され、また、カバー9には空気孔12が形成されてい
る。基板1上にスペーサ10を介してカバー9を積層接
着すると、基板1、スペーサ10及びカバー9によって
試料液供給口11に通じる空間部(図示しない)が形成
され、空間部の終端部は空気孔12に連通する。
The spacer 10 has a sample liquid supply port 11 formed therein, and the cover 9 has an air hole 12 formed therein. When the cover 9 is laminated and adhered on the substrate 1 with the spacer 10 interposed therebetween, a space (not shown) communicating with the sample liquid supply port 11 is formed by the substrate 1, the spacer 10, and the cover 9. It communicates with 12.

【0038】基板1には、作用極5、対極8、及び液絡
検知電極7が設けられ、さらにこれらに電気接続される
リード2、3、4が設けられている。作用極5は、リン
グ状の対極8の内側に配置されている。液絡検知電極7
は、作用極5及び対極8よりも試料液供給口11から離
れた位置に配置されている。
The substrate 1 is provided with a working electrode 5, a counter electrode 8, and a liquid-junction detecting electrode 7, and further provided with leads 2, 3, and 4 electrically connected to these. The working electrode 5 is arranged inside the ring-shaped counter electrode 8. Liquid junction detection electrode 7
Is arranged at a position farther from the sample liquid supply port 11 than the working electrode 5 and the counter electrode 8.

【0039】上記グルコースセンサは以下のようにして
作製した。
The glucose sensor was manufactured as follows.

【0040】ポリエチレンテレフタレートからなる絶縁
性の基板1上に、スクリーン印刷により銀ペーストを印
刷しリード2、3、4をそれぞれ形成した。次に、樹脂
バインダーを含む導電性カーボンペーストを基板1上に
印刷して作用極5を形成した。作用極5はリード2と接
触している。
A silver paste was printed by screen printing on an insulating substrate 1 made of polyethylene terephthalate to form leads 2, 3, and 4, respectively. Next, the working electrode 5 was formed by printing a conductive carbon paste containing a resin binder on the substrate 1. The working electrode 5 is in contact with the lead 2.

【0041】次に、その基板1上に、絶縁性ペーストを
印刷して絶縁層6を形成した。絶縁層6は、作用極5の
外周部を覆っており、これによって作用極5の露出部分
の面積は一定に保たれる。絶縁層6は、リード2、3、
4の一部を覆っている。リード3の先端を露出させるこ
とにより、液絡検知電極7を形成した。
Next, an insulating paste was printed on the substrate 1 to form an insulating layer 6. The insulating layer 6 covers the outer periphery of the working electrode 5, whereby the area of the exposed portion of the working electrode 5 is kept constant. The insulating layer 6 includes the leads 2, 3,
4 is partially covered. The liquid junction detecting electrode 7 was formed by exposing the tip of the lead 3.

【0042】次に、樹脂バインダーを含む導電性カーボ
ンペーストをリード4と接触するように基板1上に印刷
して対極8を形成した。
Next, a conductive carbon paste containing a resin binder was printed on the substrate 1 so as to be in contact with the leads 4 to form a counter electrode 8.

【0043】次に、作用極5及び対極8上にカルボキシ
メチルセルロース(以下、CMCと略称する)水溶液を
滴下し、乾燥させることでCMC層を形成した。さら
に、CMC層上に、酵素としてGOD、電子伝達体とし
てフェリシアン化カリウムを含有する水溶液を滴下し、
乾燥させることで試薬層を形成した。
Next, an aqueous solution of carboxymethylcellulose (hereinafter abbreviated as CMC) was dropped on the working electrode 5 and the counter electrode 8 and dried to form a CMC layer. Further, an aqueous solution containing GOD as an enzyme and potassium ferricyanide as an electron carrier is dropped on the CMC layer,
The reagent layer was formed by drying.

【0044】次に、上記試薬層上に、試料液の試薬層へ
の供給をより一層円滑にするために、レシチンのトルエ
ン溶液を、試料液供給口11から試薬層上にわたって広
げ、乾燥させることでレシチン層を形成した。なお、レ
シチン層を形成するためにトルエンを用いたが、他の有
機溶媒を用いてもよい。次に、基板1に、カバー9及び
スペーサ10を図1中の一点鎖線で示すような位置関係
をもって接着してグルコースセンサを作製した。
Next, to further smoothly supply the sample solution to the reagent layer on the reagent layer, a toluene solution of lecithin is spread from the sample solution supply port 11 over the reagent layer and dried. To form a lecithin layer. In addition, although toluene was used for forming the lecithin layer, another organic solvent may be used. Next, the cover 9 and the spacer 10 were adhered to the substrate 1 in a positional relationship as shown by a dashed line in FIG. 1 to produce a glucose sensor.

【0045】このグルコースセンサを測定器(図示せ
ず)に装着し、まず、作用極5と対極8間に500mV
の電圧を印加した。次にこのセンサに、試料液としてグ
ルコース濃度定量に十分な量の血液を試料液供給口11
より供給した。毛管現象により血液が空間部に導入さ
れ、血液が作用極5まで達して作用極5に接触すると、
測定器が、作用極5と対極8間における電気的信号の変
化として、電気抵抗値の変化を検知した。この変化の検
知と同時に測定タイマーが始動し、次に、作用極5と液
絡検知電極7間に500mVの電圧を印加した。作用極
5、対極8に引き続き、血液が液絡検知電極7にまで到
達して液絡検知電極7に接触すると、作用極5と液絡検
知電極7間の電気抵抗値に変化が生じ、その変化を測定
器で検知した。ここで、測定タイマーが始動してから作
用極5と液絡検知電極7間の電気抵抗値に変化が生じる
までの時間(以下、T2と略称する)を、測定タイマー
により計測した。
This glucose sensor was mounted on a measuring instrument (not shown), and a 500 mV voltage was first applied between the working electrode 5 and the counter electrode 8.
Was applied. Next, a sufficient amount of blood for quantifying the glucose concentration as a sample liquid is supplied to the sensor through the sample liquid supply port 11.
Supplied more. When blood is introduced into the space by capillary action and the blood reaches the working electrode 5 and contacts the working electrode 5,
The measuring instrument detected a change in the electric resistance value as a change in the electric signal between the working electrode 5 and the counter electrode 8. The measurement timer was started simultaneously with the detection of this change, and then a voltage of 500 mV was applied between the working electrode 5 and the liquid-junction detecting electrode 7. When blood reaches the liquid junction detection electrode 7 and contacts the liquid junction detection electrode 7 following the working electrode 5 and the counter electrode 8, a change occurs in the electrical resistance value between the working electrode 5 and the liquid junction detection electrode 7. The change was detected with a measuring instrument. Here, the time (hereinafter, abbreviated as T2) from the start of the measurement timer to the change in the electrical resistance value between the working electrode 5 and the liquid junction detection electrode 7 was measured by the measurement timer.

【0046】この試料供給検知工程に引き続き、基質濃
度定量工程を実施した。作用極5と液絡検知電極7間に
おける電気抵抗値の変化を検知してから25秒経過後に
500mVの電位を作用極5に印加し、5秒後に作用極
5と対極8間の電流値を測定した。血液中のグルコース
と、試薬層から溶解したフェリシアン化イオン及びGO
Dが反応し、その結果、グルコースがグルコノラクトン
に酸化され、フェリシアン化イオンがフェロシアン化イ
オンに還元される。このフェロシアン化イオンを作用極
5において酸化することで電流応答が得られる。その結
果、試料液中のグルコース濃度に依存した応答電流値が
得られた。
Subsequent to the sample supply detection step, a substrate concentration determination step was performed. A potential of 500 mV is applied to the working electrode 5 25 seconds after the detection of the change in the electric resistance value between the working electrode 5 and the liquid-junction detecting electrode 7, and the current value between the working electrode 5 and the counter electrode 8 is changed 5 seconds later. It was measured. Glucose in blood, ferricyanide ion dissolved from reagent layer and GO
D reacts, resulting in the oxidation of glucose to gluconolactone and the reduction of ferricyanide to ferrocyanide. A current response is obtained by oxidizing the ferrocyanide ions at the working electrode 5. As a result, a response current value depending on the glucose concentration in the sample solution was obtained.

【0047】電極配置、測定環境(温度、湿度等)、血
液性状(ヘマトクリット値、粘度等)の個人差等にもよ
るが、十分な量の血液が供給された場合、試料液が作用
極及び対極に接触してから、試料液が液絡検知電極に接
触するまでの時間(以下、T1と略称する)は長くても
1〜2秒程度である。またここで、T2はT1とほぼ等
しいとみなすことができる。そこで、T2が2秒以下の
場合に得られた定量結果と、T2が2秒を超えた場合に
得られた定量結果とを比較したところ、T2が2秒以下
の場合に得られた結果では、測定値の精度、ばらつきが
大幅に抑制されていた。T2が2秒を超えた場合は、1
回の試料供給で十分な量の試料が供給されなかった場
合、または試料量不足を補うため再度試料の供給を実施
した場合が考えられ、これにより定量結果に影響が生じ
たものと考えられる。
When a sufficient amount of blood is supplied, depending on the electrode arrangement, measurement environment (temperature, humidity, etc.), blood characteristics (hematocrit value, viscosity, etc.), etc. The time from contact with the counter electrode to contact of the sample liquid with the liquid junction detection electrode (hereinafter, abbreviated as T1) is at most about 1 to 2 seconds. Here, T2 can be regarded as substantially equal to T1. Therefore, when the quantitative results obtained when T2 is 2 seconds or less and the quantitative results obtained when T2 exceeds 2 seconds are compared, the results obtained when T2 is 2 seconds or less are as follows. In addition, the accuracy and dispersion of the measured values were greatly suppressed. If T2 exceeds 2 seconds, 1
It is conceivable that a sufficient amount of sample was not supplied in each sample supply, or that the sample was supplied again in order to compensate for the shortage of the sample amount, thereby affecting the quantitative result.

【0048】このような試料量不足による測定誤差を軽
減するために、T2を計測する工程の後に、T2が2秒
以下の場合には以降の基質濃度定量工程を実施し、T2
が2秒よりも大きい場合には中止するように判断する工
程を測定器に組み込み、同様の測定を行った。その結
果、1回で十分な量の試料が供給された場合のみ測定が
実施されるようになったため、測定誤差は大幅に軽減さ
れた。
In order to reduce such a measurement error due to the shortage of the sample, after the step of measuring T2, if T2 is 2 seconds or less, the subsequent substrate concentration determination step is performed.
When the value was longer than 2 seconds, a step of determining to stop the measurement was incorporated in the measuring instrument, and the same measurement was performed. As a result, the measurement is performed only when a sufficient amount of the sample is supplied at one time, so that the measurement error is greatly reduced.

【0049】(実施例2)本実施例では、実施例1と同
様のグルコースセンサを使用した。
Example 2 In this example, the same glucose sensor as in Example 1 was used.

【0050】このグルコースセンサを測定器に装着し、
対極8を基準にして、作用極5と対極8間に500m
V、対極8と液絡検知電極7間に500mVの電圧を印
加した。次にこのセンサに、試料液としてグルコース濃
度定量に十分な量の血液を試料液供給口11より供給し
た。毛管現象により血液が空間部に導入され、血液が作
用極5に達すると、測定器が作用極5と対極8間におけ
る電気抵抗値の変化を検知し、それと同時に測定タイマ
ーが始動した。作用極5、対極8に引き続き、血液が液
絡検知電極7にまで到達して液絡検知電極7に接触する
と、作用極5と液絡検知電極7間の電気抵抗値に変化が
生じ、その変化を測定器で検知した。ここで、測定タイ
マーが始動してから作用極5と液絡検知電極7間の電気
抵抗値に変化が生じるまでの時間(T2)を、測定タイ
マーにより計測した。
This glucose sensor was attached to a measuring instrument,
500 m between working electrode 5 and counter electrode 8 with reference to counter electrode 8
V, a voltage of 500 mV was applied between the counter electrode 8 and the liquid junction detecting electrode 7. Next, a sufficient amount of blood for quantifying glucose concentration was supplied to the sensor from the sample liquid supply port 11 as a sample liquid. When the blood was introduced into the space by capillary action and the blood reached the working electrode 5, the measuring instrument detected a change in the electric resistance between the working electrode 5 and the counter electrode 8, and at the same time the measurement timer was started. When blood reaches the liquid junction detection electrode 7 and contacts the liquid junction detection electrode 7 following the working electrode 5 and the counter electrode 8, a change occurs in the electrical resistance value between the working electrode 5 and the liquid junction detection electrode 7. The change was detected with a measuring instrument. Here, the time (T2) from when the measurement timer was started to when the electric resistance value between the working electrode 5 and the liquid junction detection electrode 7 changed was measured by the measurement timer.

【0051】この試料供給検知工程に引き続き、基質濃
度定量工程を実施した。対極8と液絡検知電極7間にお
ける電気的信号の変化を検知してから25秒経過後に5
00mVの電位を作用極5に印加し、5秒後に作用極5
と対極8間の電流値を測定した。その結果、実施例1と
同様に、試料液中のグルコース濃度に依存した応答電流
値が得られた。
Subsequent to this sample supply detection step, a substrate concentration determination step was performed. 25 seconds after the detection of a change in the electric signal between the counter electrode 8 and the liquid-junction detection electrode 7,
A potential of 00 mV is applied to the working electrode 5, and after 5 seconds, the working electrode 5
And the current value between the counter electrode 8 was measured. As a result, as in Example 1, a response current value depending on the glucose concentration in the sample solution was obtained.

【0052】実施例1と同様に、T2が2秒以下の場合
に得られた定量結果と、T2が2秒を超えた場合に得ら
れた定量結果とを比較したところ、T2が2秒以下の場
合に得られた結果では、測定値の精度、ばらつきが大幅
に抑制されていた。
Similar to Example 1, when the quantitative results obtained when T2 was 2 seconds or less and the quantitative results obtained when T2 exceeded 2 seconds were compared, T2 was 2 seconds or less. In the results obtained in the case of the above, the accuracy and variation of the measured values were significantly suppressed.

【0053】そこで、T2を計測する工程の後に、T2
が2秒以下の場合には以降の基質濃度定量工程を実施
し、T2が2秒よりも大きい場合には中止するように判
断する工程を測定器に組み込み、同様の測定を行った。
その結果、1回で十分な量の試料が供給された場合のみ
測定が実施されるようになったため、実施例1と同様
に、測定誤差は大幅に軽減された。
Therefore, after the step of measuring T2, T2
When T2 was 2 seconds or less, the subsequent substrate concentration quantification step was performed, and when T2 was longer than 2 seconds, a step of judging to stop was incorporated in a measuring instrument, and the same measurement was performed.
As a result, since the measurement was performed only when a sufficient amount of the sample was supplied at one time, the measurement error was significantly reduced as in the first embodiment.

【0054】(実施例3)本実施例では、図2に示すグ
ルコースセンサを用いた。
Example 3 In this example, the glucose sensor shown in FIG. 2 was used.

【0055】ポリエチレンテレフタレ−トからなる絶縁
性の基板1上に、パラジウムからなる電極及びリードを
形成した。次に、試料供給口11を有するスペーサ10
を、図2中の一点鎖線で示すような位置関係をもって基
板1に接着し、作用極5、対極8、液絡検知電極7及び
リード2、3、4を区画した。区画内に実施例1と同様
に試薬層を作製した後、空気孔12を有するカバー9を
貼り合わせることで、グルコースセンサを作製した。
An electrode and a lead made of palladium were formed on an insulating substrate 1 made of polyethylene terephthalate. Next, the spacer 10 having the sample supply port 11
Was adhered to the substrate 1 in a positional relationship as shown by a dashed line in FIG. 2 to partition the working electrode 5, the counter electrode 8, the liquid-junction detecting electrode 7, and the leads 2, 3, and 4. After forming a reagent layer in the compartment in the same manner as in Example 1, the glucose sensor was manufactured by attaching a cover 9 having an air hole 12 thereto.

【0056】実施例1と同様に、試料供給検知工程及び
基質濃度定量工程により、血液中のグルコース濃度の測
定を行った結果、実施例1と同様の効果が得られ、T2
に基づいた判別を行うことで試料量不足による測定誤差
は大幅に抑制された。
As in Example 1, the glucose concentration in blood was measured by the sample supply detecting step and the substrate concentration quantifying step. As a result, the same effect as in Example 1 was obtained.
By performing the discrimination based on the above, the measurement error due to the insufficient sample amount was greatly suppressed.

【0057】なお、本実施例におけるグルコースセンサ
の場合、試料供給口11より供給された試料液は対極
8、作用極5を順次経て、最後に液絡検知電極7へと到
達するように各電極が配置されているが、これに限定さ
れず、対極8と作用極5の配置が逆で、作用極、対極、
液絡検知電極の順に試料が到達する場合においても、同
様の結果が得られた。
In the case of the glucose sensor in this embodiment, the sample liquid supplied from the sample supply port 11 passes through the counter electrode 8 and the working electrode 5 in order, and finally reaches the liquid junction detecting electrode 7. Are arranged, but the present invention is not limited to this. The arrangement of the counter electrode 8 and the working electrode 5 is reversed, and the working electrode, the counter electrode,
Similar results were obtained when the sample arrived in the order of the liquid junction detection electrodes.

【0058】(実施例4)本実施例では、図3に示すグ
ルコースセンサを用いた。
Example 4 In this example, the glucose sensor shown in FIG. 3 was used.

【0059】ポリエチレンテレフタレ−トからなる絶縁
性の作用極基板13上に、スクリ−ン印刷により銀ペー
ストを印刷し、リ−ド2を形成した。ついで、樹脂バイ
ンダーを含む導電性カーボンペーストを作用極基板13
上に印刷して作用極5を形成した。この作用極5は、リ
−ド2と接触している。さらに、作用極基板13上に、
絶縁性ペ−ストを印刷して絶縁層6を形成した。絶縁層
6は、作用極5の外周部を覆っており、これにより作用
極5の露出部分の面積を一定に保っている。
A lead 2 was formed by printing a silver paste on the insulating working electrode substrate 13 made of polyethylene terephthalate by screen printing. Then, a conductive carbon paste containing a resin binder is applied to the working electrode substrate 13.
Printing was performed thereon to form a working electrode 5. This working electrode 5 is in contact with the lead 2. Further, on the working electrode substrate 13,
The insulating paste was printed to form the insulating layer 6. The insulating layer 6 covers the outer periphery of the working electrode 5, thereby keeping the exposed area of the working electrode 5 constant.

【0060】同様の手順にて、絶縁性の対極基板14上
に対極8及び液絡検知電極7を形成した。
In the same procedure, the counter electrode 8 and the liquid-junction detecting electrode 7 were formed on the insulating counter electrode substrate 14.

【0061】実施例1と同様にして作用極5上に試薬層
を作製した後、作用極基板13、空気孔12を備えた対
極基板14及びスペーサ10を図3中の一点鎖線で示す
ような位置関係をもって接着し、バイオセンサを作製し
た。スペーサ10には、両基板間に試料液供給路を形成
するためのスリットが設けてある。試料供給口11は、
その試料供給路の開口部に相当する。
After a reagent layer is formed on the working electrode 5 in the same manner as in Example 1, the working electrode substrate 13, the counter electrode substrate 14 having the air holes 12, and the spacer 10 are arranged as shown by a dashed line in FIG. The biosensor was fabricated by bonding with a positional relationship. The spacer 10 is provided with a slit for forming a sample liquid supply path between both substrates. The sample supply port 11 is
It corresponds to the opening of the sample supply path.

【0062】次いで、血液中のグルコースの測定を行っ
た。まず、作用極5と対極8間に500mVの電圧を印
加した。次にこのセンサに、試料液として、妨害物質で
あるアスコルビン酸を含むグルコース濃度定量に十分な
量の血液を試料液供給口11より供給した。毛管現象に
より血液が空間部に導入され、血液が作用極5に達して
作用極5に接触すると、測定器が作用極5と対極8間に
おける電気抵抗値の変化を検知した。この電気抵抗値変
化の検知と同時に測定タイマーが始動し、次に、作用極
5と液絡検知電極7間に500mVの電圧を印加した。
作用極5、対極8に引き続き、血液が液絡検知電極7に
まで到達して液絡検知電極7に接触すると、作用極5と
液絡検知電極7間の電気抵抗値に変化が生じ、その変化
を測定器で検知した。ここで、測定タイマーが始動して
から作用極5と液絡検知電極7間の電気抵抗値に変化が
生じるまでの時間(T2)を、測定タイマーにより計測
した。次に、このT2が2秒以下であったことから以降
の基質濃度定量工程行うことを決定した。
Next, the glucose in the blood was measured. First, a voltage of 500 mV was applied between the working electrode 5 and the counter electrode 8. Next, blood was supplied from the sample liquid supply port 11 to the sensor in a sufficient amount as a sample liquid for determining the concentration of glucose containing ascorbic acid as an interfering substance. Blood was introduced into the space by capillary action, and when the blood reached the working electrode 5 and came into contact with the working electrode 5, the measuring instrument detected a change in the electrical resistance value between the working electrode 5 and the counter electrode 8. The measurement timer was started simultaneously with the detection of the change in the electric resistance value, and then a voltage of 500 mV was applied between the working electrode 5 and the liquid-junction detecting electrode 7.
When blood reaches the liquid junction detection electrode 7 and contacts the liquid junction detection electrode 7 following the working electrode 5 and the counter electrode 8, a change occurs in the electrical resistance value between the working electrode 5 and the liquid junction detection electrode 7. The change was detected with a measuring instrument. Here, the time (T2) from when the measurement timer was started to when the electric resistance value between the working electrode 5 and the liquid junction detection electrode 7 changed was measured by the measurement timer. Next, since this T2 was 2 seconds or less, it was decided to perform the subsequent substrate concentration quantification step.

【0063】次に、作用極5と液絡検知電極7間の電気
抵抗値変化を検知するのとほぼ同時に、液絡検知電極7
と対極8間に500mVの電圧を100ミリ秒間印加
し、両電極間の電流値(以下、I1と略称する)を測定
した。I1は、妨害物質として含まれるアスコルビン酸
の酸化反応に起因し、その濃度に対して比例関係を与え
た。I1の測定後、液絡検知電極7と対極8間の電圧印
加を解除した。
Next, almost simultaneously with detecting the change in the electric resistance value between the working electrode 5 and the liquid-junction detecting electrode 7, the liquid-junction detecting electrode 7
A voltage of 500 mV was applied between the first and second electrodes 8 for 100 milliseconds, and a current value between the two electrodes (hereinafter, abbreviated as I1) was measured. I1 was caused by the oxidation reaction of ascorbic acid contained as an interfering substance, and gave a proportional relationship to the concentration. After the measurement of I1, the voltage application between the liquid junction detection electrode 7 and the counter electrode 8 was released.

【0064】上述したように、液絡検知電極7は、試薬
層が配置されていない対極基板14上に配置されてい
る。よって、酵素反応の結果生成したフェロシアン化イ
オンが液絡検知電極7近傍に到達するまでには、若干の
時間を必要とする。すなわち、フェロシアン化イオン到
達までの時間内における液絡検知電極7と対極8間の電
流値I1は、主にアスコルビン酸の濃度のみを反映す
る。
As described above, the liquid junction detecting electrode 7 is disposed on the counter electrode substrate 14 on which no reagent layer is disposed. Therefore, it takes some time for the ferrocyanide ions generated as a result of the enzyme reaction to reach the vicinity of the liquid junction detection electrode 7. That is, the current value I1 between the liquid-junction detecting electrode 7 and the counter electrode 8 during the time until the arrival of the ferrocyanide ion mainly reflects only the concentration of ascorbic acid.

【0065】I1を測定してから約25秒経過後に、5
00mVの電位を作用極5に印加し、5秒後の応答電流
値I2を測定した。この応答電流値I2は、試料中のグ
ルコース濃度に比例するフェロシアン化イオンと、試料
中にあらかじめ存在するアスコルビン酸の酸化反応に起
因する。すなわち、アスコルビン酸が測定結果に正の誤
差を与えることとなる。そこで、電流値I1に基づいて
応答電流値I2を補正することにより得られた電流値I
3より、アスコルビン酸の影響を除去し正確なグルコー
ス濃度を求めることができる。
About 25 seconds after the measurement of I1, 5
A potential of 00 mV was applied to the working electrode 5, and the response current value I2 after 5 seconds was measured. This response current value I2 is caused by an oxidation reaction between ferrocyanide ions, which are proportional to the glucose concentration in the sample, and ascorbic acid that is present in the sample in advance. That is, ascorbic acid gives a positive error to the measurement result. Therefore, the current value I obtained by correcting the response current value I2 based on the current value I1
From 3, it is possible to remove the influence of ascorbic acid and obtain an accurate glucose concentration.

【0066】本実施例によれば、液絡検知電極7が妨害
物質検知電極としても機能することにより、妨害物質の
影響を補正することができるので、妨害物質検知用に新
たに電極を追加することなく、より高精度な基質の測定
が可能となった。
According to this embodiment, the influence of the interfering substance can be corrected by the function of the liquid-junction detecting electrode 7 also as the interfering substance detecting electrode. Therefore, a new electrode is added for detecting the interfering substance. Without this, it became possible to measure the substrate with higher accuracy.

【0067】(実施例5)実施例4と同様のグルコース
センサを用い、実施例4と同様の手順にて、血液中のグ
ルコースの測定を行った。但し、作用極5と対極8間の
応答電流値を得るために電位印加を行う際、液絡検知電
極7を基準にして、700mVの電位を作用極5に印加
し、200mVの電位を対極8に印加した。すなわち、
液絡検知電極7を参照極として用いた三電極式での測定
を行った。
Example 5 Using the same glucose sensor as in Example 4, glucose in blood was measured in the same procedure as in Example 4. However, when applying a potential to obtain a response current value between the working electrode 5 and the counter electrode 8, a potential of 700 mV is applied to the working electrode 5 with respect to the liquid-junction detecting electrode 7, and a potential of 200 mV is applied to the counter electrode 8. Was applied. That is,
The measurement was performed by a three-electrode system using the liquid-junction detecting electrode 7 as a reference electrode.

【0068】その結果、作用極5の電位が安定したこと
により電位摂動の影響が抑制されたため、グルコース濃
度に対する応答電流値の直線性が向上した。
As a result, since the potential of the working electrode 5 was stabilized, the influence of the potential perturbation was suppressed, and the linearity of the response current value with respect to the glucose concentration was improved.

【0069】本実施例によれば、液絡検知電極7は、妨
害物質検知電極及び参照極としての併用ができるので、
妨害物質検知電極または参照極用として新たに電極を追
加することなく、より高精度な基質の測定が可能となっ
た。
According to this embodiment, the liquid junction detecting electrode 7 can be used as both an interfering substance detecting electrode and a reference electrode.
It is possible to measure a substrate with higher accuracy without adding a new electrode for an interfering substance detection electrode or a reference electrode.

【0070】なお、上記の実施例において、試料液検
知、妨害物質検知及び基質濃度定量のために電極系へ印
加する電位または電圧値を記載したが、これに限定され
ることはない。試料液検知の際には電気的信号の変化が
観察される電位または電圧、妨害物質検知の際には妨害
物質が電極上で反応する電位または電圧、また基質濃度
定量の際には一連の反応の結果生じた電子伝達体の還元
体が酸化される電位または電圧であればよい。
In the above embodiment, the potential or voltage applied to the electrode system for detecting the sample solution, detecting the interfering substance, and quantifying the substrate concentration is described, but the present invention is not limited to this. The potential or voltage at which a change in the electrical signal is observed when detecting a sample liquid, the potential or voltage at which an interfering substance reacts on an electrode when detecting an interfering substance, or a series of reactions when quantifying a substrate concentration The potential or the voltage may be such that the reduced form of the electron carrier resulting from the above is oxidized.

【0071】また、基質濃度定量工程の実施または中止
を判断する工程において、T2と比較する時間を2秒に
設定しているが、これに限定されることはない。T2
は、電極間距離、試料の粘度、温度等を因子とする値で
あり、これらの因子に応じて適切な時間が設定される。
また、電流値を測定する時間についても、実施例に記載
の特定値に限定されることはない。
Further, in the step of judging whether to carry out or stop the substrate concentration determination step, the time for comparison with T2 is set to 2 seconds, but the present invention is not limited to this. T2
Is a value with factors such as the distance between the electrodes, the viscosity of the sample, and the temperature, and an appropriate time is set in accordance with these factors.
Also, the time for measuring the current value is not limited to the specific value described in the embodiment.

【0072】実施例1及び実施例3〜5では、試料液が
液絡検知電極に接触したことを確認するために、作用極
と液絡検知電極間に電圧を印加し、作用極と液絡検知電
極間の電気的信号の変化を検知したが、これに代えて、
対極と液絡検知電極間に電圧を印加し、対極と液絡検知
電極間の電気的信号の変化を検知してもよい。また、実
施例2では、試料液が液絡検知電極に到達したことを確
認するために、作用極と液絡検知電極間の電気的信号の
変化を検知したが、これに代えて、対極と液絡検知電極
間の電気的信号の変化を検知してもよい。
In Examples 1 and 3 to 5, a voltage was applied between the working electrode and the liquid-junction detecting electrode to confirm that the sample liquid was in contact with the liquid-junction detecting electrode. A change in the electrical signal between the detection electrodes was detected, but instead,
A voltage may be applied between the counter electrode and the liquid-junction detecting electrode to detect a change in an electric signal between the counter electrode and the liquid-junction detecting electrode. Further, in the second embodiment, in order to confirm that the sample liquid has reached the liquid junction detection electrode, a change in the electric signal between the working electrode and the liquid junction detection electrode is detected. A change in an electrical signal between the liquid junction detection electrodes may be detected.

【0073】また、上記実施例では、試料液が各電極に
接触したことを確認するために、電気的信号として、電
気抵抗値の変化を検知したが、これに限定されず、電流
値、電極電位、容量成分等の変化を検知してもよい。
In the above embodiment, a change in the electric resistance was detected as an electric signal in order to confirm that the sample liquid was in contact with each electrode. However, the present invention is not limited to this. Changes in potential, capacitance component, etc. may be detected.

【0074】上記実施例では、センサ構造の例を図示し
たが、電極及びリードの形状、電極及びリードの配置、
センサ部材の組み合わせ方法等はこれらに限定されるも
のではない。
In the above embodiment, an example of the sensor structure is shown, but the shapes of the electrodes and leads, the arrangement of the electrodes and leads,
The combination method of the sensor members is not limited to these.

【0075】また、上記実施例では、電極材料としてカ
ーボンまたはパラジウムについて述べたが、これに限定
されることはない。作用極材料としては、電子伝達体を
酸化する際にそれ自身が酸化されない導電性材料であれ
ば使用できる。また、対極材料としては、銀、白金等の
一般的に用いられる導電性材料であれば使用できる。ま
た電極系の作製法もスクリーン印刷法、スパッタリング
法に限定されず、蒸着法等、他の手法にて作製された電
極系でも使用できる。
In the above embodiment, carbon or palladium is described as an electrode material, but the present invention is not limited to this. As the working electrode material, any conductive material that does not oxidize itself when oxidizing the electron carrier can be used. As the counter electrode material, any commonly used conductive material such as silver or platinum can be used. Further, the method for manufacturing the electrode system is not limited to the screen printing method or the sputtering method, and an electrode system manufactured by another method such as an evaporation method can be used.

【0076】また、試薬層を作用極に固定化することに
よって、酵素や電子伝達体を不溶化させてもよい。固定
化する場合は、架橋固定法あるいは吸着法が好ましい。
また、酵素や電子伝達体を電極材料中に混合させてもよ
い。
Further, the enzyme and the electron carrier may be insolubilized by fixing the reagent layer to the working electrode. In the case of immobilization, a cross-linking immobilization method or an adsorption method is preferred.
Further, an enzyme or an electron carrier may be mixed in the electrode material.

【0077】[0077]

【発明の効果】以上のように本発明によると、試料液の
供給状態を容易かつ確実に判別することができ、高精度
で、ばらつきが少ない基質濃度定量法を提供することが
できる。
As described above, according to the present invention, the supply state of the sample solution can be easily and reliably determined, and a highly accurate and low-variation substrate concentration determination method can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例におけるグルコースセンサの
試薬層を除去した状態の分解斜視図
FIG. 1 is an exploded perspective view of a glucose sensor according to an embodiment of the present invention with a reagent layer removed.

【図2】本発明の他の実施例におけるグルコースセンサ
の試薬層を除去した状態の分解斜視図
FIG. 2 is an exploded perspective view of a glucose sensor according to another embodiment of the present invention with a reagent layer removed.

【図3】本発明のさらに他の実施例におけるグルコース
センサの試薬層を除去した状態の分解斜視図
FIG. 3 is an exploded perspective view of a glucose sensor according to still another embodiment of the present invention with a reagent layer removed.

【符号の説明】[Explanation of symbols]

1 基板 2,3,4 リ−ド 5 作用極 6 絶縁層 7 液絡検知電極 8 対極 9 カバー 10 スペーサ 11 試料液供給口 12 空気孔 13 作用極基板 14 対極基板 DESCRIPTION OF SYMBOLS 1 Substrate 2, 3, 4 lead 5 Working electrode 6 Insulating layer 7 Liquid-junction detecting electrode 8 Counter electrode 9 Cover 10 Spacer 11 Sample liquid supply port 12 Air hole 13 Working electrode substrate 14 Counter electrode substrate

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】作用極、対極、液絡検知電極、少なくとも
酵素及び電子伝達体を包含する試薬層、並びに試料液供
給口を備え、前記液絡検知電極が、前記作用極及び前記
対極よりも前記試料液供給口から離れた位置に配置され
ているバイオセンサを用い、前記作用極に前記電子伝達
体を酸化する電位を印加する工程(A)及び前記作用極
と前記対極間の電流値を測定する工程(B)を有する基
質濃度定量工程において得られた前記電流値に基づいて
試料液中の基質濃度を定量する基質濃度定量法であっ
て、少なくとも、前記試料液供給口から前記試料液を供
給する工程(C)、前記試料液が前記作用極及び前記対
極に接触したことを検知する工程(D)、前記試料液が
前記液絡検知電極に接触したことを検知する工程
(E)、前記試料液が前記作用極及び前記対極に接触し
てから、前記試料液が前記液絡検知電極に接触するまで
の時間(T1)を計測する工程(F)、前記T1に基づ
いて前記基質濃度定量工程の実施または中止を決定する
工程(G)、及び前記決定に基づいて前記基質濃度定量
工程を実施または中止する工程(H)を含むことを特徴
とする基質濃度定量法。
A working electrode, a counter electrode, a liquid-junction detecting electrode, a reagent layer containing at least an enzyme and an electron carrier, and a sample liquid supply port, wherein the liquid-junction detecting electrode is higher than the working electrode and the counter electrode. A step (A) of applying a potential for oxidizing the electron carrier to the working electrode by using a biosensor arranged at a position distant from the sample liquid supply port, and determining a current value between the working electrode and the counter electrode. A substrate concentration quantification method for quantifying a substrate concentration in a sample liquid based on the current value obtained in the substrate concentration quantification step having the measuring step (B), wherein at least the sample liquid is supplied from the sample liquid supply port. (C), detecting that the sample liquid has contacted the working electrode and the counter electrode (D), and detecting that the sample liquid has contacted the liquid junction detection electrode (E). The sample solution is A step (F) of measuring a time (T1) from the time when the sample liquid comes into contact with the liquid junction detection electrode after contact with the working electrode and the counter electrode, and the step of measuring the substrate concentration based on the T1 or A method for quantifying a substrate concentration, comprising: a step (G) for determining a stop; and a step (H) for performing or stopping the substrate concentration quantification step based on the determination.
【請求項2】工程(D)において、作用極と対極間の電
気的信号の変化により、試料液が前記作用極及び前記対
極に接触したことを検知し、工程(E)において、前記
作用極と液絡検知電極間、または前記対極と前記液絡検
知電極間の電気的信号の変化により、前記試料液が前記
液絡検知電極に接触したことを検知し、工程(F)にお
いて、前記作用極と前記対極間の電気的信号の変化を検
知してから、前記作用極と前記液絡検知電極間、または
前記対極と前記液絡検知電極間の電気的信号の変化を検
知するまでの時間(T2)を計測し、前記T2をT1と
することを特徴とする、請求項1記載の基質濃度定量
法。
2. In the step (D), it is detected that the sample liquid has contacted the working electrode and the counter electrode by a change in an electric signal between the working electrode and the counter electrode. A contact between the sample liquid and the liquid-junction detecting electrode is detected based on a change in an electric signal between the liquid-junction detecting electrode and the counter electrode and between the counter electrode and the liquid-junction detecting electrode. Time from detecting a change in an electrical signal between a pole and the counter electrode to detecting a change in an electrical signal between the working electrode and the liquid-junction detection electrode or between the counter electrode and the liquid-junction detection electrode. The method according to claim 1, wherein (T2) is measured, and T2 is defined as T1.
【請求項3】少なくとも工程(D)の前に、作用極と対
極間に電圧を印加する工程を有し、かつ少なくとも工程
(E)の前に、前記作用極と液絡検知電極間、または前
記対極と前記液絡検知電極間に電圧を印加する工程を有
することを特徴とする、請求項2記載の基質濃度定量
法。
3. A step of applying a voltage between the working electrode and the counter electrode at least before the step (D), and at least before the step (E), between the working electrode and the liquid-junction detecting electrode, or 3. The method according to claim 2, further comprising a step of applying a voltage between said counter electrode and said liquid junction detection electrode.
【請求項4】少なくとも工程(D)の前に、作用極、対
極及び液絡検知電極に電位を印加する工程を有すること
を特徴とする、請求項2記載の基質濃度定量法。
4. The method according to claim 2, further comprising the step of applying a potential to the working electrode, the counter electrode and the liquid-junction detecting electrode at least before step (D).
【請求項5】作用極、対極及び液絡検知電極が同一基板
上に配置されているバイオセンサを用いることを特徴と
する、請求項1〜4のいずれかに記載の基質濃度定量
法。
5. The method according to claim 1, wherein a working electrode, a counter electrode, and a liquid-junction detecting electrode are disposed on the same substrate using a biosensor.
【請求項6】作用極及び対極が、空間部を介して相互に
対向する位置に配置されているバイオセンサを用いるこ
とを特徴とする、請求項1〜4のいずれかに記載の基質
濃度定量法。
6. The method according to claim 1, wherein the working electrode and the counter electrode use biosensors arranged at positions facing each other via a space. Law.
【請求項7】試薬層及び液絡検知電極が、空間部を介し
て相互に対向する位置に配置されているバイオセンサを
用い、対極と前記液絡検知電極間の電流値を測定するこ
とにより妨害物質の検知を行う工程を有することを特徴
とする、請求項1〜6のいずれかに記載の基質濃度定量
法。
7. A biosensor in which a reagent layer and a liquid-junction detecting electrode are arranged to face each other via a space, and measures a current value between a counter electrode and the liquid-junction detecting electrode. The method according to any one of claims 1 to 6, further comprising a step of detecting an interfering substance.
【請求項8】液絡検知電極が参照極として機能すること
を特徴とする、請求項1〜7のいずれかに記載の基質濃
度定量法。
8. The method according to claim 1, wherein the liquid-junction detecting electrode functions as a reference electrode.
JP2000147688A 2000-05-19 2000-05-19 Substrate concentration determination method Pending JP2001330581A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000147688A JP2001330581A (en) 2000-05-19 2000-05-19 Substrate concentration determination method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000147688A JP2001330581A (en) 2000-05-19 2000-05-19 Substrate concentration determination method

Publications (1)

Publication Number Publication Date
JP2001330581A true JP2001330581A (en) 2001-11-30

Family

ID=18653837

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000147688A Pending JP2001330581A (en) 2000-05-19 2000-05-19 Substrate concentration determination method

Country Status (1)

Country Link
JP (1) JP2001330581A (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002086483A1 (en) * 2001-04-16 2002-10-31 Matsushita Electric Industrial Co., Ltd. Biosensor
WO2003034055A1 (en) * 2001-10-12 2003-04-24 Arkray, Inc. Concentration measuring method and concentration measuring device
WO2004005908A1 (en) * 2002-07-02 2004-01-15 Matsushita Electric Industrial Co., Ltd. Biosensor, biosensor chip, and biosensor device
WO2004011921A1 (en) * 2002-07-25 2004-02-05 Arkray, Inc. Sample analyzing method and sample analyzing device
JP2005525149A (en) * 2002-02-08 2005-08-25 ローズデイル メディカル インコーポレイテッド Autonomous portable sample monitoring device or drug delivery device
JP2007114197A (en) * 2005-10-17 2007-05-10 Lifescan Inc Method of measuring physiological liquid
JP2010164583A (en) * 2010-04-27 2010-07-29 Panasonic Corp Biosensor, measuring device for the same and quantification method for substrate
JP2010164584A (en) * 2010-04-27 2010-07-29 Panasonic Corp Biosensor, measuring device for the same and quantification method for substrate
JP2011027737A (en) * 2009-07-14 2011-02-10 Becton Dickinson & Co Blood glucose sensor
US8097147B2 (en) 2000-11-30 2012-01-17 Panasonic Corporation Method of measuring quantity of substrate
US8360994B2 (en) 2005-09-30 2013-01-29 Intuity Medical, Inc. Arrangement for body fluid sample extraction
US8801631B2 (en) 2005-09-30 2014-08-12 Intuity Medical, Inc. Devices and methods for facilitating fluid transport
US8919605B2 (en) 2009-11-30 2014-12-30 Intuity Medical, Inc. Calibration material delivery devices and methods
US8969097B2 (en) 2005-06-13 2015-03-03 Intuity Medical, Inc. Analyte detection devices and methods with hematocrit-volume correction and feedback control
US9095292B2 (en) 2003-03-24 2015-08-04 Intuity Medical, Inc. Analyte concentration detection devices and methods
US9636051B2 (en) 2008-06-06 2017-05-02 Intuity Medical, Inc. Detection meter and mode of operation
US9782114B2 (en) 2011-08-03 2017-10-10 Intuity Medical, Inc. Devices and methods for body fluid sampling and analysis
US9833183B2 (en) 2008-05-30 2017-12-05 Intuity Medical, Inc. Body fluid sampling device—sampling site interface
US10330667B2 (en) 2010-06-25 2019-06-25 Intuity Medical, Inc. Analyte monitoring methods and systems
US10383556B2 (en) 2008-06-06 2019-08-20 Intuity Medical, Inc. Medical diagnostic devices and methods
US10729386B2 (en) 2013-06-21 2020-08-04 Intuity Medical, Inc. Analyte monitoring system with audible feedback

Cited By (77)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10605757B2 (en) 2000-11-30 2020-03-31 Phc Holdings Corporation Biosensor, measuring instrument for biosensor, and method of quantifying substrate
US8097147B2 (en) 2000-11-30 2012-01-17 Panasonic Corporation Method of measuring quantity of substrate
US8771487B2 (en) 2000-11-30 2014-07-08 Panasonic Corporation Biosensor, measuring instrument for biosensor, and method of quantifying substrate
US8668820B2 (en) 2000-11-30 2014-03-11 Panasonic Corporation Method of measuring quantity of substrate
US8298400B2 (en) 2000-11-30 2012-10-30 Panasonic Corporation Method of measuring quantity of substrate
US8101063B2 (en) 2000-11-30 2012-01-24 Panasonic Corporation Method of measuring quantity of substrate
US9797858B2 (en) 2000-11-30 2017-10-24 Panasonic Healthcare Holdings Co., Ltd. Biosensor, measuring instrument for biosensor, and method of quantifying substrate
US8475638B2 (en) 2001-04-16 2013-07-02 Panasonic Corporation Biosensor
WO2002086483A1 (en) * 2001-04-16 2002-10-31 Matsushita Electric Industrial Co., Ltd. Biosensor
US7491310B2 (en) 2001-10-12 2009-02-17 Arkray, Inc. Concentration measuring method and concentration measuring apparatus
WO2003034055A1 (en) * 2001-10-12 2003-04-24 Arkray, Inc. Concentration measuring method and concentration measuring device
US10772550B2 (en) 2002-02-08 2020-09-15 Intuity Medical, Inc. Autonomous, ambulatory analyte monitor or drug delivery device
US8303518B2 (en) 2002-02-08 2012-11-06 Intuity Medical, Inc. Autonomous, ambulatory analyte monitor or drug delivery device
JP2005525149A (en) * 2002-02-08 2005-08-25 ローズデイル メディカル インコーポレイテッド Autonomous portable sample monitoring device or drug delivery device
US8388820B2 (en) 2002-07-02 2013-03-05 Panasonic Corporation Biosensor, biosensor chip and biosensor device
WO2004005908A1 (en) * 2002-07-02 2004-01-15 Matsushita Electric Industrial Co., Ltd. Biosensor, biosensor chip, and biosensor device
US8231768B2 (en) 2002-07-02 2012-07-31 Panasonic Corporation Biosensor, biosensor chip and biosensor device
US9080954B2 (en) 2002-07-02 2015-07-14 Panasonic Healthcare Holdings Co., Ltd. Biosensor, biosensor chip and biosensor device
US9080957B2 (en) 2002-07-02 2015-07-14 Panasonic Healthcare Holdings Co., Ltd. Biosensor, biosensor chip and biosensor device
US7540947B2 (en) 2002-07-02 2009-06-02 Panasonic Corporation Biosensor, biosensor chip, and biosensor device
US9074997B2 (en) 2002-07-02 2015-07-07 Panasonic Healthcare Holdings Co., Ltd. Biosensor, biosensor chip and biosensor device
US9074999B2 (en) 2002-07-02 2015-07-07 Panasonic Healthcare Holdings Co., Ltd. Biosensor, biosensor chip and biosensor device
US9080960B2 (en) 2002-07-02 2015-07-14 Panasonic Healthcare Holdings Co., Ltd. Biosensor, biosensor chip and biosensor device
US9074998B2 (en) 2002-07-02 2015-07-07 Panasonic Healthcare Holdings Co., Ltd. Biosensor, biosensor chip and biosensor device
US9075000B2 (en) 2002-07-02 2015-07-07 Panasonic Healthcare Holdings Co., Ltd. Biosensor, biosensor chip and biosensor device
US8496794B2 (en) 2002-07-02 2013-07-30 Panasonic Corporation Biosensor, biosensor chip and biosensor device
US8568579B2 (en) 2002-07-02 2013-10-29 Panasonic Corporation Biosensor, biosensor chip and biosensor device
US8574423B2 (en) 2002-07-02 2013-11-05 Panasonic Corporation Biosensor, biosensor chip and biosensor device
US9068931B2 (en) 2002-07-02 2015-06-30 Panasonic Healthcare Holdings Co., Ltd. Biosensor, biosensor chip and biosensor device
US9080956B2 (en) 2002-07-02 2015-07-14 Panasonic Healthcare Holdings Co., Ltd Biosensor, biosensor chip and biosensor device
US9086372B2 (en) 2002-07-02 2015-07-21 Panasonic Healthcare Holdings Co., Ltd. Biosensor, biosensor chip and biosensor device
US9080955B2 (en) 2002-07-02 2015-07-14 Panasonic Healthcare Holdings Co., Ltd. Biosensor, biosensor chip and biosensor device
US8888975B2 (en) 2002-07-02 2014-11-18 Panasonic Healthcare Holdings Co., Ltd. Biosensor, biosensor chip and biosensor device
US8888974B2 (en) 2002-07-02 2014-11-18 Panasonic Healthcare Holdings, Co., Ltd Biosensor, biosensor chip and biosensor device
US8900430B2 (en) 2002-07-02 2014-12-02 Panasonic Healthcare Holdings Co., Ltd Biosensor, biosensor chip and biosensor device
US9080958B2 (en) 2002-07-02 2015-07-14 Panasonic Healthcare Holdings Co., Ltd. Biosensor, biosensor chip and biosensor device
CN101271106B (en) * 2002-07-25 2012-07-04 爱科来株式会社 Sample analyzing method
WO2004011921A1 (en) * 2002-07-25 2004-02-05 Arkray, Inc. Sample analyzing method and sample analyzing device
US7537684B2 (en) 2002-07-25 2009-05-26 Arkray, Inc. Sample analyzing method and sample analyzing device
EP2149792A2 (en) 2002-07-25 2010-02-03 ARKRAY, Inc. Sample analyzing method and sample analyzing device
US9095292B2 (en) 2003-03-24 2015-08-04 Intuity Medical, Inc. Analyte concentration detection devices and methods
US8969097B2 (en) 2005-06-13 2015-03-03 Intuity Medical, Inc. Analyte detection devices and methods with hematocrit-volume correction and feedback control
US11419532B2 (en) 2005-06-13 2022-08-23 Intuity Medical, Inc. Analyte detection devices and methods with hematocrit/volume correction and feedback control
US9366636B2 (en) 2005-06-13 2016-06-14 Intuity Medical, Inc. Analyte detection devices and methods with hematocrit/volume correction and feedback control
US10226208B2 (en) 2005-06-13 2019-03-12 Intuity Medical, Inc. Analyte detection devices and methods with hematocrit/volume correction and feedback control
US8360994B2 (en) 2005-09-30 2013-01-29 Intuity Medical, Inc. Arrangement for body fluid sample extraction
US9380974B2 (en) 2005-09-30 2016-07-05 Intuity Medical, Inc. Multi-site body fluid sampling and analysis cartridge
US10441205B2 (en) 2005-09-30 2019-10-15 Intuity Medical, Inc. Multi-site body fluid sampling and analysis cartridge
US8801631B2 (en) 2005-09-30 2014-08-12 Intuity Medical, Inc. Devices and methods for facilitating fluid transport
US8795201B2 (en) 2005-09-30 2014-08-05 Intuity Medical, Inc. Catalysts for body fluid sample extraction
US10842427B2 (en) 2005-09-30 2020-11-24 Intuity Medical, Inc. Body fluid sampling arrangements
US8382681B2 (en) 2005-09-30 2013-02-26 Intuity Medical, Inc. Fully integrated wearable or handheld monitor
US10433780B2 (en) 2005-09-30 2019-10-08 Intuity Medical, Inc. Devices and methods for facilitating fluid transport
US9060723B2 (en) 2005-09-30 2015-06-23 Intuity Medical, Inc. Body fluid sampling arrangements
US9839384B2 (en) 2005-09-30 2017-12-12 Intuity Medical, Inc. Body fluid sampling arrangements
US8360993B2 (en) 2005-09-30 2013-01-29 Intuity Medical, Inc. Method for body fluid sample extraction
US8486245B2 (en) 2005-10-17 2013-07-16 Lifescan, Inc. Methods for measuring physiological fluids
JP2007114197A (en) * 2005-10-17 2007-05-10 Lifescan Inc Method of measuring physiological liquid
US9833183B2 (en) 2008-05-30 2017-12-05 Intuity Medical, Inc. Body fluid sampling device—sampling site interface
US11045125B2 (en) 2008-05-30 2021-06-29 Intuity Medical, Inc. Body fluid sampling device-sampling site interface
US9636051B2 (en) 2008-06-06 2017-05-02 Intuity Medical, Inc. Detection meter and mode of operation
US11399744B2 (en) 2008-06-06 2022-08-02 Intuity Medical, Inc. Detection meter and mode of operation
US10383556B2 (en) 2008-06-06 2019-08-20 Intuity Medical, Inc. Medical diagnostic devices and methods
US11553860B2 (en) 2008-06-06 2023-01-17 Intuity Medical, Inc. Medical diagnostic devices and methods
JP2011027737A (en) * 2009-07-14 2011-02-10 Becton Dickinson & Co Blood glucose sensor
US11933789B2 (en) 2009-11-30 2024-03-19 Intuity Medical, Inc. Calibration material delivery devices and methods
US9897610B2 (en) 2009-11-30 2018-02-20 Intuity Medical, Inc. Calibration material delivery devices and methods
US11002743B2 (en) 2009-11-30 2021-05-11 Intuity Medical, Inc. Calibration material delivery devices and methods
US8919605B2 (en) 2009-11-30 2014-12-30 Intuity Medical, Inc. Calibration material delivery devices and methods
JP2010164584A (en) * 2010-04-27 2010-07-29 Panasonic Corp Biosensor, measuring device for the same and quantification method for substrate
JP2010164583A (en) * 2010-04-27 2010-07-29 Panasonic Corp Biosensor, measuring device for the same and quantification method for substrate
US10330667B2 (en) 2010-06-25 2019-06-25 Intuity Medical, Inc. Analyte monitoring methods and systems
US9782114B2 (en) 2011-08-03 2017-10-10 Intuity Medical, Inc. Devices and methods for body fluid sampling and analysis
US11382544B2 (en) 2011-08-03 2022-07-12 Intuity Medical, Inc. Devices and methods for body fluid sampling and analysis
US11051734B2 (en) 2011-08-03 2021-07-06 Intuity Medical, Inc. Devices and methods for body fluid sampling and analysis
US11672452B2 (en) 2011-08-03 2023-06-13 Intuity Medical, Inc. Devices and methods for body fluid sampling and analysis
US10729386B2 (en) 2013-06-21 2020-08-04 Intuity Medical, Inc. Analyte monitoring system with audible feedback

Similar Documents

Publication Publication Date Title
JP3267936B2 (en) Biosensor
US5985116A (en) Biosensor
JP3874321B2 (en) Biosensor
US6340428B1 (en) Device and method for determining the concentration of a substrate
JP3061351B2 (en) Method and apparatus for quantifying specific compounds
EP1126032B1 (en) Biosensor
JP4177662B2 (en) Biosensor
JP2001330581A (en) Substrate concentration determination method
KR100293873B1 (en) Biosensor
EP1113264B1 (en) Biosensor
JP3102627B2 (en) Biosensor, quantitative method and quantitative device using the same
EP1482056A2 (en) Biosensor
JPH1142098A (en) Quantitative determination of substrate
JPWO2002097418A1 (en) Biosensor
JPH05340915A (en) Biosensor and measuring method using the same
JP3267933B2 (en) Substrate quantification method
JP3024394B2 (en) Biosensor and measurement method using the same
JP3437016B2 (en) Biosensor and method of quantifying substrate using the same
JP2001249103A (en) Biosensor
JPH11101771A (en) Biosensor and determination of substrate using the same
JP4036883B2 (en) Biosensor
JP2004004057A (en) Biosensor, adapter used for the same and measuring apparatus
JPH08338824A (en) Biosensor, manufacture for biosensor and method for determining specific compound
JP2005010150A (en) Biosensor