JPH0651350A - Display device - Google Patents

Display device

Info

Publication number
JPH0651350A
JPH0651350A JP22641692A JP22641692A JPH0651350A JP H0651350 A JPH0651350 A JP H0651350A JP 22641692 A JP22641692 A JP 22641692A JP 22641692 A JP22641692 A JP 22641692A JP H0651350 A JPH0651350 A JP H0651350A
Authority
JP
Japan
Prior art keywords
insulating film
film
electrode
layer
gate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22641692A
Other languages
Japanese (ja)
Inventor
Yoshinobu Kakihara
良亘 柿原
Satoshi Waga
聰 和賀
Setsuo Ishibashi
節雄 石橋
Mitsuo Bitou
三津雄 尾籐
Kazunari Takita
一成 瀧田
Kazunori Matsugi
主範 松技
Isao Nakamura
功 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alps Alpine Co Ltd
Original Assignee
Alps Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alps Electric Co Ltd filed Critical Alps Electric Co Ltd
Priority to JP22641692A priority Critical patent/JPH0651350A/en
Publication of JPH0651350A publication Critical patent/JPH0651350A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide the display device which obviates the generation of the short circuit between electrodes or electrostatic breakdown in an interlayer insulating film even if these electrodes are formed to face each other via the interlayer insulating film. CONSTITUTION:The gate electrode 21 consisting of a ground surface layer 22, a highly conductive layer 23 and an oxidation resistant conductive layer 24 is formed at nearly the same film thickness as the film thickness of an insulating film 9 on a glass substrate 1. The interlayer insulating film 9 as a gate insulating film is formed thereon and further, an ordinary a-Si film 4, an etch stopper layer 5, an n+Si film 6, a source electrode 7 and a drain electrode 8 are formed thereon, by which a TFT is constituted.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は表示装置に関し、特に層
間絶縁膜を有する表示装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a display device, and more particularly to a display device having an interlayer insulating film.

【0002】[0002]

【従来の技術】近年、時計、電卓をはじめとしてコンピ
ュ−タ−端末やパソコンなどに用いられる表示素子とし
て、低電力で表示できる液晶表示素子やエレクトロルミ
ネッセンス表示素子などが注目され、実用化されてい
る。特に最近では、表示装置として、より高い解像度を
有するものが求められてきているが、従来の単純マトリ
ックス型表示素子は走査線数に限界があり、また走査線
数の増加に伴って表示品位が低下するので、各画素にM
IM(Metal-Insulator-Metal)素子や薄膜トランジスタ
(以下、TFTという)などを設けたアクティブマトリ
ックス駆動方式による表示素子(以下、アクティブ素子
という)が盛んに開発されている。
2. Description of the Related Art In recent years, liquid crystal display elements and electroluminescence display elements capable of displaying with low power have been attracting attention and put into practical use as display elements used in computer terminals such as watches and calculators and personal computers. There is. In particular, recently, a display device having a higher resolution has been demanded, but the conventional simple matrix type display element has a limit in the number of scanning lines, and the display quality becomes higher as the number of scanning lines increases. Since it decreases, M for each pixel
A display element (hereinafter referred to as an active element) by an active matrix driving method, which is provided with an IM (Metal-Insulator-Metal) element, a thin film transistor (hereinafter referred to as TFT), etc., has been actively developed.

【0003】従来のアクティブ素子の一例として、TF
Tの概略断面図を図5に示す。図5において1はガラス
基板、2はガラス基板1の上に形成されたゲ−ト電極、
3はゲ−ト電極2の上に形成されたゲ−ト絶縁膜、4は
a−Si膜、5はエッチストッパ−層、6はn+ −Si
膜、7はソ−ス電極、8はドレイン電極である。一般に
ゲ−ト電極2は、図示しないバスラインと一体的に接続
・形成されており、CrやWなどにより約1000A程
度の厚さで形成されている。またゲ−ト絶縁膜3は、タ
ンタル酸化物(Ta2 O5 )、アルミニウム酸化物(A
l2 O3)あるいはシリコン窒化物(Si3 N4 )など
により形成されている。
As an example of a conventional active element, TF
A schematic sectional view of T is shown in FIG. In FIG. 5, 1 is a glass substrate, 2 is a gate electrode formed on the glass substrate 1,
3 is a gate insulating film formed on the gate electrode 2, 4 is an a-Si film, 5 is an etch stopper layer, and 6 is n + -Si.
A film, 7 is a source electrode, and 8 is a drain electrode. Generally, the gate electrode 2 is integrally connected to and formed with a bus line (not shown), and is formed of Cr, W or the like with a thickness of about 1000 A. The gate insulating film 3 is made of tantalum oxide (Ta2 O5), aluminum oxide (A
12O3) or silicon nitride (Si3 N4).

【0004】[0004]

【発明が解決しようとする課題】しかしながら、従来の
アクティブ素子に用いられる絶縁膜は、図5に示すよう
にゲ−ト絶縁膜3が層間絶縁膜として用いられる場合に
は、ゲ−ト電極2による段差部においてゲ−ト絶縁膜3
の膜厚が薄くなったり、あるいはゲ−ト絶縁膜3の膜中
にピンホ−ルなどの欠陥が生じて絶縁耐圧が低下しやす
くなる。したがって、短絡しやすくなり品質が低い、と
いう問題があり、またアクティブ素子を製造する過程な
どで生じる静電気によりゲ−ト電極2とドレイン電極7
との間あるいはゲ−ト電極2とソ−ス電極8との間でゲ
−ト絶縁膜3に絶縁破壊が生じやすくなるため、製造上
の歩留まりが低い、という問題があった。
However, the insulating film used in the conventional active element is the gate electrode 2 when the gate insulating film 3 is used as an interlayer insulating film as shown in FIG. Gate insulating film 3 at the step portion due to
Of the gate insulating film 3 becomes thin, or defects such as pinholes occur in the film of the gate insulating film 3, so that the withstand voltage is easily lowered. Therefore, there is a problem that a short circuit easily occurs and the quality is low, and the gate electrode 2 and the drain electrode 7 are caused by static electricity generated in the process of manufacturing an active element.
Between the gate electrode 2 and the source electrode 8 is liable to cause a dielectric breakdown in the gate insulating film 3, resulting in a low manufacturing yield.

【0005】また、前記バスラインの配線抵抗値を低く
抑えてゲ−ト遅延が生じないようにしなければならない
が、この配線抵抗値を下げる目的で前記バスラインの厚
さを厚く形成すると、バスラインの一部であるゲ−ト電
極2の膜厚も厚くなり前記の問題がさらに大きくなる。
一方前記目的でバスラインの幅を大きく設定すると、ア
クティブ素子の開口率が低下するという新たな問題が生
じる。
Further, it is necessary to keep the wiring resistance value of the bus line low so as to prevent gate delay. If the bus line is formed thick to reduce the wiring resistance value, the bus The thickness of the gate electrode 2, which is a part of the line, is also increased, and the above problem is further increased.
On the other hand, if the width of the bus line is set large for the above purpose, a new problem arises that the aperture ratio of the active element decreases.

【0006】本発明はこのような問題点に鑑みてなされ
たもので、層間絶縁膜を介して相対向する電極間で短絡
することがなく、さらに表示装置の製造過程などで生じ
る静電気などにより層間絶縁膜に絶縁破壊が生じること
を防止でき、かつゲ−ト遅延などの問題を生じることな
く開口率を大きくすることが可能な表示装置を提供する
ことを目的としている。
The present invention has been made in view of the above problems, and does not cause a short circuit between electrodes facing each other with an interlayer insulating film interposed therebetween, and further, due to static electricity generated in the manufacturing process of a display device, etc. An object of the present invention is to provide a display device capable of preventing dielectric breakdown in an insulating film and increasing the aperture ratio without causing problems such as gate delay.

【0007】[0007]

【課題を解決するための手段】本発明による表示装置
は、基板上に、電極と絶縁膜とが相隣接するようにほぼ
同じ厚さで形成されており、この電極と絶縁膜の表面に
層間絶縁膜が形成されてなる構造を有することを特徴と
する。
In a display device according to the present invention, an electrode and an insulating film are formed on a substrate with almost the same thickness so that they are adjacent to each other, and an interlayer is formed on the surface of the electrode and the insulating film. It is characterized by having a structure in which an insulating film is formed.

【0008】[0008]

【作用】本発明による表示装置は、相隣接するようにほ
ぼ同じ厚さで形成された電極と絶縁膜の上に層間絶縁膜
を形成する構造としたので、層間絶縁膜が電極のエッジ
部において段差を生じることなく全面にわたって均一な
膜厚で形成されるため、層間絶縁膜を介して相対向する
電極間で短絡することがなく、さらに静電気などにより
層間絶縁膜に絶縁破壊を生じることを防止でき、高い歩
留まりで製造できる。また、電極の厚さを任意に設定す
ることが可能なので、電極の厚さを厚くして、かつバス
ラインなどの幅を小さく設定することにより、ゲ−ト遅
延などの問題を生じることなく表示装置の開口率を大き
くすることができる。
Since the display device according to the present invention has a structure in which the interlayer insulating film is formed on the electrode and the insulating film which are formed so as to be adjacent to each other and have substantially the same thickness, the interlayer insulating film is formed at the edge portion of the electrode. Since a uniform film thickness is formed over the entire surface without creating a step, there is no short circuit between electrodes facing each other through the interlayer insulating film, and further, dielectric breakdown of the interlayer insulating film due to static electricity is prevented. And can be manufactured with a high yield. In addition, the thickness of the electrodes can be set arbitrarily, so by increasing the thickness of the electrodes and setting the width of the bus lines, etc. small, the display can be performed without causing problems such as gate delay. The aperture ratio of the device can be increased.

【0009】[0009]

【実施例】以下、図面に基づいて本発明の実施例につい
て説明する。なお従来例と同一構成要素には、同一符号
を付して説明を簡略化する。 (実施例1)図1は、本発明の第一の実施例によるTF
Tの概略断面図、図2はこのTFTの主要部の製造方法
の各工程を示すものである。図1において1はガラス基
板、21はガラス基板1の上に形成されたゲ−ト電極、
22ないし24はゲ−ト電極21を構成する積層部材で
あり、22はガラス基板1上に形成された下地層、23
は下地層22上に形成された高導電層、24は高導電層
23上に形成された耐酸化導電層である。ここで下地層
22は、ガラス基板1などの基板および高導電層23に
対して密着性の高いCrなどの金属が好ましく、この他
Ti、Ti2 Si、Ta2 Si、Pt2 Siなど高温に
耐える金属が好適に用いられるが、めっき浴中で電極と
して用いることができる程度の導電性を有するものであ
ってもよい。
Embodiments of the present invention will be described below with reference to the drawings. The same components as those of the conventional example are designated by the same reference numerals to simplify the description. (Embodiment 1) FIG. 1 shows a TF according to a first embodiment of the present invention.
FIG. 2 is a schematic sectional view of T, and FIG. 2 shows each step of the manufacturing method of the main part of this TFT. In FIG. 1, 1 is a glass substrate, 21 is a gate electrode formed on the glass substrate 1,
Reference numerals 22 to 24 are laminated members constituting the gate electrode 21, 22 is a base layer formed on the glass substrate 1, and 23 is a base layer.
Is a highly conductive layer formed on the underlayer 22, and 24 is an oxidation resistant conductive layer formed on the highly conductive layer 23. Here, the underlayer 22 is preferably made of a metal such as Cr having high adhesion to the substrate such as the glass substrate 1 and the highly conductive layer 23, and other metals such as Ti, Ti2 Si, Ta2 Si and Pt2 Si which can endure high temperature. It is preferably used, but it may have conductivity such that it can be used as an electrode in a plating bath.

【0010】また、高導電層23は2〜7×10-6Ω−
cm程度の抵抗を有するものが好ましく、Al、Cu、N
iなどが好適に用いられる。この高導電層23は、Al
などを真空蒸着法やスパッタ法などによって形成できる
が、図2(d)に示すような空隙部10の高さが0.3
μm 以上の場合には、ピンホールなどの成膜不良が生じ
ないように選択成長させることができる手段、具体的に
はめっき法による手段、あるいはCVD法などで選択成
長する金属を下地層22に用いて選択成長させる手段を
用いて形成できる。
Further, the highly conductive layer 23 is 2 to 7 × 10 -6 Ω-
Those having a resistance of about cm are preferable, and Al, Cu, N
i and the like are preferably used. This highly conductive layer 23 is made of Al
Etc. can be formed by a vacuum deposition method or a sputtering method, but the height of the void portion 10 as shown in FIG.
In the case of μm or more, a means capable of performing selective growth without causing film defects such as pinholes, specifically, a means by a plating method or a metal selectively grown by a CVD method or the like is used as the underlayer 22. It can be formed by using a means for selectively growing.

【0011】また耐酸化導電層24は、その後の製造工
程において熱酸化するのを防止するための機能を有する
ものであればよく、例えば高導電層23がCuの場合に
はAuなどが好ましく、また高導電層がAuあるいはN
iの場合には、これを耐酸化導電層24と兼ねて構成し
てもよい。また、図1において9は絶縁膜、31はゲ−
ト絶縁膜としての層間絶縁膜、4はa−Si膜、5はエ
ッチストッパ−層、6はn+ −Si膜、7はソ−ス電
極、8はドレイン電極である。ここで絶縁膜9は、回転
塗布法、浸漬法あるいはスプレ−法などにより、例えば
ゾルゲルの原料をガラス基板1の上に均一に塗布後焼成
して得られるSiO2 やSiOx Ny などが好適に用い
られる。
The oxidation resistant conductive layer 24 may have any function as long as it has a function of preventing thermal oxidation in the subsequent manufacturing process. For example, when the high conductive layer 23 is Cu, Au or the like is preferable, In addition, the highly conductive layer is Au or N
In the case of i, this may also serve as the oxidation resistant conductive layer 24. In FIG. 1, 9 is an insulating film and 31 is a gate.
An interlayer insulating film as a gate insulating film, 4 is an a-Si film, 5 is an etch stopper layer, 6 is an n + -Si film, 7 is a source electrode, and 8 is a drain electrode. Here, the insulating film 9 is preferably made of, for example, SiO2 or SiOx Ny obtained by uniformly coating the sol-gel raw material on the glass substrate 1 and baking it by a spin coating method, a dipping method, or a spray method. .

【0012】次に、図2に基づいてTFTの主要部の製
造方法の各工程について説明する。この製造方法では、 (1) まず、図2(a)に示すようにガラス基板(#70
59)上にCr膜20をスパッタリング法により形成す
る。このCr膜厚は、200〜1000Aが好適であ
る。 (2) 次に、図2(b)に示すようにフォトリソにより下
地層21のパタ−ンを形成する。 (3) このようにして得られた基板上に、回転塗布法によ
りポリシラザン([SiH2 (NH)]n )を3000
A塗布し、水分量を制御しながら温度500℃の条件で
焼成することにより、図2(c)に示すように絶縁膜9
を形成する。 (4) 次に、工程(2) で用いたパタ−ンの反転パタ−ンを
用いて、フォトリソにより下地層21のパタ−ンが露出
するように絶縁膜9を作り込む。この絶縁膜9をバッフ
ァ−ドフッ酸を用いてエッチング加工する。このエッチ
ング加工にはECRドライエッチャ−などを用いてもよ
い。 (5) 次に、下地層21の端部をカソ−ド側として電源に
接続して銅メッキ浴に浸してCuの電解めっきを行うこ
とにより高導電層23を約2300A形成する。この
後、金めっき浴に浸して、絶縁膜9とほぼ同じ高さとな
るように金の電解めっきを行って耐酸化導電層24を約
300A形成する。 以上の製造工程により得られた基板上にプラズマCVD
法によりゲ−ト絶縁膜としての層間絶縁膜31を300
0A堆積させる。
Next, each step of the method of manufacturing the main part of the TFT will be described with reference to FIG. In this manufacturing method, (1) First, as shown in FIG.
59) A Cr film 20 is formed on top of this by a sputtering method. The Cr film thickness is preferably 200 to 1000A. (2) Next, as shown in FIG. 2B, a pattern of the underlayer 21 is formed by photolithography. (3) Polysilazane ([SiH2 (NH)] n) of 3000 was spin-coated on the substrate thus obtained.
By applying A and baking at a temperature of 500 ° C. while controlling the amount of water, as shown in FIG.
To form. (4) Next, the insulating film 9 is formed by photolithography so that the pattern of the underlayer 21 is exposed by using the reverse pattern of the pattern used in the step (2). The insulating film 9 is etched using buffered hydrofluoric acid. An ECR dry etcher or the like may be used for this etching process. (5) Next, the end portion of the underlayer 21 is connected to a power source with the cathode side as a cathode side, and immersed in a copper plating bath to perform Cu electrolytic plating to form a highly conductive layer 23 of about 2300A. After that, it is immersed in a gold plating bath, and gold electroplating is performed so that the height is almost the same as that of the insulating film 9 to form about 300 A of the oxidation resistant conductive layer 24. Plasma CVD on the substrate obtained by the above manufacturing process
The interlayer insulating film 31 as a gate insulating film by the method
0A is deposited.

【0013】ついで、プラズマCVD法によりa−Si
層4を1000A堆積させ、さらに連続的にエッチスト
ッパ−としてSi3 N4 を2000A堆積させた後、こ
のSi3 N4 をフォトリソにより所定形状にパタ−ンニ
ングしてエッチストッパ−層5とする。プラズマCVD
法によるSi3 N4 の堆積条件は、基板温度350℃、
圧力0.1Torr、RFパワ−400Wとし原料ガス
としてモノシラン(SiH4 )とアンモニア(NH4 )
と水素(H2 )とを用いる。
Then, a-Si is formed by the plasma CVD method.
The layer 4 is deposited at 1000 A, and Si3 N4 is continuously deposited at 2000 A as an etch stopper, and this Si3 N4 is patterned into a predetermined shape by photolithography to form an etch stopper layer 5. Plasma CVD
The deposition conditions of Si3 N4 by the method are as follows: substrate temperature 350 ° C.,
The pressure was 0.1 Torr, the RF power was 400 W, and the source gases were monosilane (SiH4) and ammonia (NH4).
And hydrogen (H2) are used.

【0014】ついで、プラズマCVD法によりn+ −S
i層6を基板温度250℃、圧力0.4Torrで20
00A堆積し、さらにこの上にスパッタリング法により
Cr層を200A、Al層を2000A成膜し、ついで
フォトリソによりCr層とAl層を、さらにウエットエ
ッチングすることにより、n+ −Si層6、ソ−ス電極
7、ドレイン電極8を形成する。
Then, n + -S is formed by the plasma CVD method.
The i layer 6 is formed at a substrate temperature of 250 ° C. and a pressure of 0.4 Torr for 20 times.
00A, a Cr layer of 200A and an Al layer of 2000A are further formed thereon by a sputtering method, and then the Cr layer and the Al layer are further wet-etched by photolithography to form an n + -Si layer 6 and a so-called The drain electrode 8 and the drain electrode 8 are formed.

【0015】このようにして得られたTFTは、ゲ−ト
絶縁膜としての層間絶縁膜31がゲ−ト電極21上に段
差なしでかつ均一な膜厚で形成されるので、ゲ−ト電極
21とソ−ス電極7との間あるいはゲ−ト電極21とド
レイン電極8とのあいだで短絡することがなく、また絶
縁耐圧性に優れるため、アクティブ素子の製造工程など
で静電気が生じても絶縁破壊が生じることはない。ま
た、図示しないバスラインの配線抵抗値を下げるため
に、絶縁層9およびゲ−ト電極21の膜厚を厚くすると
同時に、ゲ−ト電極21が接続されている図示しないバ
スラインの幅を10μm 以下のより狭い幅に設定できる
ので、ゲ−ト遅延を生じることなくアクティブ素子の開
口率を従来のものに比べて大幅に向上できる。
In the TFT thus obtained, since the interlayer insulating film 31 as the gate insulating film is formed on the gate electrode 21 with no step and with a uniform film thickness, the gate electrode is formed. 21 does not cause a short circuit between the source electrode 7 and the source electrode 7 or between the gate electrode 21 and the drain electrode 8 and has excellent withstand voltage, so that static electricity may be generated in the manufacturing process of the active element. Dielectric breakdown does not occur. Further, in order to reduce the wiring resistance value of the bus line (not shown), the film thickness of the insulating layer 9 and the gate electrode 21 is increased, and at the same time, the width of the bus line (not shown) to which the gate electrode 21 is connected is set to 10 μm. Since the width can be set to the narrower width described below, the aperture ratio of the active element can be greatly improved as compared with the conventional one without causing gate delay.

【0016】(実施例2)図3は、本発明の第2の実施
例を示すTFTの概略断面図である。このTFTは、ゲ
−ト電極21の下地層を兼ねた遮光層11をゲ−ト電極
21の幅よりも大きく形成することにより、基板1の下
方から入射する光をチャネル層に入らないように遮断す
る構成とした以外は、実施例1と同様の構成である。こ
のTFTによれば、ゲ−ト電極21の下地層を兼ねた遮
光層11がゲ−ト電極21の幅よりも大きく形成されて
いるので、実施例1による効果に加えて外部光による影
響をできるだけ少なくできるという効果をも奏する。
(Embodiment 2) FIG. 3 is a schematic sectional view of a TFT showing a second embodiment of the present invention. In this TFT, the light-shielding layer 11 which also serves as a base layer of the gate electrode 21 is formed to have a width larger than that of the gate electrode 21 so that light incident from below the substrate 1 does not enter the channel layer. The configuration is the same as that of the first embodiment except that the configuration is cut off. According to this TFT, the light-shielding layer 11 which also serves as a base layer of the gate electrode 21 is formed larger than the width of the gate electrode 21. Therefore, in addition to the effect of the first embodiment, the influence of external light is exerted. It also has the effect of being as small as possible.

【0017】(実施例3)図4は、本発明の第3の実施
例を示すMIM素子の概略断面図である。これを製造工
程に従って説明する。まずガラス基板1の表面に実施例
1と同様の方法により下部電極としての電極25と絶縁
膜9を形成した。この上に絶縁層12を原子層蒸着によ
り形成する。この絶縁層12は、300℃に加熱した電
気炉中に前記基板を設置し、SiCl4 と水もしくは過
酸化水素とを交互に導入するサイクルを繰り返すことに
より、SiO2 からなる絶縁層12を約200Aの厚さ
で形成した。
(Embodiment 3) FIG. 4 is a schematic sectional view of an MIM element showing a third embodiment of the present invention. This will be described according to the manufacturing process. First, the electrode 25 as the lower electrode and the insulating film 9 were formed on the surface of the glass substrate 1 by the same method as in Example 1. The insulating layer 12 is formed thereon by atomic layer deposition. The insulating layer 12 is formed by placing the substrate in an electric furnace heated to 300 ° C. and repeating the cycle of alternately introducing SiCl4 and water or hydrogen peroxide to obtain an insulating layer 12 made of SiO2 with a thickness of about 200 A. Formed in thickness.

【0018】ここで絶縁層12として、塩化亜鉛と水も
しくは過酸化水素とを交互に導入するサイクルを繰り返
すことによりZnOからなる原子層を形成することも可
能であり、その他Al2 O3 などを代用できるのはもち
ろんである。次に、この絶縁層12をフォトリソするこ
とにより所定パタ−ンに加工し、さらに上部電極13を
スパッタリングにより形成し、ついで保護膜14をプラ
ズマCVD法により堆積させた。このMIM素子は、実
施例1と同様の効果を奏する他に、大面積で信頼性の高
い表示素子が実現できるという効果を奏する。
Here, as the insulating layer 12, it is possible to form an atomic layer made of ZnO by repeating a cycle of alternately introducing zinc chloride and water or hydrogen peroxide, and Al2 O3 or the like can be substituted. Of course. Next, the insulating layer 12 was processed into a predetermined pattern by photolithography, an upper electrode 13 was further formed by sputtering, and then a protective film 14 was deposited by a plasma CVD method. This MIM element has the same effect as that of the first embodiment, and also has the effect of realizing a display element having a large area and high reliability.

【0019】なお、以上の実施例では、本発明による電
極と絶縁膜と層間絶縁膜との構造を表示素子に適用した
例を示したが、本発明はこれらの例に限られるものでは
なく、例えば電極および各種の電気素子などを多層に配
線してなる集積回路などの電気素子にも適用できること
はいうまでもない。
In the above embodiments, examples in which the structure of the electrode, the insulating film and the interlayer insulating film according to the present invention is applied to a display element have been shown, but the present invention is not limited to these examples. Needless to say, the present invention can be applied to electric elements such as integrated circuits in which electrodes and various electric elements are wired in multiple layers.

【0020】[0020]

【発明の効果】本発明によれば、表示装置の電極と絶縁
層とが相隣接するようにほぼ同じ厚さで形成された上に
層間絶縁膜が形成された構造としたため、電極上に層間
絶縁膜を段差なしでかつほぼ均一な膜厚で形成でき、耐
絶縁特性を大幅に向上できるので、静電気等による絶縁
破壊が生じることはなく、また短絡などの不良等も生じ
ないので、表示装置の品質と信頼性を大幅に向上できる
とともに、表示装置の製造上の歩留まりを向上できる。
また電極の厚さを任意に設定できるので、電極の厚さを
厚くし、かつバスラインなどの幅を小さく設定すること
により、ゲ−ト遅延などの問題を生じることなく表示装
置の開口率を大きくすることができる。
According to the present invention, since the electrode and the insulating layer of the display device are formed to have the same thickness so that they are adjacent to each other, the interlayer insulating film is formed on the electrode. Since the insulating film can be formed without a step and with a substantially uniform film thickness, and the insulation resistance can be significantly improved, dielectric breakdown due to static electricity, etc. does not occur, and defects such as short circuits do not occur. The quality and reliability of the display device can be significantly improved, and the manufacturing yield of the display device can be improved.
In addition, since the thickness of the electrodes can be set arbitrarily, by increasing the thickness of the electrodes and setting the width of the bus lines and the like small, the aperture ratio of the display device can be increased without causing problems such as gate delay. Can be large.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係わるTFTの第1の実施例の概略断
面図である。
FIG. 1 is a schematic sectional view of a first embodiment of a TFT according to the present invention.

【図2】(a)ないし(c)は、図1に示すTFTの要
部の製造方法を説明するための図である。
2A to 2C are views for explaining a method of manufacturing a main part of the TFT shown in FIG.

【図3】本発明に係わるTFTの第2の実施例の概略断
面図である。
FIG. 3 is a schematic sectional view of a second embodiment of a TFT according to the present invention.

【図4】本発明に係わる第3の実施例を示すMIMの概
略断面図である。
FIG. 4 is a schematic cross-sectional view of an MIM showing a third embodiment according to the present invention.

【図5】従来のTFTの概略断面図である。FIG. 5 is a schematic cross-sectional view of a conventional TFT.

【符号の説明】[Explanation of symbols]

1 ガラス基板 2、21 ゲート電極 3 ゲート絶縁膜 4 a−Si膜 5 エッチストッパ−層 6 n+ −Si膜 7 ドレイン電極 8 ソース電極 9 絶縁膜 10 空隙部 11 遮光層 12 絶縁層 13 上部電極 14 保護膜 22 下地層 23 高導電層 24 耐酸化導電層 25 電極(下部電極) 1 Glass Substrate 2, 21 Gate Electrode 3 Gate Insulating Film 4 a-Si Film 5 Etch Stopper Layer 6 n + -Si Film 7 Drain Electrode 8 Source Electrode 9 Insulating Film 10 Void 11 Light Shielding Layer 12 Insulating Layer 13 Upper Electrode 14 Protective film 22 Underlayer 23 Highly conductive layer 24 Oxidation resistant conductive layer 25 Electrode (lower electrode)

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 H01L 29/784 49/02 8728−4M (72)発明者 尾籐 三津雄 東京都大田区雪谷大塚町1番7号 アルプ ス電気株式会社内 (72)発明者 瀧田 一成 東京都大田区雪谷大塚町1番7号 アルプ ス電気株式会社内 (72)発明者 松技 主範 東京都大田区雪谷大塚町1番7号 アルプ ス電気株式会社内 (72)発明者 中村 功 東京都大田区雪谷大塚町1番7号 アルプ ス電気株式会社内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification number Reference number in the agency FI Technical indication location H01L 29/784 49/02 8728-4M (72) Inventor Mitsuo Otsu Mitsuo Otsuka, Ota-ku, Tokyo No. 1-7 Alps Electric Co., Ltd. (72) Inventor Issei Takita No. 7 Yukiya Otsuka-cho, Ota-ku, Tokyo No. 7 Alps Electric Co., Ltd. Town No. 1-7 Alps Electric Co., Ltd. (72) Inventor Isao Nakamura No. 1-7 Yukiya Otsuka-cho, Ota-ku, Tokyo Alps Electric Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 基板上に、電極と絶縁膜とが相隣接する
ようにほぼ同じ厚さで形成されており、この電極および
絶縁膜の表面に層間絶縁膜が形成されてなる構造を有す
ることを特徴とする表示装置。
1. A structure in which an electrode and an insulating film are formed on a substrate with substantially the same thickness so as to be adjacent to each other, and an interlayer insulating film is formed on the surfaces of the electrode and the insulating film. A display device characterized by.
JP22641692A 1992-08-03 1992-08-03 Display device Pending JPH0651350A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22641692A JPH0651350A (en) 1992-08-03 1992-08-03 Display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22641692A JPH0651350A (en) 1992-08-03 1992-08-03 Display device

Publications (1)

Publication Number Publication Date
JPH0651350A true JPH0651350A (en) 1994-02-25

Family

ID=16844784

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22641692A Pending JPH0651350A (en) 1992-08-03 1992-08-03 Display device

Country Status (1)

Country Link
JP (1) JPH0651350A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002067335A1 (en) * 2001-02-19 2002-08-29 International Business Machines Corporation Thin-film transistor structure, method for manufacturing the thin-film transistor structure, and display device using the thin-film transistor structure
KR100471396B1 (en) * 2001-05-17 2005-02-21 비오이 하이디스 테크놀로지 주식회사 Method for manufacturing thin film transistor liquid crystal display device
JP2007067378A (en) * 2005-08-31 2007-03-15 Sharp Corp Msm current limiting element, resistive memory element, and manufacturing method and operating method therefor
US8537296B2 (en) 2008-06-11 2013-09-17 Samsung Display Co., Ltd. Display device wherein a thickness of a first insulating layer is greater than a thickness of a first conductor and wherein the first insulating layer completely covers lateral side surfaces of the first conductor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61173286A (en) * 1985-01-29 1986-08-04 株式会社東芝 Display unit
JPH03241878A (en) * 1990-02-20 1991-10-29 Seiko Epson Corp Manufacture of nonlinear element

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61173286A (en) * 1985-01-29 1986-08-04 株式会社東芝 Display unit
JPH03241878A (en) * 1990-02-20 1991-10-29 Seiko Epson Corp Manufacture of nonlinear element

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002067335A1 (en) * 2001-02-19 2002-08-29 International Business Machines Corporation Thin-film transistor structure, method for manufacturing the thin-film transistor structure, and display device using the thin-film transistor structure
US7326600B2 (en) 2001-02-19 2008-02-05 International Business Machines Corpoartion Method for manufacturing a thin-film transistor structure
KR100471396B1 (en) * 2001-05-17 2005-02-21 비오이 하이디스 테크놀로지 주식회사 Method for manufacturing thin film transistor liquid crystal display device
JP2007067378A (en) * 2005-08-31 2007-03-15 Sharp Corp Msm current limiting element, resistive memory element, and manufacturing method and operating method therefor
US8537296B2 (en) 2008-06-11 2013-09-17 Samsung Display Co., Ltd. Display device wherein a thickness of a first insulating layer is greater than a thickness of a first conductor and wherein the first insulating layer completely covers lateral side surfaces of the first conductor

Similar Documents

Publication Publication Date Title
JP4166105B2 (en) Semiconductor device and manufacturing method thereof
JP5244295B2 (en) TFT substrate and manufacturing method of TFT substrate
KR19990023185A (en) Gate structure and manufacturing method thereof, thin film transistor structure and manufacturing method thereof, inverted transistor structure
KR950008931B1 (en) Manufacturing method of display pannel
JPH0862628A (en) Liquid crystal display element and its production
JP3447535B2 (en) Thin film transistor and method of manufacturing the same
JPH0766417A (en) Semiconductor device and its manufacture and working method
JP3349356B2 (en) Thin film transistor and method of manufacturing the same
JPH0651350A (en) Display device
KR20010014933A (en) Thin-film transistor and fabrication method thereof
JP2001036095A (en) Thin film transistor and manufacture thereof
JP3175225B2 (en) Method for manufacturing thin film transistor
JP2752983B2 (en) Method of manufacturing thin film transistor for liquid crystal display
JP2778133B2 (en) Thin film transistor array and method of manufacturing the same
JPH06230425A (en) Liquid crystal display device and its production
JP3259119B2 (en) Wiring pattern substrate, thin film transistor matrix substrate and method of manufacturing the same
CN101556415B (en) Pixel structure and preparation method thereof
US3669732A (en) Procedure for making semiconductor devices of small dimensions
JPH0815733A (en) Thin film transistor panel and its production
KR20020054848A (en) Method of Manufacturing of Liquid Crystal Display
JPS63140580A (en) Thin film transistor
US5523187A (en) Method for the fabrication of liquid crystal display device
KR950003942B1 (en) Method of manufacturing thin film transistor for lcd
TW488024B (en) Metal contact structure for thin film transistor of liquid crystal display and the manufacturing method thereof
KR100252310B1 (en) Method of manufacturing thin-film transistor

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19970401