JPH03241878A - Manufacture of nonlinear element - Google Patents

Manufacture of nonlinear element

Info

Publication number
JPH03241878A
JPH03241878A JP2038749A JP3874990A JPH03241878A JP H03241878 A JPH03241878 A JP H03241878A JP 2038749 A JP2038749 A JP 2038749A JP 3874990 A JP3874990 A JP 3874990A JP H03241878 A JPH03241878 A JP H03241878A
Authority
JP
Japan
Prior art keywords
layer
nonlinear
lower conductor
conductor layer
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2038749A
Other languages
Japanese (ja)
Inventor
Satoru Miyashita
悟 宮下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2038749A priority Critical patent/JPH03241878A/en
Publication of JPH03241878A publication Critical patent/JPH03241878A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a nonlinear element which operates stably and is provided with a nonlinear electric conduction induction layer that is able to be formed at a normal temperature and pressure and excellent in controllability by a method wherein an edge step induced by a lower conductor layer formed on a glass board is relaxed, and then the nonlinear electric conductive induction layer and an upper conductor layer are formed. CONSTITUTION:A Pyrex glass 11 is used as a board, a lower conductor 12 is formed thereon, photosetting resin is applied as thick as the lower conductor layer 12, which is pre-braked, and the lower conductor layer is irradiated from below with light rays of a certain wavelength to which the resin is photosensitive, the uncured resin on the lower conductor layer is removed, the resin left unremoved is post-baked to be fixed to serve as a step relaxing insulator layer 15. Polyfumaric acid di-isopropyl of high molecular insulator and oxadiazole derivative of organic semiconductor are mixed together to form a uniform solution, which is applied onto the board 11 to serve as a nonlinear electrical conduction induction layer 13, an upper conductor 14 is formed thereon, and thus a nonlinear element of MIM structure can be obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野] 本発明は、電流電圧特性が非線形である非線形素子に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a nonlinear element having nonlinear current-voltage characteristics.

[従来の技術] 従来の非線形素子としては、Siなどの半導体ウェハー
や、ガラスや単結晶等の上に形成した薄膜状の半導体を
用いていた。また、導電体−絶縁体一導電体構造(以後
本明細書ではHIM構造と呼ぶ)を持つものも実用化さ
れている。
[Prior Art] Conventional nonlinear elements have used semiconductor wafers such as Si, or thin film semiconductors formed on glass, single crystal, or the like. Further, those having a conductor-insulator-conductor structure (hereinafter referred to as HIM structure in this specification) have also been put into practical use.

[発明が解決しようとする課題] しかし、半導体を用いた従来の非線形素子では、非線形
素子のベースとなるべき半導体の形成にも、CVDなど
のスルーグツトが良くない高価な真空装置を必要とす−
るため、特に大きな面積を必要とする用途のためには、
非常に高価なものとなってしまうという課題があった。
[Problems to be Solved by the Invention] However, conventional nonlinear elements using semiconductors require expensive vacuum equipment with poor throughput, such as CVD, to form the semiconductor that is the base of the nonlinear element.
Therefore, for applications that require a particularly large area,
There was a problem that it became extremely expensive.

また、MIN構造を持つ非線形素子も、非線形電気伝導
誘起層をタンタルなどの金属の陽極酸化で形成するため
、−陽極酸化膜自体の特性を変化させることは困難で、
素子特性はほとんど膜厚と素子面積のみで制御を行うし
かない。このため、素子特性(例えば0N10FF比と
ON電流、素子容量)をバランス良く制御するのは難し
い。
In addition, in nonlinear elements with a MIN structure, the nonlinear electrical conduction inducing layer is formed by anodic oxidation of a metal such as tantalum, so it is difficult to change the characteristics of the anodic oxide film itself.
Device characteristics can only be controlled almost exclusively by film thickness and device area. Therefore, it is difficult to control element characteristics (for example, 0N10FF ratio, ON current, and element capacitance) in a well-balanced manner.

一方、少なくとも高分子絶縁体と、高分子絶縁体内に分
散した導電体または半導体から構成されている非線形電
気伝導誘起層を用いると、原理的には制御性に優れた非
線形素子が得られるものの、ガラス基板上に形成した下
部導電体層のエツジ段差箇所において、非線形電気伝導
誘起層が薄くなって短絡電流が流れたり、上部導電体層
が断線するなど信頼性や安定性に欠けていた。
On the other hand, although a nonlinear element with excellent controllability can be obtained in principle by using a nonlinear electrical conduction inducing layer composed of at least a polymeric insulator and a conductor or semiconductor dispersed within the polymeric insulator, The nonlinear electrical conduction inducing layer becomes thinner at the edge step portions of the lower conductor layer formed on the glass substrate, causing short-circuit currents to flow, and the upper conductor layer to break, resulting in a lack of reliability and stability.

本発明では、常温常圧で形成可能かつ制御性に優れた非
線形電気伝導誘起層をもち、安定に作動する非線形素子
の製造法を提供することによって上記の課題を解決する
ことを目的とするものである。
The present invention aims to solve the above problems by providing a method for manufacturing a nonlinear element that can be formed at room temperature and pressure, has a nonlinear electrical conduction inducing layer with excellent controllability, and operates stably. It is.

[課題を解決するための手段J 本発明の非線形素子の製造法は、導電体に挟持された非
線形電気伝導誘起層が少なくとも高分子絶縁体と、高分
子絶縁体内に分散した導電体または半導体から構成され
ている非線形素子において、ガラス基板上に形成した下
部導電体層のエツジ段差を以下に示す工程で緩和した後
、非線形電気伝導誘起層及び上部導電体層を形成するこ
とを特徴とする。
[Means for Solving the Problems J] The method for manufacturing a nonlinear element of the present invention is such that the nonlinear electrical conduction inducing layer sandwiched between conductors is made of at least a polymeric insulator and a conductor or semiconductor dispersed within the polymeric insulator. This nonlinear element is characterized in that the edge step of the lower conductor layer formed on the glass substrate is relaxed in the following steps, and then the nonlinear electrical conduction inducing layer and the upper conductor layer are formed.

a)絶縁体となる光硬化性樹脂を下部導電体層とほぼ同
じ厚みに塗布する工程。
a) A step of applying a photocurable resin to serve as an insulator to approximately the same thickness as the lower conductor layer.

b)下部導電体層の下方から樹脂が感光する波長の光を
照射する工程。
b) A step of irradiating light of a wavelength to which the resin is sensitive from below the lower conductor layer.

C)下部導電体層上の硬化していない樹脂を除去する工
程。
C) Step of removing uncured resin on the lower conductor layer.

[実施例] 以下、実施例により本発明の詳細を示す。[Example] Hereinafter, the details of the present invention will be shown by examples.

(実施例1) 第1図に、本実施例において製造する非線形素子の断面
の概念を示す。また、第2図に下部導電体層のエツジ段
差を緩和しない従来の素子の概念を示す。
(Example 1) FIG. 1 shows the concept of a cross section of a nonlinear element manufactured in this example. Further, FIG. 2 shows the concept of a conventional element in which the edge step of the lower conductor layer is not alleviated.

基板としては、表面を光学研磨したパイレックスガラス
11を用い、金属などの導電体膜をスパッターもしくは
蒸着で形成し、フォトエツチングによってパターンを形
成して下部導電体12としたものを用い、素子面積が2
0μm角となるように20μm幅にバターニングした。
The substrate used was Pyrex glass 11 with an optically polished surface, a conductor film made of metal or the like was formed by sputtering or vapor deposition, and a pattern was formed by photoetching to form the lower conductor 12. 2
It was patterned to a width of 20 μm so that it was 0 μm square.

第3図に、下部導電体層の段差を緩和する工程を模式的
に示す。
FIG. 3 schematically shows a step of alleviating the step difference in the lower conductor layer.

第3図(a)は、絶縁体となる光硬化性樹脂を下部導電
体層とほぼ同じ厚みに塗布した断面図である。光硬化性
樹脂としては、300〜400ナノメートルの波長の光
で光架橋するネガティブレジストを用いた。塗布後プレ
ベークを行なった。
FIG. 3(a) is a cross-sectional view in which a photocurable resin serving as an insulator is applied to approximately the same thickness as the lower conductor layer. As the photocurable resin, a negative resist that is photocrosslinked with light having a wavelength of 300 to 400 nanometers was used. After coating, pre-baking was performed.

第3図(b)は、下部導電体層の下方から樹脂が感光す
る波長の光を照射した断面図である。光源としては水銀
ランプを用い、下部導電体層で遮光された下部導電体層
上の樹脂のみが硬化しないよう、光強度と照射時間を適
当な値に設定した。
FIG. 3(b) is a cross-sectional view in which light of a wavelength to which the resin is sensitive is irradiated from below the lower conductor layer. A mercury lamp was used as a light source, and the light intensity and irradiation time were set to appropriate values so that only the resin on the lower conductor layer that was shielded from light by the lower conductor layer was not cured.

第3図(c)は、下部導電体層上の硬化していない樹脂
を除去した断面図である。除去は現像及びリンスで行な
った。残った樹脂をボストベークにより固着させ、段差
緩和絶縁体層15とした。
FIG. 3(c) is a cross-sectional view with the uncured resin on the lower conductor layer removed. Removal was performed by development and rinsing. The remaining resin was fixed by boss baking to form a step-reducing insulator layer 15.

非線形電気伝導層に用いる高分子絶縁体は、ポリフマル
酸ジイソプロピル(以下本明細書ではPDiPFと略記
する)をもちいた。PDiPFなとのポリフマル酸エス
テル類を単独で用いた場合、数百オングストロームまで
の非常に薄いスピンコード膜でも、電気絶縁特性の優れ
た薄膜が得られる材料として知られている。 (重原ら
、高分子討論会予稿集Yo1.39.Mo、8(19g
9j p、2563)PDiPFは再沈澱によって精製
したのち、精製したクロロホルムに溶解してPDiPF
溶液を作った。更に、有機半導体であるオキサジアゾー
ル誘導体(2,5−Bis (4−djetb71at
inopbeBI)−1,3゜40zadiazole
)を溶解して、均一溶液とした。この溶液を、0. 5
μmのフィルターに通してごみを除去し、原料溶液とし
た。混合の比率は、目的とする非線形素子のON電流値
および/またはOFF電流値と膜強度の兼ね合いで決め
られる。
The polymer insulator used for the nonlinear electrically conductive layer was diisopropyl polyfumarate (hereinafter abbreviated as PDiPF). When a polyfumaric acid ester such as PDiPF is used alone, it is known as a material that can provide a thin film with excellent electrical insulation properties even in a very thin spin cord film of up to several hundred angstroms. (Shigehara et al., Polymer Symposium Proceedings Yo1.39.Mo, 8 (19g
9j p, 2563) After PDiPF was purified by reprecipitation, PDiPF was dissolved in purified chloroform.
I made a solution. Furthermore, an oxadiazole derivative (2,5-Bis (4-djetb71at
inopbeBI)-1,3゜40zadiazole
) was dissolved to form a homogeneous solution. This solution was mixed with 0. 5
The mixture was passed through a μm filter to remove dust and used as a raw material solution. The mixing ratio is determined based on the desired ON current value and/or OFF current value of the nonlinear element and the film strength.

この原料溶液を前述の基板上に、スピンコーターで所定
の膜厚となるように回転数と時間を制御して塗布し、非
線形電気伝導誘起層13とした。
This raw material solution was coated onto the above-mentioned substrate using a spin coater while controlling the rotation speed and time to obtain a predetermined film thickness, thereby forming the nonlinear electrical conduction inducing layer 13.

こうして形成した非線形電気伝導誘起層の上に、金属を
スパッターもしくは蒸着で形成し、20μm幅に上部導
電体14をフォトエツチングでパターン形成して、M工
M構造の非線形素子が得られた。
On the thus formed nonlinear electrical conduction inducing layer, a metal was formed by sputtering or vapor deposition, and the upper conductor 14 was patterned to a width of 20 μm by photoetching to obtain a nonlinear element with an M-type structure.

こうして得られた非線形素子はショートも断線も発生せ
ず、暗所で電流電圧特性を測定すると、第4図のように
安定した非線形性を長時間示すことを確認した。このと
き、上部導電体と下部導電体に異なるものを用いると、
電圧の印加方向によって特性が非対称になる場合もあっ
た。
The thus obtained nonlinear element did not cause any short circuit or disconnection, and when its current-voltage characteristics were measured in a dark place, it was confirmed that it exhibited stable nonlinearity for a long time as shown in FIG. 4. At this time, if different materials are used for the upper conductor and lower conductor,
In some cases, the characteristics became asymmetric depending on the direction of voltage application.

この非線形素子は、ON電圧を9ボルト、OFF電圧を
1ボルトとしたときに、電流の0N10FF比が4桁以
上とれる。
This nonlinear element has a current 0N10FF ratio of 4 digits or more when the ON voltage is 9 volts and the OFF voltage is 1 volt.

(実施例2) 本実施例でも、−素子の構成とエツジ段差を緩和する工
程は実施例1と同様である。
(Example 2) In this example as well, the structure of the -element and the step of reducing the edge step are the same as in Example 1.

実施例1と同様にして下部導電体層を形成した基板に、
300〜450ナノメートルの波長の光に感光するネガ
ティブレジストを、下部電極とほぼ同じ厚みに塗布した
。プレベーク後、下部導電体層の下方からキセノンラン
プの光を照射し、現像及びリンスで下部導電体層上の樹
脂を除去した。
On a substrate on which a lower conductor layer was formed in the same manner as in Example 1,
A negative resist sensitive to light with a wavelength of 300 to 450 nanometers was applied to approximately the same thickness as the lower electrode. After prebaking, the lower conductor layer was irradiated with light from a xenon lamp from below, and the resin on the lower conductor layer was removed by development and rinsing.

残った樹脂をポストベークにより固着させ、段差緩和絶
縁体層を形成した。
The remaining resin was fixed by post-baking to form a step-reducing insulator layer.

次に実施例1と同様にして精製し、フィルターを通した
PDiPF溶液に亜鉛塩を溶解させた。
Next, the zinc salt was dissolved in a PDiPF solution purified and filtered in the same manner as in Example 1.

この溶液に硫化水素ガスを通気して、硫化亜鉛の微粒子
を生成させた。できた分散液を水洗することで余分な亜
鉛塩を除去し、導電体粒子が分散された原料分散液−を
得た。この原料分散液を用いて、前述の下部導電体及び
段差緩和絶縁体層を形成した基板に塗布して非線形電気
伝導誘起層とし、上部導電体の形成を行って、非線形素
子を作成した。
Hydrogen sulfide gas was bubbled through this solution to generate fine particles of zinc sulfide. The resulting dispersion was washed with water to remove excess zinc salt, thereby obtaining a raw material dispersion in which conductor particles were dispersed. This raw material dispersion liquid was applied to the substrate on which the lower conductor and step-reducing insulator layer described above were formed to form a nonlinear electrical conduction inducing layer, and an upper conductor was formed to produce a nonlinear element.

このようにして作成された非線形素子は、ショートも断
線も発生せず、暗所で電流電圧特性を測定すると、実施
例1と同様に安定した非線形性を長時間示した。
The nonlinear element produced in this manner did not cause any short circuit or disconnection, and when its current-voltage characteristics were measured in a dark place, it exhibited stable nonlinearity for a long time as in Example 1.

(実施例3) 本実施例でも、素子の構成とエツジ段差を緩和する工程
は実施例1と同様である。
(Example 3) In this example as well, the structure of the element and the step of reducing the edge step difference are the same as in Example 1.

実施例1と同様にして下部導電体層を形成した基板に、
300〜450ナノメートルの波長の光に感光し硬化す
るポリイミド系樹脂を、下部電極とほぼ同じ厚みに塗布
した。プレベーク後、下部導電体層の下方から水銀ラン
プの光を照射し、溶媒で下部導電体層上の樹脂を除去し
た。残った樹脂をボストベークにより固着させ、段差緩
和絶縁体層を形成した。
On a substrate on which a lower conductor layer was formed in the same manner as in Example 1,
A polyimide resin that is cured when exposed to light with a wavelength of 300 to 450 nanometers was applied to approximately the same thickness as the lower electrode. After prebaking, the lower conductor layer was irradiated with light from a mercury lamp from below, and the resin on the lower conductor layer was removed with a solvent. The remaining resin was fixed by boss baking to form a step-reducing insulator layer.

次に実施例1と同様にしてM製ししたPDiPFとポリ
(3−’ベキシルチオフェン)を塩化炭素に溶解し、0
.5μmのフィルターを通して原料溶液を得た。この原
料溶液を用いて、前述の下部導電体及び段差緩和絶縁体
層を形成した基板に塗布して非線形電気伝導誘起層とし
、金属酸化物をスパッターもしくは蒸着で形成し上部導
電体層とした。
Next, PDiPF manufactured by M in the same manner as in Example 1 and poly(3-' bexylthiophene) were dissolved in carbon chloride.
.. A raw material solution was obtained through a 5 μm filter. This raw material solution was applied to the substrate on which the aforementioned lower conductor and step-reducing insulator layer were formed to form a nonlinear electrical conduction inducing layer, and a metal oxide was formed by sputtering or vapor deposition to form an upper conductor layer.

このようにして作成された非線形素子は、ショートも断
線も発生せず、暗所で電流電圧特性を測定すると、実施
例1と同様に安定した非線形性を長時間示した。
The nonlinear element produced in this manner did not cause any short circuit or disconnection, and when its current-voltage characteristics were measured in a dark place, it exhibited stable nonlinearity for a long time as in Example 1.

以上実施例を述べたが、本発明は以上の実施例のみに限
定されるものではない。光硬化性樹脂や上下導電体、高
分子絶縁体のみならず、分散させる導電体や半導体も種
々考えられる。
Although the embodiments have been described above, the present invention is not limited only to the above embodiments. In addition to photocurable resins, upper and lower conductors, and polymer insulators, various conductors and semiconductors to be dispersed can be considered.

本発明の非線形素子は、これを用いたアクティブマトリ
ックス表示装置や光シヤツターなどの電気光学装置、温
度、湿度、光、ガス、溶液などのセンサーなどに−も広
く応用が可能である。
The nonlinear element of the present invention can be widely applied to active matrix display devices, electro-optical devices such as optical shutters, and sensors for temperature, humidity, light, gas, solutions, etc., using the same.

[発明の効果] 以上述べたように、本発明によれば常m常圧で形成可能
で、かつ制御性に優れた非線形電気伝導誘起層をもち、
安定に作動する非線形素子の製造法を提供することによ
って安価で優れた非線形素子を作成することが可能にな
る。本発明の非線形素子は素子構造が簡単な上、非線形
電気伝導誘起層の形成が容易なため、特に大きな面積の
ものを作成するのには有利である。
[Effects of the Invention] As described above, the present invention has a nonlinear electrical conduction inducing layer that can be formed at normal pressure and has excellent controllability.
By providing a method for manufacturing a nonlinear element that operates stably, it becomes possible to create an inexpensive and excellent nonlinear element. The nonlinear element of the present invention has a simple element structure and the nonlinear electrical conduction inducing layer can be easily formed, so it is particularly advantageous for manufacturing a large area element.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の実施例1で作成した、非線形素子の
概念を表す断面図である。 第2図は、従来の下部導電体層のエツジ段差を緩和しな
い非線形素子の概念を表す断面図である。 第3図は、下部導電体層のエツジ段差を緩和する工程を
模式的に表わす断面図である。 (a)は、絶縁体とな
る光硬化性l#脂を下部導電体層とほぼ同じ厚みに塗布
する工程の断面図であり、 (b)は、下部導電体層の
下方から樹脂が感光する波長の光を照射する工程の断面
図であり、 (c)は、下部導電体層上の硬化していな
い樹脂を除去する工程の断面図である。 第4図は、本発明の実施例1で作成した、非線形素子の
電流電圧特性を表す図である。 l・・・・・・・・・・基板ガラス 2・・・・・・・・・・下部導電体 3・・・・・・・・・・非線形電気伝導誘起層4・・・
・・・・・・・上部導電体 5・・・・・・・・・・段差緩和絶縁体層1・・・・・
・・・・・電流電圧特性曲線以  上
FIG. 1 is a cross-sectional view showing the concept of a nonlinear element created in Example 1 of the present invention. FIG. 2 is a cross-sectional view showing the concept of a conventional nonlinear element that does not alleviate the edge step of the lower conductor layer. FIG. 3 is a cross-sectional view schematically showing the step of reducing the edge step of the lower conductor layer. (a) is a cross-sectional view of the process of applying photocurable l# resin, which will serve as an insulator, to approximately the same thickness as the lower conductor layer, and (b) is a cross-sectional view of the process in which the resin is exposed to light from below the lower conductor layer. FIG. 6(c) is a cross-sectional view of the step of irradiating light with a certain wavelength; FIG. FIG. 4 is a diagram showing current-voltage characteristics of a nonlinear element created in Example 1 of the present invention. l......Substrate glass 2...Lower conductor 3...Nonlinear electrical conduction inducing layer 4...
・・・・・・Top conductor 5・・・・・・Step difference mitigation insulator layer 1・・・・・・
...More than the current-voltage characteristic curve

Claims (1)

【特許請求の範囲】 導電体に挟持された非線形電気伝導誘起層が少なくとも
高分子絶縁体と、高分子絶縁体内に分散した導電体また
は半導体から構成されている非線形素子において、ガラ
ス基板上に形成した下部導電体層のエッジ段差を以下に
示す工程で緩和した後、非線形電気伝導誘起層及び上部
導電体層を形成することを特徴とする非線形素子の製造
法。 a)絶縁体となる光硬化性樹脂を下部導電体層とほぼ同
じ厚みに塗布する工程。 b)下部導電体層の下方から樹脂が感光する波長の光を
照射する工程。 c)下部導電体層上の硬化していない樹脂を除去する工
程。
[Claims] A nonlinear element in which a nonlinear electrical conduction inducing layer sandwiched between conductors is composed of at least a polymeric insulator and a conductor or semiconductor dispersed within the polymeric insulator, formed on a glass substrate. 1. A method for manufacturing a nonlinear element, characterized in that a nonlinear electrical conduction inducing layer and an upper conductive layer are formed after the edge step of the lower conductive layer is reduced by the steps described below. a) A step of applying a photocurable resin to serve as an insulator to approximately the same thickness as the lower conductor layer. b) A step of irradiating light of a wavelength to which the resin is sensitive from below the lower conductor layer. c) Step of removing uncured resin on the lower conductor layer.
JP2038749A 1990-02-20 1990-02-20 Manufacture of nonlinear element Pending JPH03241878A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2038749A JPH03241878A (en) 1990-02-20 1990-02-20 Manufacture of nonlinear element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2038749A JPH03241878A (en) 1990-02-20 1990-02-20 Manufacture of nonlinear element

Publications (1)

Publication Number Publication Date
JPH03241878A true JPH03241878A (en) 1991-10-29

Family

ID=12533952

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2038749A Pending JPH03241878A (en) 1990-02-20 1990-02-20 Manufacture of nonlinear element

Country Status (1)

Country Link
JP (1) JPH03241878A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0651350A (en) * 1992-08-03 1994-02-25 Alps Electric Co Ltd Display device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0651350A (en) * 1992-08-03 1994-02-25 Alps Electric Co Ltd Display device

Similar Documents

Publication Publication Date Title
KR100819062B1 (en) Synthesis method of indium tin oxide(ito) electron-beam resist and pattern formation method of ito using the same
KR960002202B1 (en) Method of manufacturing liquid crystal electro-optical devices
EP0499642A1 (en) Color filter, method of producing the same, color liquid crystal panel and method of driving the same
JPH02306223A (en) Liquid crystal display device
JP3864229B2 (en) Method for producing nanogap electrode and device having nanogap electrode produced by the method
WO2018126784A1 (en) Patterned light-dimming glass and preparation method therefor
JPH0588177A (en) Liquid crystal display element
KR20190099903A (en) Method of patterning a hybrid transparent electrode
TW201743170A (en) Superfine copper reticle of display and touch panel, and manufacturing method of the same comprising a transparent substrate and a first copper electrode layer including a first pure copper coating and a first anti-reflection conductive film with high transmittance and low reflectivity
JPH03241878A (en) Manufacture of nonlinear element
CN110824751A (en) Liquid crystal dimming device and preparation method thereof
US7642040B2 (en) Method of fabricating periodic domain inversion structure
JPH03241321A (en) Production of nonlinear element
JP2694229B2 (en) Method for manufacturing electrode for electro-optical device
KR101359916B1 (en) Flexible method of manufacturing display device
US5949510A (en) Method for making wide viewing angle LCD and devices made
JPH0695133A (en) Liquid crystal electrooptical device
KR20050069535A (en) Smart window using polymer dispersed liquid crystal
JPH04211174A (en) Nonlinear element and its manufacture
JPS6249322A (en) Liquid crystal element and its production
JPH0437825A (en) Liquid crystal electro-optical device
JPS61170725A (en) Liquid crystal display device
JPS59149606A (en) Method of producing transparent conductor
JP2997738B2 (en) Liquid crystal electro-optical device manufacturing method
JPH03160772A (en) Nonlinear element