JPH0437825A - Liquid crystal electro-optical device - Google Patents
Liquid crystal electro-optical deviceInfo
- Publication number
- JPH0437825A JPH0437825A JP2145821A JP14582190A JPH0437825A JP H0437825 A JPH0437825 A JP H0437825A JP 2145821 A JP2145821 A JP 2145821A JP 14582190 A JP14582190 A JP 14582190A JP H0437825 A JPH0437825 A JP H0437825A
- Authority
- JP
- Japan
- Prior art keywords
- liquid crystal
- base
- electrode
- layer
- optical device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004973 liquid crystal related substance Substances 0.000 title claims abstract description 84
- 239000000203 mixture Substances 0.000 claims abstract description 12
- 239000000126 substance Substances 0.000 claims abstract description 8
- 230000001939 inductive effect Effects 0.000 claims description 25
- 239000010410 layer Substances 0.000 abstract description 60
- 229910052751 metal Inorganic materials 0.000 abstract description 7
- 239000002184 metal Substances 0.000 abstract description 7
- 239000000463 material Substances 0.000 abstract description 6
- 238000000034 method Methods 0.000 abstract description 6
- 229920000642 polymer Polymers 0.000 abstract description 4
- 239000011521 glass Substances 0.000 abstract description 3
- RZVAJINKPMORJF-UHFFFAOYSA-N Acetaminophen Chemical compound CC(=O)NC1=CC=C(O)C=C1 RZVAJINKPMORJF-UHFFFAOYSA-N 0.000 abstract description 2
- 238000002156 mixing Methods 0.000 abstract description 2
- 230000003287 optical effect Effects 0.000 abstract description 2
- 239000005297 pyrex Substances 0.000 abstract description 2
- 239000012044 organic layer Substances 0.000 abstract 1
- 239000000758 substrate Substances 0.000 description 40
- 239000004020 conductor Substances 0.000 description 10
- 239000010408 film Substances 0.000 description 7
- 230000000052 comparative effect Effects 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 4
- 239000011248 coating agent Substances 0.000 description 4
- 238000000576 coating method Methods 0.000 description 4
- BPUBBGLMJRNUCC-UHFFFAOYSA-N oxygen(2-);tantalum(5+) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ta+5].[Ta+5] BPUBBGLMJRNUCC-UHFFFAOYSA-N 0.000 description 4
- 238000004544 sputter deposition Methods 0.000 description 4
- 229910001936 tantalum oxide Inorganic materials 0.000 description 4
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 239000012212 insulator Substances 0.000 description 3
- 238000007740 vapor deposition Methods 0.000 description 3
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- 238000001312 dry etching Methods 0.000 description 2
- 238000007772 electroless plating Methods 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 238000001226 reprecipitation Methods 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 229910052715 tantalum Inorganic materials 0.000 description 2
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 2
- ZFFMLCVRJBZUDZ-UHFFFAOYSA-N 2,3-dimethylbutane Chemical group CC(C)C(C)C ZFFMLCVRJBZUDZ-UHFFFAOYSA-N 0.000 description 1
- UZGVMZRBRRYLIP-UHFFFAOYSA-N 4-[5-[4-(diethylamino)phenyl]-1,3,4-oxadiazol-2-yl]-n,n-diethylaniline Chemical compound C1=CC(N(CC)CC)=CC=C1C1=NN=C(C=2C=CC(=CC=2)N(CC)CC)O1 UZGVMZRBRRYLIP-UHFFFAOYSA-N 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 238000002048 anodisation reaction Methods 0.000 description 1
- 238000007743 anodising Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000010292 electrical insulation Methods 0.000 description 1
- 238000009713 electroplating Methods 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 229910003437 indium oxide Inorganic materials 0.000 description 1
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 238000001259 photo etching Methods 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000011241 protective layer Substances 0.000 description 1
- TXEYQDLBPFQVAA-UHFFFAOYSA-N tetrafluoromethane Chemical compound FC(F)(F)F TXEYQDLBPFQVAA-UHFFFAOYSA-N 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 238000002604 ultrasonography Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Liquid Crystal (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野コ
本発明は、電流電圧特性が非線形である非線形素子と液
晶電気光学素子を組み合わせてなる液晶電気光学装置に
関する。特に、液晶電気光学装置の構造に関する。DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a liquid crystal electro-optical device comprising a combination of a non-linear element having non-linear current-voltage characteristics and a liquid crystal electro-optical element. In particular, it relates to the structure of a liquid crystal electro-optical device.
[発明が解決しようとする課題]
しかし、このような液晶電気光学素子は、非線形素子の
形成にCVDやスパッターなとの高度に制御した真空装
置を用いることが不可欠で、基板の下地処理などが必要
である。その上、非線形素子の作成に高価なプロセスが
必要であるため、低価格の液晶電気光学装置を作りにく
い。また、非線形素子の制御性があまり良くないため、
欠陥が発生したり、長期信頼性が低下するなどを招いて
いた。[Problems to be Solved by the Invention] However, in such liquid crystal electro-optical devices, it is essential to use highly controlled vacuum equipment such as CVD or sputtering to form nonlinear elements, and substrate preparation etc. is necessary. Moreover, expensive processes are required to create the nonlinear elements, making it difficult to create low-cost liquid crystal electro-optical devices. Also, since the controllability of nonlinear elements is not very good,
This led to the occurrence of defects and a decline in long-term reliability.
そこで本発明では、簡易な製法で形成できる非線形素子
と液晶電気光学素子による液晶電気光学装置を提供する
ことによって、上記のような課題を解決しようというも
のである。Therefore, the present invention aims to solve the above problems by providing a liquid crystal electro-optical device using a nonlinear element and a liquid crystal electro-optic element that can be formed by a simple manufacturing method.
[従来の技術]
[課題を解決するための手段]
本発明の液晶電気光学装置は、少なくとも、有機物を成
分として含む非線形電気伝導誘起層を、電極で挟持して
なる非線形素子、と、液晶組成物を含む物質を画素電極
で挟持してなる液晶電気光学素子、とを組み合わせてな
ることを特徴とする。[Prior Art] [Means for Solving the Problems] A liquid crystal electro-optical device of the present invention includes at least a nonlinear element having a nonlinear electrical conduction inducing layer containing an organic substance as a component sandwiched between electrodes, and a liquid crystal composition. A liquid crystal electro-optical element is formed by sandwiching a substance containing a substance between pixel electrodes.
[実施例] 以下、実施例により本発明の詳細を示す。[Example] Hereinafter, the details of the present invention will be shown by examples.
(実施例1)
第1図に本実施例で試作した液晶電気光学装置の概略を
示す、基体101として、表面を光学研磨したパイレッ
クスガラスを用い、金属などの導電体膜をスパッターも
しくは蒸着で形成し、フォトエツチングによってパター
ンを形成して下電極102とし、この上に非線形電気伝
導層を形成した。(Example 1) Figure 1 schematically shows a liquid crystal electro-optical device prototyped in this example. Pyrex glass with an optically polished surface is used as the base 101, and a conductive film such as metal is formed by sputtering or vapor deposition. Then, a pattern was formed by photoetching to form the lower electrode 102, and a nonlinear electrically conductive layer was formed on this.
非線形電気伝導誘起層に用いる高分子絶縁体は、ポリフ
マル酸ジイソプロピル(以下本明細書ではPDiPFと
略記する)をもちいたe PDiPFなどのポリフマル
酸エステル類は、単独で用いた場合、数百オングストロ
ームまでの非常に薄いスピンコード膜でも、電気絶縁特
性の優れた薄膜が得られる材料として知られている。
(型片ら、高分子討論会予稿集Vo1.39.No、8
(1989) p、2561)PDiPFは再沈澱によ
って精製したのち、精製したクロロホルムに溶解してP
DiPF溶液を作った。この溶液は、0.5μmのフィ
ルターを通してごみを除去した。The polymeric insulator used for the nonlinear electrical conduction inducing layer is diisopropyl polyfumarate (hereinafter abbreviated as PDiPF).When used alone, polyfumarate esters such as PDiPF have a thickness of up to several hundred angstroms. It is known as a material that can yield thin films with excellent electrical insulation properties even with extremely thin spin cord films.
(Katagata et al., Polymer Symposium Proceedings Vol. 1.39. No. 8
(1989) p. 2561) After PDiPF is purified by reprecipitation, it is dissolved in purified chloroform and PDiPF is purified by reprecipitation.
A DiPF solution was made. This solution was passed through a 0.5 μm filter to remove dust.
この高分子絶縁体に、溶液中で2,5−ビス(4−ジエ
チルアミノフェニル)−1,3,4−オキサジアゾール
などの電荷輸送能のある材料を混合し、超音波を用いて
溶液を均一にさせて原料液とした。混合の比率は、目的
とする非線形素子のON電流値および/またはOFF電
流値と膜強度の兼ね合いで決められるが、膜厚と素子サ
イズを適当に選べば、0.001〜30wt%の範囲に
おいて、いずれも電流電圧特性の非線形性を示すことが
確認できた。A material with charge transport ability such as 2,5-bis(4-diethylaminophenyl)-1,3,4-oxadiazole is mixed with this polymer insulator in solution, and the solution is stirred using ultrasound. It was made uniform and used as a raw material liquid. The mixing ratio is determined by the balance between the ON current value and/or OFF current value of the target nonlinear element and the film strength, but if the film thickness and element size are appropriately selected, it can be mixed in the range of 0.001 to 30 wt%. It was confirmed that both showed nonlinearity in current-voltage characteristics.
この原料液を塗布後、乾燥して非線形電気伝導誘起層1
03としてから、金属などにより導電体層を形成、パタ
ーニングして上電極104を形成し、非線形素子とした
。この非線形素子と接続するように画素電極105を形
成し、液晶配向層106を形成して素子基板とした。こ
のとき、非線形素子に印加される電圧の正負による電気
特性に偏りが充分小さければ、上電極を省略して画素電
極の一部と下電極によって、非線形素子を形成すること
も可能である。After coating this raw material solution, it is dried to form a nonlinear electrical conduction inducing layer 1.
03, a conductive layer made of metal or the like was formed and patterned to form an upper electrode 104 to obtain a nonlinear element. A pixel electrode 105 was formed so as to be connected to this nonlinear element, and a liquid crystal alignment layer 106 was formed to obtain an element substrate. At this time, if the bias in the electrical characteristics depending on the positive and negative voltages applied to the nonlinear element is sufficiently small, it is also possible to omit the upper electrode and form the nonlinear element by a part of the pixel electrode and the lower electrode.
本実施例に述べたような構成の非線形素子基板では、長
い配線にも用いる下電極を基体に直接形成できるので、
低抵抗な配線を形成しやすい。本実施例で作成したよう
な非線形素子の素子構造を、以下明細書ではHIM構造
と略記する。In the nonlinear element substrate configured as described in this example, the lower electrode used for long wiring can be directly formed on the base.
Easy to form low resistance wiring. The element structure of the nonlinear element created in this example will be abbreviated as HIM structure in the following specification.
対向基板は、光学研磨した基体107上にストライブ状
の対向電極108を形成し、液晶配向層109を形成し
たものを用いた。The counter substrate used was one in which a striped counter electrode 108 was formed on an optically polished base 107 and a liquid crystal alignment layer 109 was formed thereon.
このようにして得られた対向基板・素子基板を適当な間
隔で相対させ、間者で形成されるギャップ間に液晶組成
物110を保持して、液晶電気光学装置とした。The counter substrate and element substrate thus obtained were placed opposite to each other at an appropriate interval, and the liquid crystal composition 110 was held between the gaps formed by them, thereby producing a liquid crystal electro-optical device.
以上のようにして作成した液晶電気光学装置に駆動用の
電圧を印加しながら、偏光子を透過させた光を入射させ
、出てきた光を検光子を透過後に検出して、電気光学特
性を評価した。この評価によって、非線形素子と液晶電
気光学素子とを組み合わせることにより、液晶電気光学
素子単独では不可能な、分割比の大きな時分割駆動時に
おける、広い視野角・良好なコントラストを両立させる
ことができることを確認した。また、電極の形成には、
蒸着、EB蒸着、無電解メツキなどの低価格な手法を用
いても、特性上に影響を与えないことを確認した。よっ
て、本発明によれば、CVDやスパッターを使用しなく
ても、高性能な液晶電気光学装置を作成することが可能
となる。さらに、電極を有機導電体のように常温常圧で
形成可能な物を用いると、真空装置無しで液晶電気光学
装置を作成することも可能であることを確認した。While applying a driving voltage to the liquid crystal electro-optical device created as described above, light that has passed through a polarizer is made incident, and the emitted light is detected after passing through an analyzer to determine the electro-optic characteristics. evaluated. This evaluation shows that by combining a nonlinear element and a liquid crystal electro-optic element, it is possible to achieve both a wide viewing angle and good contrast during time-division driving with a large division ratio, which is not possible with a liquid crystal electro-optic element alone. It was confirmed. In addition, for the formation of electrodes,
It was confirmed that the characteristics were not affected even if low-cost methods such as vapor deposition, EB vapor deposition, and electroless plating were used. Therefore, according to the present invention, it is possible to create a high-performance liquid crystal electro-optical device without using CVD or sputtering. Furthermore, we confirmed that it is possible to create a liquid crystal electro-optical device without a vacuum device by using an electrode that can be formed at room temperature and pressure, such as an organic conductor.
(比較例)
本比較例では、陽極酸化による酸化タンタル絶縁膜を非
線形電気伝導誘起層として用いた、従来の液晶電気光学
装置を作成した例を示す。(Comparative Example) This comparative example shows an example in which a conventional liquid crystal electro-optical device was fabricated using a tantalum oxide insulating film formed by anodization as a nonlinear electrical conduction inducing layer.
第2図に本比較例での液晶電気光学装置の構成を示す。FIG. 2 shows the configuration of a liquid crystal electro-optical device in this comparative example.
基体201に電極下地である酸化タンタル層202を形
成してから、下電極である金属タンタルをスパッタで形
成し、パターニング後に酸素・四弗化炭素などによるド
ライエッチをおこなって、下電極203を形成した。そ
ののち、画素電極となる錫をドープした酸化インジウム
による透明導電体層を形成、フォトパターニング・エツ
チングして画素電極204を形成した。さらに、下電極
203をクエン酸水溶液中で陽極酸化することによって
、酸化タンタル層を形成し、含まれた水等の除去のため
十分焼成して、非線形電気伝導誘起層205とした。After forming a tantalum oxide layer 202 as an electrode base on a base 201, a metal tantalum as a lower electrode is formed by sputtering, and after patterning, dry etching with oxygen, carbon tetrafluoride, etc. is performed to form a lower electrode 203. did. Thereafter, a transparent conductor layer made of tin-doped indium oxide to serve as a pixel electrode was formed, and photopatterning and etching were performed to form a pixel electrode 204. Furthermore, a tantalum oxide layer was formed by anodizing the lower electrode 203 in an aqueous citric acid solution, and the layer was sufficiently fired to remove contained water, etc., to form a nonlinear electrical conduction inducing layer 205.
この上から、上電極用の金属クロムを形成し、フォトパ
ターニング・エツチングして上電極206として非線形
素子を形成、画素電極とも接続してから絶縁層207、
液晶配向N2O3を形成して素子基板とした。From above, metal chromium for the upper electrode is formed, photopatterned and etched to form a nonlinear element as the upper electrode 206, and after connecting with the pixel electrode, an insulating layer 207,
A liquid crystal aligned N2O3 was formed to form an element substrate.
対向基板は、実施例1と同様に、基体209上に対向電
極210、液晶配向層211を形成して得た。A counter substrate was obtained by forming a counter electrode 210 and a liquid crystal alignment layer 211 on a base 209 in the same manner as in Example 1.
これらの素子基板、対向基板を適当な間隔で相対させ、
間に液晶組成物212を保持して液晶電気光学装置とし
た。These element substrates and counter substrates are placed opposite to each other at an appropriate distance,
A liquid crystal composition 212 was held in between to form a liquid crystal electro-optical device.
このように、実施例1と比較して本比較例では素子基板
の構成が複雑となる。また、下電極のタンタルは、ドラ
イエッチでしかエツチングできないので、大型のドライ
エツチャーが必要となるうえ、酸化されて非線形電気伝
導誘起層となるため、均一で緻密な形成が要求され、下
地処理や高温での形成などが必要とされる。As described above, the structure of the element substrate in this comparative example is more complicated than that in Example 1. In addition, since the tantalum of the lower electrode can only be etched by dry etching, a large dry etcher is required, and since it is oxidized to form a nonlinear electrical conduction inducing layer, uniform and dense formation is required. This requires formation at high temperatures.
(実施例2)
本実施例では、第3図に示すような構成の液晶電気光学
装置を試作した。基体301に画素電極302を形成し
てから、下電極303、非線形電気伝導誘起層304、
上電極305、液晶配向層306を形成して素子基板と
した。また、上電極・画素電極・非線形電気伝導誘起層
の材料を適当に選べば、下電極を省略して画素電極の一
部と上電極によって、非線形素子を形成することも可能
であることは確認した。(Example 2) In this example, a liquid crystal electro-optical device having a configuration as shown in FIG. 3 was prototyped. After forming a pixel electrode 302 on a base 301, a lower electrode 303, a nonlinear electrical conduction inducing layer 304,
An upper electrode 305 and a liquid crystal alignment layer 306 were formed to obtain an element substrate. In addition, it has been confirmed that if the materials of the upper electrode, pixel electrode, and nonlinear electrical conduction inducing layer are selected appropriately, it is possible to omit the lower electrode and form a nonlinear element using a part of the pixel electrode and the upper electrode. did.
本実施例の非線形素子基板も、HIM構造となる。The nonlinear element substrate of this example also has a HIM structure.
対向基板は、実施例1と同様に、基体307上に対向電
極308、液晶配向層309を形成して得た。A counter substrate was obtained by forming a counter electrode 308 and a liquid crystal alignment layer 309 on a base 307 in the same manner as in Example 1.
これらの素子基板、対向基板を適当な間隔で相対させ、
間に液晶組成物310を保持して液晶電気光学装置とし
た。These element substrates and counter substrates are placed opposite to each other at an appropriate distance,
A liquid crystal composition 310 was held in between to form a liquid crystal electro-optical device.
以上のような本実施例の構成によると、画素電極上に非
線形電気伝導誘起層が被覆されているが、被覆が画素電
極の全面にわたっており、また膜が非常に薄いので、液
晶部分に対して非常に容量が大きくなる。よって、この
部分の非線形電気伝導誘起層はほぼ完全な絶縁体として
の挙動をし、液晶にかかる電圧を低下させるようなこと
はない。According to the configuration of this embodiment as described above, the nonlinear electrical conduction inducing layer is coated on the pixel electrode, but since the coating covers the entire surface of the pixel electrode and the film is very thin, it does not touch the liquid crystal part. The capacity becomes extremely large. Therefore, the nonlinear electrical conduction inducing layer in this portion behaves as an almost perfect insulator, and does not reduce the voltage applied to the liquid crystal.
また、この層によって画素電極の直流成分遮断が可能で
あるため、余分な画素電極直流成分遮断層が不要で、素
子基板側の液晶配向層も薄くすることができるようにな
るわ また、画素電極上の非線形電気伝導誘起層に適当
な配向処理を行うことにより、液晶配向層309を省略
しても液晶電気光学装置が構成可能であることを確認し
た。In addition, this layer can block the DC component of the pixel electrode, so there is no need for an extra pixel electrode DC component blocking layer, and the liquid crystal alignment layer on the element substrate side can also be made thinner. It was confirmed that a liquid crystal electro-optical device can be constructed even if the liquid crystal alignment layer 309 is omitted by performing appropriate alignment treatment on the upper nonlinear electrical conduction inducing layer.
本実施例で試作した液晶電気光学装置も、実施例1と同
様に良好な電気光学特性を示した。The liquid crystal electro-optical device prototyped in this example also exhibited good electro-optic characteristics as in Example 1.
(実施例3)
本実施例では、第4図に示すような構成の液晶電気光学
装置を作成した。基体401上に、画素電極402を形
成してから、非線形素子の第1電極403と第3電極4
04を同時に形成し、非線形電気伝導誘起層405、第
2電極406、液晶配向層407を形成して素子基板と
した。この構成の素子基板では、実施例2と同様な液晶
配向層を薄くできるメリットを有したまま、長い配線に
用いる第1電極を低抵抗で形成できるため、非常に有利
である。さらに、実施例2と同様に、液晶配向層407
を省略して、画素電極上の非線形電気伝導誘起層を液晶
配向層として利用できることを確認した。また、第1電
極・第2電極・画素電極・非線形電気伝導誘起層の材料
を適当に選べば、第3電極を省略して、がわりに画素電
極の一部を用い、非線形素子を形成することも可能であ
ることは、実施例1、実施例2と同様に確認した。(Example 3) In this example, a liquid crystal electro-optical device having a configuration as shown in FIG. 4 was created. After forming a pixel electrode 402 on a base 401, a first electrode 403 and a third electrode 4 of a nonlinear element are formed.
04 was formed at the same time, and a nonlinear electrical conduction inducing layer 405, a second electrode 406, and a liquid crystal alignment layer 407 were formed to obtain an element substrate. In the element substrate having this configuration, the first electrode used for long wiring can be formed with low resistance while having the advantage that the liquid crystal alignment layer can be made thin as in Example 2, which is very advantageous. Furthermore, as in Example 2, the liquid crystal alignment layer 407
It was confirmed that the nonlinear electrical conduction inducing layer on the pixel electrode can be used as a liquid crystal alignment layer by omitting the above. Furthermore, if the materials of the first electrode, second electrode, pixel electrode, and nonlinear electrical conduction inducing layer are appropriately selected, the third electrode can be omitted and a part of the pixel electrode can be used instead to form a nonlinear element. It was confirmed in the same manner as in Examples 1 and 2 that this is also possible.
本実施例で作成した非線形素子基板は、導電体(第1電
極)−非線形電気伝導誘起層一導電体(第2電極)−非
線形電気伝導誘起層一導電体く第3電極または画素電極
)の構造となる。このような構造を、以下明細書ではM
IMIM構造と略記する。本発明では、大きな非線形電
気伝導性をもつ非線形電気伝導誘起層を使用しているた
め、MIMIM構造の非線形素子が利用可能である。The nonlinear element substrate created in this example consists of a conductor (first electrode) - nonlinear electrical conduction inducing layer - conductor (second electrode) - nonlinear electrical conduction inducing layer - conductor - third electrode or pixel electrode). It becomes a structure. In the following specification, such a structure will be referred to as M
It is abbreviated as IMIM structure. In the present invention, since a nonlinear electrical conduction inducing layer having large nonlinear electrical conductivity is used, a nonlinear element having a MIMIM structure can be used.
対向基板は、実施例1、実施例2と同様に、基体408
上に対向電極409、液晶配向層410を形成して得た
。これら素子基板、対向基板を相対させ、間に液晶組成
物411を保持して液晶電気光学装置とするのも実施例
1、実施例2と同様である。The counter substrate is the base 408 as in the first and second embodiments.
A counter electrode 409 and a liquid crystal alignment layer 410 were formed thereon. It is also the same as in Examples 1 and 2 that these element substrates and counter substrates are made to face each other and a liquid crystal composition 411 is held between them to form a liquid crystal electro-optical device.
本実施例で試作した液晶電気光学装置も、実施例1、実
施例2と同様に良好な電気光学特性を示した。The liquid crystal electro-optical device prototyped in this example also exhibited good electro-optic characteristics as in Examples 1 and 2.
(実施例4)
本実施例では、第5図に示すような構成の液晶電気光学
装置を作成した。基体501上に、画素電極502、下
電極503、非線形電気伝導誘起層504、上電極50
5、高分子中に分散した液晶組成物層506、画素電極
507、保護層508を順次形成し、液晶電気光学装置
とした。(Example 4) In this example, a liquid crystal electro-optical device having a configuration as shown in FIG. 5 was created. On the base 501, a pixel electrode 502, a lower electrode 503, a nonlinear electrical conduction inducing layer 504, and an upper electrode 50.
5. A liquid crystal composition layer 506 dispersed in a polymer, a pixel electrode 507, and a protective layer 508 were sequentially formed to obtain a liquid crystal electro-optical device.
本実施例のような構成にすると、実施例1〜3で作成し
た液晶電気光学装置に比べ、液晶電気光学素子部のギャ
ップ管理を行わなくて良い上、偏光子・検光子が必要な
くなるために光を有効に使用できるようになる。ギャッ
プ管理が重要でなくなるので、用いる基体は、ガラス基
板のように可撓性の無いもの以外にも、ポリカーボネー
トのようなプラスチック基体を用いることも可能である
。With the configuration of this example, compared to the liquid crystal electro-optical devices created in Examples 1 to 3, there is no need to manage the gap in the liquid crystal electro-optic element section, and there is no need for a polarizer or analyzer. Be able to use light effectively. Since gap management becomes less important, the substrate used can be a plastic substrate such as polycarbonate, in addition to a non-flexible substrate such as a glass substrate.
また、前記の要素以外にも、基体も片側ですむために構
成が簡単になり、作成が容易で低価格な液晶電気光学装
置が作成できるようになる。Further, in addition to the above-mentioned elements, the structure is simplified because the base body is only required on one side, and a liquid crystal electro-optical device can be manufactured easily and at low cost.
本実施例で作成した液晶電気光学装置も、実施例1〜3
と同様に良好な電気光学特性を示した。The liquid crystal electro-optical device created in this example also has Examples 1 to 3.
It also showed good electro-optical properties.
この構成の液晶電気光学装置では、偏光子・検光子を用
いないでも電気光学特性を評価でき、この場合従来のも
のより表示が明るくなった。In the liquid crystal electro-optical device with this configuration, the electro-optical characteristics can be evaluated without using a polarizer or analyzer, and in this case, the display is brighter than in the conventional device.
以上実施例を述べたが、本発明は以上に記述した実施例
のみに限定されるものではない。電極としては、金属以
外の導電体を用いることは可能であるし、形成法も電気
メツキや無電解メツキ、塗布、塗布後の焼成などの方法
が用いられ得る。Although the embodiments have been described above, the present invention is not limited to the embodiments described above. As the electrode, it is possible to use a conductor other than metal, and as for the formation method, methods such as electroplating, electroless plating, coating, and baking after coating can be used.
非線形素子の構造としては、実施例で取り上げたMIM
構造、MIMIM椙造以外にも、第2導電体以外は実施
例3と同様に作成し、第2導電体に半導体膜を用いて、
界面で接合を形成して導電体−非線形電気伝導誘起層一
半導体一非線形電気伝導銹起層一導電体(MISIM)
構造を作ることも可能である。As the structure of the nonlinear element, MIM taken up in the example
In addition to the structure and MIMIM Suzukuri, everything except the second conductor was created in the same manner as in Example 3, and a semiconductor film was used as the second conductor.
A junction is formed at the interface to form a conductor - a nonlinear electrical conduction inducing layer - a semiconductor - a nonlinear electrical conduction inducing layer - a conductor (MISIM)
It is also possible to create structures.
また、本発明の液晶電気光学素子は、表示装置や光シヤ
ツターなど、光制御に広く応用が可能である。Further, the liquid crystal electro-optical element of the present invention can be widely applied to light control such as display devices and optical shutters.
以上述べたように本発明によれば、安価で簡素なプロセ
スを用いて、高性能な液晶電気光学装置を作成すること
が可能となる。特に大きな面積の液晶電気光学装置を作
成する場合には、真空装置を最小限しか用いないため、
本発明は非常に有効である。As described above, according to the present invention, it is possible to create a high-performance liquid crystal electro-optical device using an inexpensive and simple process. Especially when creating large-area liquid crystal electro-optical devices, vacuum equipment is used to a minimum.
The present invention is very effective.
第1図は、本発明の実施例1で作成した、液晶電気光学
装置の概念を表す断面図である。
第2図は、比較例で作成した、従来の液晶電気光学装置
の概念を表す断面図である。
第3図は、本発明の実施例2で作成した、液晶電気光学
装置の概念を表わす断面図である。
第4図は、本発明の実施例3で作成した、液晶電気光学
装置の概念を表わす断面図である。
第5図は、本発明の実施例4で作成した、液晶電気光学
装置の概念を表わす断面図である。
[発明の効果]
101・・・・・・・・素子基板用基体107 ・・−
・・・・・
108 ・・ ・・・・ ・・
109 ・・ ・・・・・・
110 ・・・・・・・・
下電極
非線形電気伝導誘起層
上電極
画素電極
液晶配向層
対向基板用基体
対向電極
液晶配向層
液晶組成物
素子基板用基体
酸化タンタル層
下電極
画素電極
非線形電気伝導誘起層
上電極
絶縁層
液晶配向層
対向基板用基体
対向電極
液晶配向層
対向基板用基体
対向電極
液晶配向層
液晶組成物
501 ・・ ・・ ・・・・
502 ・・・・・・・・
503 ・・ ・・・・・・
504 ・・ ・・・・・・
505 ・・ ・・ ・・・・
506 ・・・・・・ ・・
507 ・・ ・・ ・・ ・・
508 ・・ ・・ ・・・・
基体
画素電極
下電極
非線形電気伝導誘起層
上電極
高分子中に分散した液晶組成物
画素電極
保護層
以 上
出願人 セイコーエプソン株式会社
代理人 弁理士 鈴木 喜三部(化1名210・・・・
・・・・液晶配向層
211・・・・・・・・液晶組成物
素子基板用基体
画素電極
下電極
非線形電気伝導誘起層
上電極
液晶配向層
対向基板用基体
対向電極
液晶配向層
液晶組成物
素子基板用基体
画素電極
第1電極
第3電極
非線形電気伝導誘起層
第2電極
第3図FIG. 1 is a cross-sectional view showing the concept of a liquid crystal electro-optical device created in Example 1 of the present invention. FIG. 2 is a cross-sectional view showing the concept of a conventional liquid crystal electro-optical device created as a comparative example. FIG. 3 is a cross-sectional view showing the concept of a liquid crystal electro-optical device created in Example 2 of the present invention. FIG. 4 is a cross-sectional view showing the concept of a liquid crystal electro-optical device created in Example 3 of the present invention. FIG. 5 is a cross-sectional view showing the concept of a liquid crystal electro-optical device created in Example 4 of the present invention. [Effect of the invention] 101... Base for element substrate 107...-
108 108 109 110 Lower electrode Nonlinear electrical conduction inducing layer Upper electrode Pixel electrode Liquid crystal alignment layer Substrate for counter substrate Counter electrode Liquid crystal alignment layer Liquid crystal composition Substrate for element substrate Tantalum oxide layer Lower electrode Pixel electrode Nonlinear electrical conduction inducing layer Upper electrode Insulating layer Liquid crystal alignment layer Substrate for counter substrate Counter electrode Liquid crystal alignment layer Substrate for counter substrate Counter electrode Liquid crystal alignment layer Liquid crystal Composition 501 ... ... ... 502 ... ... 503 ... ... 504 ... ... 505 ... ... ... 506 ... ..... 507 .. .. .. .. 508 .. . Applicant Seiko Epson Co., Ltd. Agent Patent Attorney Kizobe Suzuki (1 person 210...
...Liquid crystal alignment layer 211...Base for liquid crystal composition element substrate Pixel electrode Lower electrode Nonlinear electrical conduction inducing layer Upper electrode Liquid crystal alignment layer Substrate for counter substrate Counter electrode Liquid crystal alignment layer Liquid crystal composition element Substrate base pixel electrode 1st electrode 3rd electrode Nonlinear electrical conduction inducing layer 2nd electrode Fig. 3
Claims (1)
誘起層を、電極で挟持してなる非線形素子と、液晶組成
物を含む物質を画素電極で挟持してなる液晶電気光学素
子、とを組み合わせてなることを特徴とする液晶電気光
学装置。At least, a nonlinear element formed by sandwiching a nonlinear electrical conduction inducing layer containing an organic substance as a component between electrodes, and a liquid crystal electro-optical element formed by sandwiching a substance containing a liquid crystal composition between pixel electrodes are combined. Characteristic liquid crystal electro-optical device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2145821A JPH0437825A (en) | 1990-06-04 | 1990-06-04 | Liquid crystal electro-optical device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2145821A JPH0437825A (en) | 1990-06-04 | 1990-06-04 | Liquid crystal electro-optical device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0437825A true JPH0437825A (en) | 1992-02-07 |
Family
ID=15393914
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2145821A Pending JPH0437825A (en) | 1990-06-04 | 1990-06-04 | Liquid crystal electro-optical device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0437825A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1995018369A1 (en) * | 1993-12-24 | 1995-07-06 | Hoechst Aktiengesellschaft | Device for detecting wiring defect of wiring substrate |
US5844249A (en) * | 1993-12-24 | 1998-12-01 | Hoechst Aktiengesellschaft | Apparatus for detecting defects of wires on a wiring board wherein optical sensor includes a film of polymer non-linear optical material |
KR100476741B1 (en) * | 2001-01-09 | 2005-03-18 | 캐논 가부시끼가이샤 | Organic electronic device and nonlinear device |
-
1990
- 1990-06-04 JP JP2145821A patent/JPH0437825A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1995018369A1 (en) * | 1993-12-24 | 1995-07-06 | Hoechst Aktiengesellschaft | Device for detecting wiring defect of wiring substrate |
US5844249A (en) * | 1993-12-24 | 1998-12-01 | Hoechst Aktiengesellschaft | Apparatus for detecting defects of wires on a wiring board wherein optical sensor includes a film of polymer non-linear optical material |
KR100476741B1 (en) * | 2001-01-09 | 2005-03-18 | 캐논 가부시끼가이샤 | Organic electronic device and nonlinear device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4978203A (en) | Liquid crystal device with an apparent hysteresis | |
JP2006520481A (en) | Electrochromic display device | |
JPH1096953A (en) | Liquid crystal display device and its production | |
US8565569B2 (en) | Methods for producing electro-optic activity in organic nonlinear optical materials using an electrostatic field generated by a pyroelectric or a ferroelectric material | |
JPS63104023A (en) | Electro-optical device | |
EP0213184A1 (en) | Thin, uniform electro-optic display | |
US5754263A (en) | Liquid crystal display apparatus with silicon or silicon-germanium thin films cover spaces between electrodes | |
JPH0545005B2 (en) | ||
JPH0437825A (en) | Liquid crystal electro-optical device | |
JPH0580356A (en) | Production of bidirectional nonlinear resistance element and production of liquid crystal display panel | |
JPS63271321A (en) | Fully solid-state high-polymer type electrochromic display element | |
JP2548592B2 (en) | Ferroelectric liquid crystal element | |
JP2815415B2 (en) | Manufacturing method of ferroelectric liquid crystal panel | |
JPH0695133A (en) | Liquid crystal electrooptical device | |
JPH0345930A (en) | Two-terminal type nonlinear element | |
JP2620066B2 (en) | Liquid crystal device | |
JPH06148648A (en) | Feproelectric liquid crystal display element | |
JPS61151616A (en) | Liquid crystal light valve | |
JPH02149820A (en) | Liquid crystal device | |
JPS63217325A (en) | Liquid crystal cell having metal thread conductor | |
JPH0437173A (en) | Non-linear device | |
JP2761581B2 (en) | Liquid crystal device | |
JPH03107924A (en) | Liquid crystal display device | |
JPH0713203A (en) | Liquid crystal display device | |
JPH03218068A (en) | Non-linear element |