JPH0437173A - Non-linear device - Google Patents

Non-linear device

Info

Publication number
JPH0437173A
JPH0437173A JP2143586A JP14358690A JPH0437173A JP H0437173 A JPH0437173 A JP H0437173A JP 2143586 A JP2143586 A JP 2143586A JP 14358690 A JP14358690 A JP 14358690A JP H0437173 A JPH0437173 A JP H0437173A
Authority
JP
Japan
Prior art keywords
conductor
nonlinear
linear
fumarate
pdipf
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2143586A
Other languages
Japanese (ja)
Inventor
Satoru Miyashita
悟 宮下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2143586A priority Critical patent/JPH0437173A/en
Publication of JPH0437173A publication Critical patent/JPH0437173A/en
Pending legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)

Abstract

PURPOSE:To make it possible to eliminate the asymmetry of a device characteristic and obtain a non-linear device whose electric characteristic is stabilized by constituting a non-linear electricity conduction induction layer at least with polydialkyl fumarate. CONSTITUTION:Pyrex glass 11 is used for a substrate. An ITO (indium-tin-oxide) made conductor film is either sputtered or deposited, thereby forming a first conductor 12 and a third conductor 15 based on the application of photoetching. Polydiisopropyl fumarate (PDiPF) used for a non-linear type electric conduction induction layer is refined by resediment and the, it is dissolved in refined chloroform so as to obtain a PDiPF solution where the rotary speed and concentration are controlled so as to obtain a film thickness of some hundreds angstrom, thereby forming a non-linear type electric conduction induction layer 13 by a spin coater. A second conductor 14 is formed on the conduction layer 13 so that a non-linear type device may be obtained.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、電流電圧特性が非線形である非線形素子に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a nonlinear element having nonlinear current-voltage characteristics.

[従来の技術〕 従来の非線形素子としては、Siなどの半導体ウェハー
や、ガラスや単結晶等の上に形成した薄膜状の半導体を
用いていた。また、導電体−絶縁体一導電体構造(以後
本明細書ではMIM構造と呼ぶ)を持つものも実用化さ
れている。
[Prior Art] Conventional nonlinear elements have used semiconductor wafers such as Si, or thin film semiconductors formed on glass, single crystal, or the like. Further, devices having a conductor-insulator-conductor structure (hereinafter referred to as an MIM structure in this specification) have also been put into practical use.

MIM構造を持つ非線形素子は、通常金属タンタルの表
面を陽極酸化して形成した五酸化タンタル上に、金属電
極を積層して作製されている。しかし、五酸化タンタル
は比誘電率が約20と大きく、その製造方法から膜厚を
大きくできないので、MIM素子の静電容量が大きくな
りすぎてしまうという問題があった。また、誘電率の大
きな材料は、電気非線形性が大きくならないことから、
素子の特性も余り良くなかった。
A nonlinear element having an MIM structure is usually manufactured by laminating a metal electrode on tantalum pentoxide, which is formed by anodizing the surface of tantalum metal. However, tantalum pentoxide has a large relative dielectric constant of about 20, and its manufacturing method does not allow for a large film thickness, resulting in the problem that the capacitance of the MIM element becomes too large. In addition, materials with a large dielectric constant do not have large electrical nonlinearity, so
The characteristics of the device were also not very good.

そこで、導電体間の非線形電気伝導誘起層を誘電率の小
さい有機材料で構成することが提示されている。比誘電
率を3から4程度と小さくできるため、素子の静電容量
が小さく、大きな電気非線形特性を示す非線形素子が試
作されている。
Therefore, it has been proposed that the nonlinear electrical conduction inducing layer between conductors be made of an organic material with a small dielectric constant. Since the dielectric constant can be reduced to about 3 to 4, nonlinear elements have been prototyped that have small capacitance and exhibit large electrical nonlinear characteristics.

[発明が解決しようとする課題] しかし従来の、有機物を非線形電気伝導誘起層に用いた
非線形素子では、有機薄膜上にダメージを与えないよう
に導電体を形成しなければならず、導電体の特性が著し
く制限されてしまった。必然的に、導電体の仕事関数に
大きな差が生じ、素子特性の非対称性が大きくなってし
まうという問題点があった。そのため、印加電圧に対す
る出力が安定せず、液晶デイスプレィ等の駆動に用いる
ことは困難であった。
[Problems to be solved by the invention] However, in conventional nonlinear elements using organic materials as nonlinear electrical conduction inducing layers, conductors must be formed on the organic thin film so as not to damage the conductor. Characteristics are severely limited. Inevitably, there is a problem that a large difference occurs in the work functions of the conductors, resulting in a large asymmetry in the device characteristics. Therefore, the output with respect to the applied voltage is not stable, making it difficult to use it for driving liquid crystal displays and the like.

そこで本発明は、素子特性の非対称性がなく、電気特性
の安定した非線形素子を提供することを目的とするもの
である。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a nonlinear element with stable electrical characteristics and no asymmetry in element characteristics.

[課題を解決するための手段] 本発明の非線形素子は、第2導電体に対して対称に、非
線形電気伝導誘起層及び第1、第3導電体が配置された
構造からなる非線形素子において、非線形電気伝導誘起
層が少なくともポリジアルキルフマレートから構成され
ることを特徴とする。
[Means for Solving the Problems] A nonlinear element of the present invention has a structure in which a nonlinear electrical conduction inducing layer and first and third conductors are arranged symmetrically with respect to a second conductor. The nonlinear electrical conduction inducing layer is characterized in that it is composed of at least polydialkyl fumarate.

[実施例] 以下、実施例により本発明の詳細を示す。[Example] Hereinafter, the details of the present invention will be shown by examples.

(実施例1) 第1図に、本実施例における非線形素子の概念を表わす
断面図を示す。
(Example 1) FIG. 1 shows a cross-sectional view showing the concept of a nonlinear element in this example.

基板としては、表面を光学研磨したパイレックスガラス
11を用い、Indiu@〒in 0xide (以下
本明細書ではITOと略記する)の導電体膜をスパッタ
ーもしくは蒸着で形成し、フォトエツチングによってパ
ターンを形成して第1導電体12および第3導電体15
とした。
A Pyrex glass 11 with an optically polished surface was used as the substrate, and a conductive film of Indiu@in Oxide (hereinafter abbreviated as ITO in this specification) was formed by sputtering or vapor deposition, and a pattern was formed by photoetching. The first conductor 12 and the third conductor 15
And so.

非線形電気伝導誘起層に用いる有機材料は、ポリジイソ
プロピルフマレート(以下本明細書ではPDiPFと略
記する)をもちいた。PDiPFなどのポリジアルキル
フマレートを単独で用いた場合、数百オングストローム
程度の非常に薄い膜でも、電気絶縁特性に優れているこ
とが知られている。(市原ら、高分子討論会予稿集Vo
1.39. N。
Polydiisopropyl fumarate (hereinafter abbreviated as PDiPF) was used as the organic material for the nonlinear electrical conduction inducing layer. It is known that when a polydialkyl fumarate such as PDiPF is used alone, even a very thin film of several hundred angstroms has excellent electrical insulation properties. (Ichihara et al., Polymer Symposium Proceedings Vol.
1.39. N.

[19891P、2563) PDiPFは再沈澱によって精製したのち、精製したク
ロロホルムに溶解してPDiPF溶液とした。前述の基
板上に、200オングストロームの膜厚となるように回
転数と濃度を制御して、スピンコーターで非線形電気伝
導誘起層13を形成した。この上に第2導電体14をア
ルミニウムの蒸着により形成して、非線形素子を作成し
た。
[19891P, 2563] After PDiPF was purified by reprecipitation, it was dissolved in purified chloroform to obtain a PDiPF solution. A nonlinear electrical conduction inducing layer 13 was formed on the above-mentioned substrate using a spin coater, controlling the rotation speed and concentration so as to have a film thickness of 200 angstroms. A second conductor 14 was formed thereon by vapor deposition of aluminum to create a nonlinear element.

このような作成法によると、素子構成は、第1導電体と
第2導電体およびそれら2つの導電体に挟持された非線
形電気伝導誘起層からつくられた非線形素子と、第2導
電体と第3導電体および非線形電気伝導誘起層からつく
られた非線形素子の、2つの非線形素子を直列に接続し
たものとなる。
According to such a manufacturing method, the device configuration includes a nonlinear element made of a first conductor, a second conductor, and a nonlinear electrical conduction inducing layer sandwiched between these two conductors, and It is a nonlinear element made of three conductors and a nonlinear electrical conduction inducing layer, and two nonlinear elements are connected in series.

本明細書では以下、この構造をMrMIM構造と呼ぶ。Hereinafter, this structure will be referred to as MrMIM structure.

この構造の素子では、素子から基板端への配線を行う第
1導電体、第3導電体の両方を、基板ガラス上に直接形
成できるために、基板加熱などによる低抵抗での導電体
形成が容易である。また、非線形電気伝導誘起層に対し
てダメージを与えないように、低温で薄く第2導電体を
形成し、第2導電体の抵抗が大きくなってしまっても、
素子特性にはほとんど影響を与えない利点もある。
In an element with this structure, both the first conductor and the third conductor for wiring from the element to the edge of the substrate can be formed directly on the substrate glass, so it is possible to form conductors with low resistance by heating the substrate etc. It's easy. In addition, in order to avoid damaging the nonlinear electrical conduction inducing layer, the second conductor is formed thinly at a low temperature, so that even if the resistance of the second conductor becomes large,
It also has the advantage of having almost no effect on device characteristics.

こうして得られた非線形素子は、暗所で第1、第3導電
体間の電流電圧特性を測定すると、第2図のように非常
に対称性の良い非線形性を示すことが確認できた。また
、この非線形素子の伝導機構はトンネル電流によるため
非線形性が大きく、ON電圧を9ボルト、OFF電圧を
1ボルトとしたときに、電流のON10 F F比が4
桁以上とれる。また、マイナス20°Cから100°C
の温度範囲において、電流電圧特性にほとんど変化は認
められなかった。
When the current-voltage characteristics of the thus obtained nonlinear element between the first and third conductors were measured in a dark place, it was confirmed that the nonlinear element exhibited highly symmetrical nonlinearity as shown in FIG. 2. In addition, the conduction mechanism of this nonlinear element is based on tunnel current, so nonlinearity is large, and when the ON voltage is 9 volts and the OFF voltage is 1 volt, the ON10 FF ratio of the current is 4.
You can get more than 100 digits. Also, from -20°C to 100°C
Almost no change was observed in the current-voltage characteristics in the temperature range of .

(実施例2) 実施例1と同様にして基板上にITOの第1、第3導電
体を形成した。次にボッジターシャリ−ブチルフマレー
トを0. 1%テトラヒドロフラン溶液にして水面に展
開し、圧縮することによりLangmujr膜とした。
(Example 2) In the same manner as in Example 1, first and third conductors of ITO were formed on a substrate. Next, add 0.0% of Bodge tert-butyl fumarate. A 1% tetrahydrofuran solution was spread on the water surface and compressed to form a Langmujr membrane.

表面圧を25mN/mに保ちながら、6mm/minの
速度で基板の引き上げ、浸漬を縁り返し、LBNを8N
累積させた。 120°Cで1時間加熱乾燥させること
により、基板上に、80オングストロームの膜厚で、ボ
ワジターシャリープチルフマレートからなる非線形電気
伝導誘起層を形成した。
While maintaining the surface pressure at 25 mN/m, the substrate was pulled up at a speed of 6 mm/min, the immersion was reversed, and the LBN was reduced to 8 N.
Accumulated. By heating and drying at 120° C. for 1 hour, a nonlinear electrical conduction inducing layer made of Voisy tertiary butyl fumarate was formed on the substrate with a film thickness of 80 angstroms.

この上に第2導電体をインジウムの蒸着により形成して
、非線形素子を作成した。このようにして作成した非線
形素子の第1、第3導電体間の電流電圧特性を測定する
と、実施例1と同様に非常に対称性の良い非線形性を示
した。また、この非線形素子は、非線形性が非常に大き
く、ON電圧を9ボルト、OFF電圧を1ボルトとした
ときに、電流のON10 F F比が5桁以上とれる。
A second conductor was formed on this by vapor deposition of indium to create a nonlinear element. When the current-voltage characteristics between the first and third conductors of the nonlinear element thus created were measured, it showed highly symmetrical nonlinearity as in Example 1. Further, this nonlinear element has very large nonlinearity, and when the ON voltage is 9 volts and the OFF voltage is 1 volt, the ON10 FF ratio of the current can be more than 5 digits.

また、マイナス20℃から100℃の温度範囲において
、電流電圧特性にほとんど変化は認められなかった。
Further, in the temperature range from -20°C to 100°C, almost no change was observed in the current-voltage characteristics.

(実施例3) 基板上にクロムの導電体膜をスパッターもしくは蒸着で
形成し、フォトエツチングによってパターンを形成して
第1導電体および第3導電体とした。次にポリジシクロ
へキシルフマレートを四塩化炭素に溶解させ、基板上に
300オングストロームの膜厚となるように回転数と濃
度を制御し、スピンコーターで非線形電気伝導誘起層を
形成した。この上に第2導電体をアルミニウムの蒸着に
より形成して、非線形素子を作成した。
(Example 3) A chromium conductor film was formed on a substrate by sputtering or vapor deposition, and patterns were formed by photoetching to form a first conductor and a third conductor. Next, polydicyclohexyl fumarate was dissolved in carbon tetrachloride, and a nonlinear electrical conduction inducing layer was formed using a spin coater by controlling the rotation speed and concentration so that the film thickness was 300 angstroms on the substrate. A second conductor was formed thereon by vapor deposition of aluminum to create a nonlinear element.

このようにして作成した非線形素子の第1、第3導電体
間のII電流電圧特性測定すると、実施例1と同様に非
常に対称性の良い非線形性を示した。
When II current-voltage characteristics were measured between the first and third conductors of the nonlinear element thus produced, it showed highly symmetrical nonlinearity as in Example 1.

また、この非線形素子は非線形性が大きく、ON電圧を
12ボルト、OFF電圧を1ボルトとしたときに、電流
の0N10FF比が4桁以上とれる。
Further, this nonlinear element has large nonlinearity, and when the ON voltage is 12 volts and the OFF voltage is 1 volt, the 0N10FF ratio of the current can be more than 4 digits.

また、マイナス20℃から100℃の温度範囲において
、電流電圧特性にほとんど変化は認められなかった。
Further, in the temperature range from -20°C to 100°C, almost no change was observed in the current-voltage characteristics.

以上実施例を述べたが、本発明の場合には第1および第
3導電体と、第2導電体に異なるものを用いても、素子
構成が対称となるために、電流電圧特性はいつも対称と
なる。上部もしくは下部導電体として金属以外の導電体
を用いることは可能であるし、形成法も電気メツキや無
電解メツキ、塗布などの方法が用いられ得る。また、用
いるポリジアルキルフマレートの種類や薄膜形成法も種
々考えられる。
Although the embodiments have been described above, in the case of the present invention, even if different materials are used for the first and third conductors and the second conductor, the current-voltage characteristics are always symmetrical because the element configuration is symmetrical. becomes. It is possible to use a conductor other than metal as the upper or lower conductor, and methods such as electroplating, electroless plating, and coating can be used as the formation method. Furthermore, various types of polydialkyl fumarates and thin film formation methods can be considered.

本発明の非線形素子は、これを用いたアクティブマトリ
ックス表示装置や光シヤツターなどの電気光学装置、温
度、湿度、光、ガス、溶液などのセンサーなどにも広く
応用が可能である。
The nonlinear element of the present invention can be widely applied to active matrix display devices, electro-optical devices such as optical shutters, and sensors for temperature, humidity, light, gas, solutions, etc., using the same.

[発明の効果コ 以上述べたように、本発明によれば第2導電体に対して
対称に、非線形電気伝導誘起層及び第1、第3導電体が
配置された構造からなる非線形素子において、非線形電
気伝導誘起層が少なくともポリジアルキルフマレートが
ら構成されることにより、素子特性の非対称性がなく、
電気特性の安定した非線形素子を提供することができた
。本発明の非線形素子は素子構造が簡単な上、非線形電
気伝導誘起層の形成が容易なため、特に大きな面積のも
のを作成するのには有利である。
[Effects of the Invention] As described above, according to the present invention, in a nonlinear element having a structure in which a nonlinear electrical conduction inducing layer and first and third conductors are arranged symmetrically with respect to a second conductor, Since the nonlinear electrical conduction inducing layer is composed of at least polydialkyl fumarate, there is no asymmetry in device characteristics.
A nonlinear element with stable electrical characteristics could be provided. The nonlinear element of the present invention has a simple element structure and the nonlinear electrical conduction inducing layer can be easily formed, so it is particularly advantageous for manufacturing a large area element.

l・・・・・・・・・・基板ガラス 2・・・・・・・・・・第1導電体 3・・・・・・・・・・非線形電気伝導誘起層4・・・
・・・・・・・第2導電体 5・・・・・・・・・・第3導電体 1・・・・・・・・・・電流電圧特性曲線以  上 出願人 セイコーエプソン株式会社 代理人 弁理士 銘木 喜三部(他1名)
l......Substrate glass 2...First conductor 3...Nonlinear electrical conduction inducing layer 4...
......Second conductor 5...Third conductor 1...Current-voltage characteristic curve or above Applicant: Seiko Epson Corporation Agent Person Patent attorney Kisanbe Meiki (1 other person)

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の実施例1における、非線形素子の概
念を表す断面図である。 第2図は、本発明の実施例1で作成した非線形素子の電
流電圧特性を表す図である。 第2図
FIG. 1 is a sectional view showing the concept of a nonlinear element in Example 1 of the present invention. FIG. 2 is a diagram showing the current-voltage characteristics of the nonlinear element created in Example 1 of the present invention. Figure 2

Claims (1)

【特許請求の範囲】[Claims]  第2導電体に対して対称に、非線形電気伝導誘起層及
び第1、第3導電体が配置された構造からなる非線形素
子において、非線形電気伝導誘起層が少なくともポリジ
アルキルフマレートから構成されることを特徴とする非
線形素子。
In a nonlinear element having a structure in which a nonlinear electrical conduction inducing layer and first and third conductors are arranged symmetrically with respect to a second conductor, the nonlinear electrical conduction inducing layer is composed of at least polydialkyl fumarate. A nonlinear element characterized by
JP2143586A 1990-06-01 1990-06-01 Non-linear device Pending JPH0437173A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2143586A JPH0437173A (en) 1990-06-01 1990-06-01 Non-linear device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2143586A JPH0437173A (en) 1990-06-01 1990-06-01 Non-linear device

Publications (1)

Publication Number Publication Date
JPH0437173A true JPH0437173A (en) 1992-02-07

Family

ID=15342182

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2143586A Pending JPH0437173A (en) 1990-06-01 1990-06-01 Non-linear device

Country Status (1)

Country Link
JP (1) JPH0437173A (en)

Similar Documents

Publication Publication Date Title
TWI396910B (en) Display substrate, method of manufacturing the same and display panel having the same
JP3725335B2 (en) Organic thin film element
CN105870132A (en) TFT (thin film transistor) array substrate and manufacturing method therefor
JPH0437173A (en) Non-linear device
US5539549A (en) Active matrix substrate having island electrodes for making ohmic contacts with MIM electrodes and pixel electrodes
JPH03261005A (en) Formation of hyaline conductive film
CN100355102C (en) Thin-film two-terminal elements, method of production thereof, and liquid crystal display
JPS61184517A (en) Thin film element
KR100368849B1 (en) Display
JPH03126275A (en) Nonlinear two-terminal element
JPH0437825A (en) Liquid crystal electro-optical device
JPH03218068A (en) Non-linear element
JPS61100728A (en) Color liquid crystal panel
JPH04211174A (en) Nonlinear element and its manufacture
JPH0345930A (en) Two-terminal type nonlinear element
JPH03243926A (en) Nonlinear element
JPS62183579A (en) Mim switching element
JPS63178572A (en) Manufacture of mim element
KR950000140B1 (en) Amorphous silicon tft
JPH0720499A (en) Nonlinear element and its production and element substrate for electro-optical device having the nonlinear element as well as electro-optical device
JP2798964B2 (en) Liquid crystal display
KR920000833B1 (en) Thin film transistor
KR960005849A (en) Deposition method of amorphous ferroelectric insulating film for manufacturing thin film type electroluminescent device (TFELD)
GB2244858A (en) MIM type devices for displays
JPH03160772A (en) Nonlinear element