JPH0649902B2 - Iron loss improvement method for grain-oriented silicon steel sheet - Google Patents

Iron loss improvement method for grain-oriented silicon steel sheet

Info

Publication number
JPH0649902B2
JPH0649902B2 JP60291846A JP29184685A JPH0649902B2 JP H0649902 B2 JPH0649902 B2 JP H0649902B2 JP 60291846 A JP60291846 A JP 60291846A JP 29184685 A JP29184685 A JP 29184685A JP H0649902 B2 JPH0649902 B2 JP H0649902B2
Authority
JP
Japan
Prior art keywords
steel sheet
plasma flame
grain
iron loss
oriented silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60291846A
Other languages
Japanese (ja)
Other versions
JPS62151516A (en
Inventor
文二郎 福田
甫朋 杉山
圭司 佐藤
厚人 本田
Original Assignee
川崎製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 川崎製鉄株式会社 filed Critical 川崎製鉄株式会社
Priority to JP60291846A priority Critical patent/JPH0649902B2/en
Priority to US06/921,523 priority patent/US4772338A/en
Priority to CA000521084A priority patent/CA1325372C/en
Priority to EP86308239A priority patent/EP0220940B1/en
Priority to DE8686308239T priority patent/DE3678099D1/en
Priority to KR1019860008936A priority patent/KR910000009B1/en
Publication of JPS62151516A publication Critical patent/JPS62151516A/en
Priority to US07/209,845 priority patent/US4846448A/en
Publication of JPH0649902B2 publication Critical patent/JPH0649902B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1294Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a localized treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/06Surface hardening
    • C21D1/09Surface hardening by direct application of electrical or wave energy; by particle radiation
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/16Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Metallurgy (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Dispersion Chemistry (AREA)
  • Power Engineering (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、方向性けい素鋼板の鉄損改善方法に関し、
とくに該鋼板を鉄心として使用する変圧器等の電気機器
における効率の有利な向上を図ろうとするものである。
The present invention relates to a method for improving iron loss of grain-oriented silicon steel sheets,
In particular, the present invention intends to improve the efficiency of electrical equipment such as a transformer using the steel sheet as an iron core.

方向性けい素鋼板の鉄損を低減させるには、鋼板の二次
再結晶組織を(110)〔001〕方位に近づけることやSi量を
増量させる等の冶金学的方法が主に採用されてきた。し
かしながらこれ等の方法では、例えば、0.30mm厚の鋼板
では1.7テスラ、50Hzにおける鉄損W17/50を1.00W/kg以
下にすることが難しく、鉄損低減には自ら限度があっ
た。
To reduce the iron loss of grain-oriented silicon steel sheets, metallurgical methods such as bringing the secondary recrystallization structure of the steel sheet closer to the (110) [001] orientation and increasing the Si content have been mainly adopted. It was However, with these methods, for example, it is difficult to reduce the iron loss W 17/50 at 1.7 Tesla and 50 Hz to 1.00 W / kg or less for a steel plate having a thickness of 0.30 mm, and the iron loss reduction has its own limit.

この他の方法としては鋼板厚を薄くする方法があり、現
在では0.20mm厚の鋼板も製造され使用されている。しか
しながら鋼板厚を薄くしても、例えば0.23mm厚の鋼板で
はW17/50が0.90W/kg程度が限界であった。
As another method, there is a method of reducing the steel plate thickness, and at present, a 0.20 mm-thick steel plate is also manufactured and used. However, even if the steel plate thickness is reduced, for example, for a steel plate having a thickness of 0.23 mm, W 17/50 is limited to about 0.90 W / kg.

(従来の技術) そこで冶金学的な手法以外に鉄損を改良する方法が種々
提案されている。
(Prior Art) Various methods for improving iron loss have been proposed in addition to metallurgical methods.

かかる冶金学的方法以外のうち主なものとしては、特公
昭57-2252号公報等に開示されているレーザービームを
照射する方法がある。この方法を用いることにより、従
来に較べ鉄損の大幅な低減が可能になったけれども、コ
スト高、作業性および安全性の点に問題があった。
As a main method other than the metallurgical method, there is a method of irradiating a laser beam disclosed in Japanese Patent Publication No. 57-2252. By using this method, iron loss can be significantly reduced as compared with the conventional method, but there are problems in terms of high cost, workability, and safety.

(発明が解決しようとする問題点) ところで発明者らは先に、これらの問題を解決する手段
として、鋼板にプラズマ炎を放射する方法を開発し、特
願昭60-236271号において開示した。
(Problems to be Solved by the Invention) By the way, the inventors previously developed a method of radiating a plasma flame on a steel sheet as a means for solving these problems, and disclosed it in Japanese Patent Application No. 60-236271.

この発明は、上記したプラズマ炎放射による鉄損低減技
術をもう一歩押し進めた末に開発されたもので、良好な
鉄損低減効果を安定して得ることができる方法を提案す
ることを目的とする。
The present invention was developed after pushing the above-mentioned iron loss reduction technology by plasma flame radiation one step further, and an object thereof is to propose a method capable of stably obtaining a good iron loss reduction effect. .

すなわち、この発明は、仕上げ焼鈍済みの方向性けい素
鋼板の圧延方向に、引張応力σT(kg/mm2)および曲げ応
力σR(kg/mm2)のうちいずれか一方あるいはこれらの合
成応力を加えながら、鋼板の圧延方向と交わる方向に線
状にプラズマ炎を放射するに際し、プラズマ炎の放射ノ
ズルと鋼板との相対速度をS(mm/s)、プラズマ炎の電流
密度をI(A/mm2)とした場合に、次の関係式 を満足する条件下にプラズマ炎の放射を施すことを特徴
とする方向性けい素鋼板の鉄損改善方法である。
That is, the present invention is one of tensile stress σ T (kg / mm 2 ) and bending stress σ R (kg / mm 2 ) in the rolling direction of finish-annealed grain-oriented silicon steel sheet, or a combination thereof. While applying stress, when radiating a plasma flame linearly in a direction intersecting the rolling direction of the steel plate, the relative velocity between the radiation nozzle of the plasma flame and the steel plate is S (mm / s), and the current density of the plasma flame is I ( A / mm 2 ), the following relational expression Is a method for improving iron loss of grain-oriented silicon steel sheet, characterized in that plasma flame is radiated under the condition satisfying the above condition.

ここで、相対速度Sとは、鋼板の圧延方向を横切る向き
において、次式 S=v−Vcosθ v:放射ノズルの移動速度 v:鋼板の移動速度 θ :放射ノズル移動方向と鋼板移動方向のなす角度 で表わされる速度である。即ち、放射ノズル又は鋼板の
いずれか一方のみが移動する場合は、その速度が相対速
度Sとなり、また、放射ノズルと鋼板が同一方向に移動
する場合は、 S=v−v、逆方向に移動する場合は、 S=v+vとなる。
Here, the relative speed S refers to the following equation S = v 1 −V 2 cos θ v 1 : moving speed of the radial nozzle v 2 : moving speed of the steel plate θ: moving direction of the radial nozzle in a direction transverse to the rolling direction of the steel plate. It is the velocity expressed by the angle formed by the moving direction of the steel sheet. That is, when only one of the radiant nozzle and the steel plate moves, the speed becomes the relative speed S, and when the radiant nozzle and the steel plate move in the same direction, S = v 1 −v 2 , the opposite direction. When moving to S, S = v 1 + v 2 .

以下、この発明を由来するに到った実験結果に基づき説
明する。
Hereinafter, the present invention will be described based on the experimental results.

0.23mm、0.30mmの板厚をもつ仕上げ焼鈍済みの方向性け
い素鋼板を、半径60mmから6000mmのロール上に鋼板の圧
延方向をロールの円周方向に合わせて添わせることによ
って鋼板に曲げ応力σR(kg/mm2)を加えると共に、鋼板
の圧延方向に0〜30kg/mm2の引張応力σT(kg/mm2)を加
えつつ、プラズマ炎を鋼板の圧延方向に対し直角の向き
に放射間隔7.5mmで放射した。
A bending stress is applied to a steel sheet having a thickness of 0.23 mm and 0.30 mm, which has been finish-annealed, by rolling it on a roll with a radius of 60 mm to 6000 mm so that the rolling direction of the steel sheet is aligned with the circumferential direction of the roll. with added σ R (kg / mm 2) , while applying a tensile stress sigma T rolling direction 0~30kg / mm 2 (kg / mm 2) of the steel sheet, at right angles the direction of the plasma flame to the rolling direction of the steel sheet The radiation was emitted at a radiation interval of 7.5 mm.

このとき、ロール半径が小さい場合は張力を低くし、ま
た張力が高い場合はロール径を大きくすることにより鋼
板が塑性変形しない範囲でロール径、張力を選定した。
さらに平面上で引張応力だけを加える実験も行った。ロ
ールによる曲げ応力σで与えられる。ここにEは鋼板のヤング率(kg/mm2)、t
は鋼板の板厚(mm)、Rはロール半径(mm)である。
At this time, when the roll radius is small, the tension is lowered, and when the tension is high, the roll diameter is increased to select the roll diameter and the tension within a range in which the steel sheet is not plastically deformed.
Further, an experiment in which only tensile stress was applied on a plane was also conducted. Bending stress σ R due to roll is Given in. Where E is Young's modulus of steel sheet (kg / mm 2 ), t
Is the plate thickness of the steel plate (mm), and R is the roll radius (mm).

またプラズマ炎は、0.05〜2.0mmのノズル穴径を持つノ
ズルから放射させ、ガスはArを用いた。プラズマ炎の出
力電流は、ノズル穴径が大きい程大きな電流を流せる
が、1A〜300Aの範囲で変えた。またノズルと鋼板との相
対速度Sは1mm/s〜4000mm/sの範囲で変化させた。これ
らの値を変えることにより相対速度Sとプラズマ電流密
度I(A/mm2)との比S/Iを0.001〜100の範囲で変化させ
て実験を行った。ここに電流密度とは、出力電流をノズ
ル穴断面積で除した値である。
The plasma flame was emitted from a nozzle having a nozzle hole diameter of 0.05 to 2.0 mm, and the gas used was Ar. The output current of the plasma flame can be increased as the nozzle hole diameter increases, but it was changed in the range of 1A to 300A. The relative speed S between the nozzle and the steel plate was changed within the range of 1 mm / s to 4000 mm / s. Experiments were carried out by changing the ratio S / I of the relative velocity S and the plasma current density I (A / mm 2 ) in the range of 0.001 to 100 by changing these values. Here, the current density is a value obtained by dividing the output current by the nozzle hole cross-sectional area.

鋼板のプラズマ炎放射前後における鉄損W17/50を単板磁
器測定装置により測定し、プラズマ炎放射の効果を調べ
た。
The iron loss W 17/50 of the steel plate before and after plasma flame radiation was measured by a single plate porcelain measuring device, and the effect of plasma flame radiation was investigated.

得られた結果を第1図に示す。図中〇印は鉄損が0.02W/
kg以上向上した場合、一方×印は鉄損が変わらないか劣
化した場合を示している。
The obtained results are shown in FIG. Iron loss is 0.02 W / in the figure.
When the weight is improved by more than kg, on the other hand, the X mark shows the case where the iron loss remains unchanged or deteriorates.

同図より明らかなように、プラズマ炎放射による鉄損低
減効果はS/Iと引張張りないし曲げ応力の和σR+σT
に依存し、S/IとσR+σTとが次の関係式 の範囲を満足する場合にとりわけ優れたプラズマ炎放射
効果があることが判明した。
As is clear from the figure, the iron loss reduction effect by plasma flame radiation is the sum of S / I and tensile or bending stress σ R + σ T
S / I and σ R + σ T depend on It has been found that there is a particularly excellent plasma flame radiation effect when the range is satisfied.

(作用) この発明のプラズマ炎放射に用いられる方向性けい素鋼
板は、仕上げ焼鈍済みであれば鋼板表面被膜の有無にか
かわらず用いることができる。即ち通常、仕上げ焼鈍後
の鋼板は仕上げ焼鈍中に生成されるフオルステライトを
主成分とする被膜でおおわれているが、この被膜の有
無、さらにはフオルステライト被膜上に塗布するりん酸
塩等を含む上塗りコーチングの有無にかかわらず用いる
ことができる。プラズマ炎の放射は鋼板の圧延方向とほ
ぼ直角方向が望ましいが、直角方向に対し45゜以内なら
ばづれていてもかまわない。線状に放射する場合の線の
間隔は2mm〜30mmの範囲が好ましく、この範囲をはずれ
ると効果が小さいかかえって特性の劣化をまねく場合が
ある。応力を加える場合は、曲げ応力、引張応力さらに
はそれらの和が鋼板の降伏点を超える応力にならないよ
うに注意する必要がある。降伏点を超えた場合は特性の
著しい劣化を招く。
(Operation) The grain-oriented silicon steel sheet used for plasma flame radiation according to the present invention can be used regardless of the presence or absence of a steel sheet surface coating as long as it is finish annealed. That is, usually, the steel sheet after finish annealing is covered with a film containing forsterite formed as a main component during finish annealing. However, the presence or absence of this film and further the phosphate etc. applied on the forsterite film It can be used with or without overcoating. The radiation of the plasma flame is preferably in the direction substantially perpendicular to the rolling direction of the steel sheet, but it may be staggered within 45 ° with respect to the direction perpendicular to the rolling direction. In the case of linear radiation, the distance between the lines is preferably in the range of 2 mm to 30 mm, and if it deviates from this range, the effect may be small or the characteristics may deteriorate. When applying stress, it is necessary to take care so that bending stress, tensile stress, and the sum thereof do not exceed the yield point of the steel sheet. If the yield point is exceeded, the characteristics will be significantly deteriorated.

プラズマ炎の発生にはAr等の不活性ガスを用いるのが一
般的であるが、その他のガスを用いても良い。プラズマ
炎放射ノズルのノズル穴径は2mm以下が好適であり、ま
たプラズマ電流およびノズルと鋼板との相対速度はノズ
ルの寿命等を考慮して、前記した関係式を満足する範囲
のなかから適宜選ぶ。
An inert gas such as Ar is generally used to generate the plasma flame, but other gas may be used. The nozzle hole diameter of the plasma flame radiating nozzle is preferably 2 mm or less, and the plasma current and the relative speed between the nozzle and the steel plate are appropriately selected from the range satisfying the above relational expression in consideration of the life of the nozzle and the like. .

プラズマ炎放射により鉄損の低減する理由は、プラズマ
が放射された部分が磁気的に硬質になり、磁区の細分化
をおこしているためと推察される。
The reason why the iron loss is reduced by the radiation of the plasma flame is presumed to be that the portion where the plasma is radiated becomes magnetically hard and the magnetic domains are subdivided.

(実施例) 実施例1 0.23mm厚の仕上げ焼鈍済みの方向性けい素鋼板を、半径
100mmのロール上に添わせ、かつ鋼板の圧延方向に5kg/
mm2の引張応力を付加しつつ、表1に示した電流密度I
およびノズルと鋼板との相対速度Sの条件下に、鋼板の
圧延方向に対し直角の向きに線状にプラズマ放射を施し
た。
(Example) Example 1 A 0.23 mm-thickness annealed grain-oriented silicon steel sheet was used as the radius.
It is put on a 100 mm roll and 5 kg / in the rolling direction of the steel plate.
While applying a tensile stress of mm 2 , the current density I shown in Table 1
Further, under the condition of the relative velocity S between the nozzle and the steel sheet, linear plasma irradiation was performed in a direction perpendicular to the rolling direction of the steel sheet.

ここに鋼板のヤング率を用いて計算した合計応力は約21
kg/mm2であった。またプラズマトーチのノズル径は0.15
mm、電圧は30Vであった。ガスはArを使用した。
The total stress calculated using the Young's modulus of the steel plate is about 21
It was kg / mm 2 . The nozzle diameter of the plasma torch is 0.15
mm, voltage was 30V. Ar gas was used as the gas.

表1に、プラズマ炎放射前後における鉄損特性について
調べた結果を併記する。
Table 1 also shows the results of examining the iron loss characteristics before and after plasma flame irradiation.

同表より明らかなように、前掲の関係式を満足する条件
下にプラズマ炎放射を行った場合にとりわけ良好な低損
の低減が達成された。
As is clear from the table, particularly good reduction in low loss was achieved when plasma flame radiation was performed under conditions satisfying the above-mentioned relational expression.

実施例2 0.23mm厚の仕上げ焼鈍済みの方向性けい素鋼板を、半径
200mmのロール上に貼り付け、この鋼板に対し鋼板の圧
延方向と直角方向に線状にプラズマ炎を放射した。この
時鋼板表面の曲げ応力は8kg/mm2であった。また同種の
鋼板を曲げることなく、8kg/mm2の引張応力を加えまた
は加えずに、同様のプラズマ炎を放射した。
Example 2 A 0.23 mm-thick finish-annealed grain-oriented silicon steel plate was used as a radius
It was stuck on a roll of 200 mm, and a plasma flame was radiated to this steel plate linearly in the direction perpendicular to the rolling direction of the steel plate. At this time, the bending stress on the surface of the steel sheet was 8 kg / mm 2 . A similar plasma flame was radiated without bending a steel sheet of the same kind and with or without applying a tensile stress of 8 kg / mm 2 .

プラズマトーチのノズル径は0.1mmでガスはAr+H2を使用
した。ノズルと鋼板との相対速度Sおよび電流密度Iは
表2に示したとおりである。また放射間隔は8mmであ
る。
The nozzle diameter of the plasma torch was 0.1 mm and the gas used was Ar + H 2 . The relative speed S between the nozzle and the steel plate and the current density I are as shown in Table 2. The radiation interval is 8 mm.

表2に、放射前後の磁気特性を単板磁気試験装置で測定
した結果を併記する。
Table 2 also shows the results of measuring the magnetic characteristics before and after radiation with a single-plate magnetic testing device.

同表に示したとおり、この発明に従う放射条件を満足す
る場合(試料No.2,6)にとりわけ優れた鉄損低減効
果が得られている。
As shown in the table, when the radiation conditions according to the present invention are satisfied (Sample Nos. 2 and 6), a particularly excellent iron loss reducing effect is obtained.

(発明の効果) かくしてこの発明によれば、方向性けい素鋼板の鉄損を
著しく低減させることができ、ひいてはトランス等にお
ける鉄心のエネルギー損を格段に低減することが可能と
なった。
(Effect of the Invention) Thus, according to the present invention, the iron loss of the grain-oriented silicon steel sheet can be remarkably reduced, and the energy loss of the iron core in the transformer or the like can be remarkably reduced.

【図面の簡単な説明】[Brief description of drawings]

第1図は、プラズマ炎放射による鉄損低減効果をS/I
とσR+σTとの関係で示した図である。
FIG. 1 shows the S / I reduction effect of iron loss due to plasma flame radiation.
It is the figure shown by the relationship of σ R + σ T.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 本田 厚人 千葉県千葉市川崎町1番地 川崎製鉄株式 会社技術研究本部内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Atsuto Honda Atsushi Kawasaki-cho, Chiba-shi, Chiba Kawasaki Steel Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】仕上げ焼鈍済みの方向性けい素鋼板の圧延
方向に、引張応力σ(kg/mm2)および曲げ応力σ
(kg/mm2)のうちいずれか一方あるいはこれらの合成
応力を加えながら、鋼板の圧延方向と交わる方向に線状
にプラズマ炎を放射するに際し、プラズマ炎の放射ノズ
ルと鋼板との相対速度をS(mm/s)、プラズマ炎の電流密
度をI(A/mm2)とした場合に、次の関係式 を満足する条件下にプラズマ炎の放射を施すことを特徴
とする方向性けい素鋼板の鉄損改善方法。
1. A tensile stress σ T (kg / mm 2 ) and a bending stress σ in the rolling direction of a grain-finished grain-oriented silicon steel sheet.
Relative velocity between the radiation nozzle of the plasma flame and the steel plate when linearly radiating the plasma flame in the direction intersecting the rolling direction of the steel plate while applying either one of R (kg / mm 2 ) or a combined stress thereof. Is S (mm / s) and the current density of the plasma flame is I (A / mm 2 ), the following relational expression A method for improving iron loss of grain-oriented silicon steel sheet, characterized in that a plasma flame is radiated under a condition satisfying the conditions.
JP60291846A 1985-10-24 1985-12-26 Iron loss improvement method for grain-oriented silicon steel sheet Expired - Lifetime JPH0649902B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP60291846A JPH0649902B2 (en) 1985-12-26 1985-12-26 Iron loss improvement method for grain-oriented silicon steel sheet
US06/921,523 US4772338A (en) 1985-10-24 1986-10-21 Process and apparatus for improvement of iron loss of electromagnetic steel sheet or amorphous material
CA000521084A CA1325372C (en) 1985-10-24 1986-10-22 Process and apparatus for improvement of iron loss of electromagnetic steel sheet or amorphous material
EP86308239A EP0220940B1 (en) 1985-10-24 1986-10-23 Process and apparatus for improvement of iron loss of electromagnetic steel sheet or amorphous material
DE8686308239T DE3678099D1 (en) 1985-10-24 1986-10-23 METHOD AND DEVICE FOR IMPROVING THE IRON LOSS OF SHEETS IN ELECTROMAGNETIC STEEL OR AMORPHOUS MATERIAL.
KR1019860008936A KR910000009B1 (en) 1985-10-24 1986-10-24 Process and apparatus for improvement of iron loss of electromagnetic steel sheet or amorphous material
US07/209,845 US4846448A (en) 1985-10-24 1988-06-22 Apparatus for improvement of iron loss of electromagnetic steel sheet or amorphous material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60291846A JPH0649902B2 (en) 1985-12-26 1985-12-26 Iron loss improvement method for grain-oriented silicon steel sheet

Publications (2)

Publication Number Publication Date
JPS62151516A JPS62151516A (en) 1987-07-06
JPH0649902B2 true JPH0649902B2 (en) 1994-06-29

Family

ID=17774171

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60291846A Expired - Lifetime JPH0649902B2 (en) 1985-10-24 1985-12-26 Iron loss improvement method for grain-oriented silicon steel sheet

Country Status (1)

Country Link
JP (1) JPH0649902B2 (en)

Also Published As

Publication number Publication date
JPS62151516A (en) 1987-07-06

Similar Documents

Publication Publication Date Title
EP0087587B1 (en) An electromagnetic steel sheet treated by laser-beam irradiation
EP0008385B1 (en) Grain-oriented electromagnetic steel sheet and method for its production
US6929704B2 (en) Grain-oriented electromagnetic steel sheet
EP3751013B1 (en) Grain oriented electrical steel sheet and production method therefor
US20150034211A1 (en) Grain-oriented electrical steel sheet and method for producing same
JPH0772300B2 (en) Method for manufacturing low iron loss grain oriented silicon steel sheet
US5296051A (en) Method of producing low iron loss grain-oriented silicon steel sheet having low-noise and superior shape characteristics
EP0220940B1 (en) Process and apparatus for improvement of iron loss of electromagnetic steel sheet or amorphous material
JPH11293340A (en) Low core loss oriented silicon steel sheet and its production
JPH0649902B2 (en) Iron loss improvement method for grain-oriented silicon steel sheet
JPH07320922A (en) One directional electromagnetic steel sheet at low iron loss
Ushigami et al. Development of low-loss grain-oriented silicon steel
KR102163142B1 (en) Grain-oriented electrical steel sheet and method for manufacturing the same
EP4079877A2 (en) Grain-oriented electrical steel sheet and magnetic domain refinement method thereof
JPH066745B2 (en) Iron loss improvement method for grain-oriented silicon steel sheet
JPH0522547U (en) Electron beam irradiation device
JPH01191744A (en) Manufacture of grain-oriented electrical steel sheet with low iron loss
JPS62151511A (en) Method for decreasing iron loss of grain oriented silicon steel sheet
EP4317468A1 (en) Grain-oriented electromagnetic steel sheet and method for producing same
JPS59153451A (en) End ring
EP0287357A2 (en) Method of reducing iron loss of grain oriented silicon steel sheet
JPH07320921A (en) Directional electromagnetic steel sheet at low iron loss
KR100336851B1 (en) Method for manufacturing high magnetic density electric steel sheet with low iron loss
JP3364305B2 (en) Unidirectional electrical steel sheet with low iron loss
JPH0672265B2 (en) Iron loss improvement method for grain-oriented silicon steel sheet